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Abstract

In many fields of decision making, choices have to be made from multiple al-

ternatives, but stochastic dominance rules do not yield a complete ordering due to

incomparability of some or all of the prospects. For ranking incomparable prospects,

a ‘Utopia Index’ measuring the proximity to a lower envelope of integrated distribu-

tion functions is proposed. Economic interpretations in terms of Expected Utility are

provided for the envelope and deviations from it. The analysis generalizes the existing

Almost Stochastic Dominance concept from pairwise comparison to a joint analysis of

an arbitrary number of prospects. The limit distribution for the empirical counterpart

of the index for a general class of dynamic processes is derived together with a con-

sistent and feasible inference procedure based on subsampling techniques. Empirical

applications to Chinese household income data and historical investment returns data

show that, in every choice set, a single prospect is ranked above all alternatives at

conventional significance levels, despite the incomparability problem.
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Wellbeing Analysis, Portfolio Choice.

∗The authors thank the editor, associate editor, and two referees, as well as Heim Levy, Oliver Linton,
and the seminar participants at the 2016 INET-Cambridge Workshop on Stochastic Dominance Theory
and Applications for helpful comments.

1



1 Introduction

In a considerable variety of situations, choices have to be made from a collection of risky

prospects, wellbeing or other outcome quality distributions. A common difficulty for advis-

ers, fiduciaries and policy makers alike is the inherent ambiguity of the preferences of the

relevant individuals. Individually specific preferences are difficult to elicit and vary with

culture, personal traits and circumstances.

To address this problem, stochastic dominance (SD) criteria (Hadar and Russell (1969),

Hanoch and Levy (1969), Rothschild and Stiglitz (1970), Atkinson (1970, 1987), Foster and

Shorrocks (1988), Davies and Hoy (1994, 1995)) provide a partial ordering for general classes

of preferences.

Unfortunately, all too frequently prospects cannot be ordered because the relevant domi-

nance relation does not prevail. Known as “incomparability” in mathematical order theory,

the decision rule fails to identify a unique superior alternative, and potentially leads to

indecision or suboptimal choice.

The present study facilitates choice in such cases by introducing a ‘Utopia Index’ which

measures the proximity to the lower envelope of the integrated distribution functions of all

feasible prospects. This index admits the possibility that the best and worst prospects may

not be unique, whilst identifying the situation of unique superiority or inferiority when it

does occur. The analysis provides a formal economic, mathematical and statistical inter-

pretation of the exploratory and informal applications of empirical envelopes in Anderson

and Leo (2016).

In Section 2, the basic concepts are introduced. The analysis combines elements of

Convex Stochastic Dominance (CSD; Fishburn (1974); Bawa, Bodurtha, Rao and Suri

(1985); Post (2017)) and Almost Stochastic Dominance (ASD; Leshno and Levy (2002);

Tzeng, Huang and Shih (2013); Tsetlin, Winkler, Huang and Tzeng (2015)) rules.

Through a joint analysis of all feasible alternatives, CSD generally leads to a larger

reduction of the choice set than multiple pairwise comparisons. Using the CSD approach,

Bawa, Bodurtha, Rao and Suri (1985) shrink an investment opportunity set by about 30

percent compared with Bawa, Lindenberg and Rafsky (1979), who use multiple pairwise

comparisons. Anderson and Post (2018) report similar reductions using real and simulated
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wellbeing distributions. Nevertheless, CSD is not a panacea, because its ‘optimal set’ still

contains at least two elements, if multiple alternatives are not pairwise dominated.

ASD shrinks the choice set by allowing for limited violations of the SD rule. It compares

the area that violates the classic ‘no crossing rule’ of two integrated distribution functions

with the total absolute area between them. This approach has an interesting economic

interpretation in terms of a set of utility functions with limited variation of the derivatives,

but, since it focuses on pairwise comparison, it does not generate the largest possible set

reduction, especially in the presence of many alternatives.

To facilitate statistical inference, Section 3 provides derivations of the limit distribution

for the empirical counterpart of the Utopia Index for a general class of dynamic processes

and proposes consistent and feasible procedures based on resampling techniques in the spirit

of Linton, Maasoumi and Whang (2005), Scaillet and Topaloglou (2010) and Arvanitis,

Hallam, Post and Topaloglou (2017); see also Whang (2018). This framework also allows

for statistical inference about standard ASD relations which arise as special cases of the

analysis.

Section 4 presents Monte Carlo experiments investigating the finite-sample properties

of the subsampling confidence intervals and the subsampling tests.

To illustrate the wide applicability of these techniques, examples from very different

literatures are presented in Sections 5 and 6. Section 5 provides an analysis of comparative

economic wellbeing in China before, during and after the Cultural Revolution. Section 6

considers portfolio choice problems drawn from the asset pricing literature.

To facilitate notation and compact presentation of the new concepts a number of sim-

plifications are employed. First, since in most financial applications the maintained as-

sumption of risk aversion is accepted and inequality aversion is ever present in the range of

assumptions employed by welfare analysts, attention is focused upon the common second-

degree stochastic dominance rule (SSD). Extensions to other degrees of SD are straightfor-

ward by changing the order of integration of the distribution functions.

Second, to clarify the economic interpretation the model is formulated and interpreted

in terms of Expected Utility (EU), notwithstanding the known applications of SSD outside

the realm of EU.
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Third, the number of prospects is assumed to be finite. In wellbeing comparisons,

combining policy alternatives or sub-populations is generally not feasible or meaningful.

Similarly, in Corporate Finance, investment projects are often indivisible and mutually

exclusive. In some other applications, linear combinations of the prospects are possible, for

example, forming an investment portfolio of liquid securities. In the latter case, the analysis

can be extended along the lines of Post (2003) and the SD optimal set then coincides with

his ‘SD efficient set’.

The online supplementary appendix contains the formal proofs to the propositions of

Sections 2 and 3 together with details about an auxiliary regression analysis for the Chinese

wellbeing application of Section 5.

2 Concepts

2.1 Preliminaries

Consider a finite choice set of M distinct prospects P := {P1, · · · , PM}, 2 ≤ M < ∞.

The prospects have random outcomes (X1, · · · , XM) ∈ XM , where X = [a, b], −∞ <

a < b < +∞, is a bounded superset of the maximal support of the prospects. Let G :=

{G1, · · · , GM}, where Gm(x) is the cumulative distribution function (CDF) for prospect

Pm, m = 1, · · · ,M . The second-order integrated cumulative distribution function (ICDF)

is defined as follows:

G
(2)(x) :=

ˆ x

a

G(y)dy, G ∈ G. (1)

The ICDF is a non-negative, non-decreasing and convex function with minimum G (2)(a) =

0 and maximum G (2)(b) = b− EG[x].

The analysis can easily be generalized to N -th degree SD by substituting G(2) by

G(N)(x) = G(x) for N = 1 or G(N)(x) :=
´ x

a G(N−1)(y)dy for N > 2.

To discuss the economic interpretation of the analysis, let U2 denote the set of non-

decreasing and concave utility functions. Since the analysis is location invariant, it is

assumed without loss of generality that utility is non-positive (u(x) ≤ 0), to allow for the
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elementary ramp function u(x) = (x− y, 0).

The prospects are assumed to be non-equivalent, in the sense that, for every pair of

prospects (Pm, Pn), m ≠ n, at least some permissible utility functions are not indifferent

between Pm and Pn.

Individual decision makers face the EU optimization problem maxG∈G EG[u(x)], for a

given u ∈ U2. Absent complete information about decision-maker preferences, one may use

the following binary classification scheme:

Definition 1. Prospect Pm, m = 1, · · · ,M , is second-degree inadmissible if it is strictly

dominated by some alternative prospect by SSD:

G(2)
m (x) ≥ G(2)(x), ∀x ∈ X , (2)

for some G ∈ G, with G(2)
m (x) > G(2)(x) for at least some x ∈ X .

The admissible set has an unambiguous mathematical interpretation as the set of ‘max-

imal elements’ of the choice set and the dominance relation. The economic interpretation

however is more ambiguous. For M = 2, it is well-known that Pn dominates Pm if and only

if EGm [u(x)] ≤ EGn [u(x)], for all u ∈ U2, with at least one strict inequality for some u ∈ U2.

The EU interpretation however does not carry over to M > 2. In this case, an alternative,

tighter classification scheme is more relevant:

Definition 2. Prospect Pm, m = 1, · · · ,M , is second-degree non-optimal if it is strictly

dominated by some mixture distribution by SSD:

G(2)
m (x) ≥

M∑

n=1

λnG
(2)
n (x), ∀x ∈ X , (3)

for some mixing weights λ ∈ Λ :=
{
λ ∈ Rn

+ : λ′
1M = 1

}
, with G(2)

m (x) >
∑M

n=1 λnG
(2)
n (x)

for at least some x ∈ X .

Non-optimality occurs if and only if EGm [u(x)] ≤ maxG∈G EG[u(x)], for all u ∈ U2, with

at least one strict inequality for some u ∈ U2. All non-optimal prospects are economically

redundant and can be removed from the choice set for maximization purposes.
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The classification scheme based on optimality leads to a larger reduction of the choice set

than that based on admissibility. For M = 2, optimality and admissibility are equivalent.

However, for M > 2, admissibility is a necessary but not sufficient condition for optimality.

Nevertheless, the optimality criterion cannot reduce the choice set to a singleton, in case

of multiple admissible prospects.

2.2 Utopia

In the quest for decision rules that apply in case of multiple admissible prospects, a third,

even tighter classification scheme is introduced:

Definition 3. Prospect Pm, m = 1, · · · ,M , is second-degree utopian if it weakly dominates

all alternative mixture distributions by SSD:

G(2)
m (x) ≤

M∑

n=1

λnG
(2)
n (x), ∀x ∈ X , (4)

for all λ ∈ Λ.

In terms of order theory, the utopian set consists of the ‘greatest elements’ of the choice

set and the dominance relation, which should not be confused with the set of maximal

elements, or the admissible set.

The utopian set coincides with the optimal set if the latter is a singleton; else, it is

empty. In many relevant applications, multiple prospects are optimal and thus no prospect

is utopian. The following construct is introduced as a benchmark for measuring deviations

from utopianity:

Definition 4. The second-order lower envelope of G amounts to

G2(x) := min
G∈G

G(2)(x), x ∈ X . (5)

The lower envelope is a non-negative, non-decreasing and piece-wise convex function

with minimum G2(a) = 0 and maximum G2(b) = b−maxG∈G EG[x] (using G (2)(b) = b−EG[x]

for all G ∈ G).
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The lower envelope consists exclusively of segments of second-order ICDFs of optimal

prospects. The envelope is therefore invariant to the exclusion of non-optimal prospects.

The ICDF of any admissible but non-optimal prospect will not intersect with the envelope.

By construction, the lower envelope is the tightest envelope that supports from below

all ICDF mixtures. For all outcome levels x ∈ X ,

∃G ∈ G : G(2)(x) = G2(x); (6)

M∑

n=1

λnG
(2)
n (x) ≥ G2(x), ∀λ ∈ Λ. (7)

If one of the prospects is utopian, then its second-order ICDF will coincide with the

lower envelope. If the utopian set is empty, it seems tempting to view the lower envelope

as the second-order ICDF of an infeasible utopian prospect, or an order-theoretical ‘upper

bound’. That interpretation is not correct, however, as the lower envelope is piece-wise

convex, rather than convex, and hence not a second-order ICDF.

Instead the lower envelope is interpreted in terms of EU levels for elementary utility

functions. Specifically, U2 is a convex cone in the space of functions and its extreme rays

are given by elementary Russell and Seo (1989) ramp functions:

vy(x) := min(x− y, 0). (8)

These singularity functions play a key role in the SD literature, because a dominance

relation occurs if and only the relevant preference relation exists for all these functions.

Proposition 1. The lower envelope mirrors the maximum expected value of the elementary

utility function vy(x) as a function of the threshold level y ∈ X :

G2(y) = −max
G∈G

EG[vy(x)], ∀y ∈ X . (9)

Since all permissible utility functions u ∈ U2 are positive linear mixtures of the elemen-

tary functions, without loss of generality, attention may be restricted to the following set
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of convex mixtures:

V2 := {uw(x) : w ∈ W} ; (10)

uw(x) :=

ˆ b

a

w(y)vy(x)dy, w ∈ W; (11)

W :=

{
w : X→[0, 1] :

ˆ b

a

w(y)dy = 1

}
. (12)

In this formulation, the mixing function w : X→[0, 1] controls the local risk aversion or

poverty aversion of the mixed utility function, with w(y) = 0 representing local linearity.

Replacing U2 with V2 amounts to using harmless positive linear transformations of

utility functions as well as ignoring the shape of the utility functions outside the support

superset X = [a, b]. Economic interpretations of the definitions of admissibility, optimality

and utopianity are invariant to this replacement.

The circle can now be completed by providing an economic interpretation of utopianity:

Proposition 2. Prospect Pm, m = 1, · · · ,M , is second-degree utopian if and only if it is

the best solution for all utility functions v ∈ V2

EGm [uw(x)] = max
G∈G

EG[uw(x)], ∀w ∈ W. (13)

An economic interpretation can also be provided for violations of utopianity, using a

subset of admissible utility functions. For Y ⊆ X , let

V∗
2 (Y) := {uw ∈ V2 : w(y) = 0 ∀y ∈ Y} ; (14)

X2,m :=
{
x ∈ X : G(2)

m (x) > G2(x)
}
. (15)

The set V∗
2 (Y) consists of utility functions which are locally linear (w(y) = 0) on Y .

This set is reminiscent of the piecewise-linear utility functions used in Post (2003, Theorem

2) to model empirical SD relations. The ‘violation region’ X2,m consists of the outcomes

levels where the ICDF of the evaluated prospect lies above the lower envelope. For utopian

prospects, X2,m = Ø; for non-optimal prospects, X2,m = X .
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Proposition 3. Given the violation region X2,m for prospect Pm, m = 1, ...,M , and the

usual mean condition EGm [x] = maxn∈P EGn [x],

EGm [uw(x)] = max
n∈P

EGn [uw(x)] ∀uw ∈ V∗
2 (X2,m). (16)

In other words, the evaluated prospect is the best solution for all normalized permissible

utility functions which are locally linear in the violation region X2,m. Due to the aforemen-

tioned invariance properties, the utility function class V∗
2 (X2,m) may be replaced with its

non-normalized equivalent based on U2, without harm.

On a small interval, any standard utility function can be accurately approximated with

a linear line segment. Hence, approximate optimality for standard utility functions can

be established in case of minor violations of utopianity. By contrast, for a large violation

region, local linearity tends to gives a poor approximation for standard, strictly concave

functions and approximate optimality cannot be established.

2.3 Dystopia

Analogous to the definition of utopianity, the ‘least element’ of the choice set can also be

introduced:

Definition 5. Prospect Pm, m = 1, · · · ,M , is second-degree dystopian if it is weakly

dominated by all alternative mixture distributions by SSD:

G(2)
m (x) ≥

M∑

n=1

λnG
(2)
n (x), ∀x ∈ X , (17)

for all λ ∈ Λ.

Definition 6. The second-order upper envelope of G amounts to

G2(x) := max
G∈G

G(2)(x), x ∈ X . (18)

Like the lower envelope, the upper envelope is a non-negative, non-decreasing and piece-

wise convex function with minimum G2(a) = 0. However, G2(x) envelopes G from above
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and it achieves a maximum of G2(b) = b−minG∈G EG[x].

In a similar fashion to utopianity, the set of prospects that are second-degree dystopian

form an inferior set. If only one prospect is dystopian, that is to say the inferior set is a

singleton, then its second-order ICDF will coincide with the upper envelope. If no prospect

is dystopian, the upper envelope is the tightest envelope that supports from above all

second-order ICDF mixtures: for all outcome levels x ∈ X ,

∃G ∈ G : G(2)(x) = G2(x); (19)

M∑

n=1

λnG
(2)
n (x) ≤ G2(x), ∀λ ∈ Λ. (20)

Proposition 4. The upper envelope mirrors the minimum expected value of the elementary

utility function vy(x) as a function of the threshold level y ∈ X :

G2(y) = −min
G∈G

EG[vy(x)], ∀y ∈ X . (21)

Proposition 5. Prospect Pm, m = 1, · · · ,M , is second-degree dystopian if and only if it

is the worst solution for all utility functions v ∈ V2

EGm [uw(x)] = min
G∈G

EG[uw(x)], ∀w ∈ W. (22)

2.4 Utopia index

A ranking of incomparable prospects may be obtained by comparing individual distribu-

tions with the lower envelope. For this purpose, the following measure for violations of

utopianity, in the spirit of ASD, is introduced:

Definition 7. The second-order violation area for utopianity of prospect Pm, m = 1, · · · ,M ,

amounts to

A2,m :=

ˆ

X

(
G(2)

m (x)− G2(x)
)
dx. (23)

This measure captures the deviations of the prospect from the optima for the elementary
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utility functions. Specifically, it follows from the results in Section 2.2 that

A2,m =

ˆ

X

(
max
G∈G

EG[vy(x)]− EGm [vy(x)]

)
dy. (24)

If A2,m = 0, then the prospect is utopian and the unique element of the optimal set. If

A2,m > 0, then the prospect is not utopian. The violation area increases with the fraction

of the utility functions for which the prospect is suboptimal and the shortfall in EU for

these functions.

For normalizing the violation area, the following between-prospect variation measure is

introduced:

Definition 8. The second-order transvariation of G amounts to

T2 :=

ˆ

X

(
Ḡ2(x)− G2(x)

)
dx. (25)

This measure extends the existing notions of bi-variate transvariation (Gini (1916, 1959)

and multivariate transvariation (Dagum (1968)) to a higher order of integration of distri-

butions.

Whereas the envelopes G2 and Ḡ2 capture best-case and worst-case solutions, the

transvariation T2 captures the between-prospect variation in economic goodness for the

elementary utility functions:

T2 =

ˆ

X

(
max
G∈G

EG[vy(x)]−min
G∈G

EG[vy(x)]

)
dy. (26)

Since the prospects are non-equivalent, T2 > 0. By construction, the transvariation is

an upper bound for the violation area: T2 ≥ A2,m, for any m = 1, · · · ,M . Motivated by

this observation, the following normalized measure for utopianity is proposed:

Definition 9. The second-degree Utopia Index for prospect Pm, m = 1, · · · ,M , amounts

to

I2,m := 1−
A2,m

T2
. (27)
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The Utopia Index I2,m can readily be shown to satisfy the Continuity, Scale Invariance,

Scale Independence and Normalization Axioms familiar in the Inequality Measurement

Literature (Shorrocks (1978), Kobos and Milos (2012)). Since it is completely defined by

the marginal distribution functions, the index is also Law Invariant.

Since 0 ≤ G(2)
m (x) ≤ Ḡ2(x), for all m = 1, · · · ,M , it follows that 0 ≤ A2,m ≤ T2.

Consequently, 0 ≤ I2,m ≤ 1; I2,m = 0 amounts to dystopianity; I2,m = 1 amounts to

utopianity. If I2,m < 1 for all m = 1, · · · ,M, then the utopian set is empty and there exist

multiple optimal prospects. In this case, the prospect with the highest Utopia Index comes

closest to being a unique optimum.

In contrast to inequality-adjusted wellbeing indices (see, for example, Blackorby and

Donaldson (1978)) and certainty equivalents, the Utopia Index considers all feasible out-

come distributions and all permissible preferences.

Classical examples of inequality-adjusted indices are Atkinson’s Index (Atkinson (1983))

and Sen’s index (Sen (1987)). Both modify µ, average income in a given distribution, by a

factor ‘I’ which accommodates aversion to inequality in the form: µ(1− I). In the case of

Atkinson’s index, I is based on the Hölder generalized mean; in the case of Sen’s index, I

corresponds to some power of the Gini coefficient. In contrast to the Utopia Index, these

indices are based on a single given wellbeing distribution and a single given inequality

aversion level.

One way to interpret the Utopia Index is in terms of sub-indices for individual utility

functions:

I2,m(v) :=
EGm [v(x)]−minG∈G EG[v(x)]

maxG∈G EG[v(x)]−minG∈G EG[v(x)]
, v ∈ V2. (28)

It follows from (24) and (26) that the index takes a value between the lowest and highest

values which are feasible for individual permissible utility functions:

min
v∈V2

I2,m(v) ≤ I2,m ≤ max
v∈V2

I2,m(v). (29)

By searching over all permissible preferences, the Utopia Index can identify whether

the optimal and inferior sets are singletons and the corresponding prospects are uniquely
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utopian and dystopian, respectively. Since infinitely many preferences are permitted, this

is not possible using a finite collection of sub-indices for individual utility functions.

Changing the choice set by including or excluding prospects generally changes the lower

envelope G2(x) and transvariation T2 and, consequently, changes the values of the index

of the prospects in absolute and relative terms. The mutual ranking of a given subset

of prospects is however robust to expansion or contraction of the choice set, because the

violation area A2,m of every prospect changes by the same amount if the lower envelope is

shifted. Consequently, I2,m ≥ I2,n for a given pair of prospects in a given choice set implies

I2,m ≥ I2,n in any superset of the two prospects.

2.5 Special case: ASD

The Utopia Index resembles the ‘epsilon’ measure of ASD, in the sense that it captures the

normalized violation area of utopianity, just as ‘epsilon’ captures the normalized violation

area of pairwise dominance. Indeed, in the case of pairwise analysis (M = 2), the proposed

framework is equivalent to ASD. Specifically, in this case, ‘epsilon’ amounts to the anti-

index (1− I2,m) =
A2,m

T2
.

ASD is typically interpreted in terms of the following subset of admissible utility func-

tions:

U∗
2 (ϵ) :=

{
u ∈ U2 : Cu ≤

(
1

ϵ
− 1

)}
; (30)

Cu := sup (−u′′(x)) / inf (−u′′(x)) . (31)

In case of pairwise comparison (M = 2), P1 dominates P2 by ASD given epsilon value

0 < ϵ ≤ 1/2 if and only if EG1
[u(x)] ≥ EG2

[u(x)] for all u ∈ U∗
2 (ϵ); see Lesnho and Levy

(2002) and Tzeng, Huang and Shih (2013).

It is possible to preserve the interpretation in terms of U∗
2 (ϵ) in the case of M > 2 by

making multiple pairwise ASD comparisons. Specifically, EGm [u(x)] = supn∈P EGn [u(x)]

for all u ∈ U∗
2 (ϵ) if and only if Pm dominates all alternatives by ASD at an epsilon value of

ϵ.

Although our statistical inference procedure allows for pairwise implementation of utopi-
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anity tests, it should be pointed out that a series of pairwise tests is less statistically efficient

than a joint test for utopianity relative to all prospects.

In addition, the economic interpretation of U∗
2 (ϵ) seems debatable, because this utility

set is biased towards constant risk aversion (−u′′(x) = c) and does not account for the nat-

ural variation of u′′(x) of standard utility functions such as the power and the exponential.

As a case in point, the quadratic utility function u(x) = x − (2b)−1 x2 features Cu = 1

and is therefore included in U∗
2 (ϵ) for every 0 < ϵ ≤ 1/2, despite Increasing Absolute Risk

Aversion and exploding Relative Risk Aversion: limx↑b (−u′′(x)x/u′(x)) = ∞.

3 Statistical Inference

3.1 Introduction

In practice, the CDFs Gm(x), m = 1, · · · ,M , are latent and the analyst has access to a

discrete series of realized outcomes. Let Sm := {Xm,t : t = 1, . . . , Tm} be the observed data

from Gm(x). Our analysis considers two types of sampling schemes that typically arise in

applications: (i) Type I (Nonsynchronized) Sampling : mutually independent samples of

Tm independent observations; (ii) Type II (Synchronized) Sampling : samples of Tm = T

independent or weakly dependent observations

Type I sampling is appropriate in situations where separate random samples are drawn

from nonoverlapping populations such as countries or regions, or when random samples are

drawn at different points in time for the same population.

Type II sampling is appropriate if the prospects X1,t, ..., XM,t represent measures of

the same welfare variable at different points in time (for example, before-tax and after-

tax incomes), or different measures of welfare for an individual or a country (for example,

income and leisure) at a given time.

Alternatively, the prospects may represent returns of different portfolios at a given time

t. In the latter case, it makes sense to assume that observations are (weakly) dependent over

t. In any case, unlike the Type I sampling, it is plausible to assume that the observations

X1,t, ..., XM,t are mutually dependent in an unknown fashion at a given t.

This section discusses a statistical inference procedure for the Utopia Index I2,m using
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the following estimator:

Î2,m := 1−
Â2,m

T̂2

,

where Â2,m and T̂2, respectively, are the empirical violation area and empirical transvaria-

tion which are based on the empirical equivalent of the ICDF G(2)
m (x):

Ĝ(2)
m (x) :=

1

Tm

Tm∑

t=1

(x−Xm,t)1 (Xm,t ≤ x) , m = 1, ...,M.

The analysis can be extended to the N -th order Utopia Index IN,m for N ≥ 1 in a straight-

forward fashion.

3.2 Asymptotic distribution

The analysis also requires some additional notation. Let

∆i,j(x) := G(2)
i (x)−G(2)

j (x), 1 ≤ i, j ≤ M ;

∆m,max(x) := max
1≤j≤M

∆m,j(x);

∆max(x) := max
1≤i≠j≤M

∆i,j(x).

These definitions can be used to reformulate the violation area and transvariation as follows:

A2,m =

ˆ

X

[
G(2)

m (x)− G2(x)
]
dx =

ˆ

X

∆m,max(x)dx;

T2 =

ˆ

X

[
G2(x)− G2(x)

]
dx =

ˆ

X

∆max(x)dx.

The analysis also employs r-enlargements of ‘contact sets’:

Bm,j(r) := {x ∈ X : |∆m,j(x)−∆m,max(x)| ≤ r} ; (32)

B̃i,j(r) := {x ∈ X : |∆i,j(x)−∆max(x)| ≤ r} . (33)

For any subset A ⊂ X , let A0 := A and A1 := X\A. Define the following index sets which
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consist of vectors of 0 or 1 excluding the unit vector:

J :={(i1, ..., iM) ∈ {0, 1}M : ij = 0 for some j}; (34)

K:={(k1,2, k1,3, ..., kM,(M−1)) ∈ {0, 1}M(M−1) : ki,j = 0 for some (i, j)}. (35)

For i ∈ J , k ∈ K, and 0 < r < s, let

A∗
m,i(r, s) :=

⎛

⎝
⋂

{j:ij=0}

B
ij
m,j(r)

⎞

⎠
⋂

⎛

⎝
⋂

{j:ij=1}

B
ij
m,j(s)

⎞

⎠ ; (36)

Ã∗
k(r, s) :=

⎛

⎝
⋂

{(i,j):i≠j,ki,j=0}

B̃
ki,j
i,j (r)

⎞

⎠
⋂

⎛

⎝
⋂

{(i,j):i≠j,ki,j=1}

B̃
ki,j
i,j (s)

⎞

⎠ . (37)

It is assumed that the observed data satisfy one of the following assumptions:

Assumption 1-1 (Type I sampling): For each m = 1, ...,M, (i) {Xm,t : t = 1, . . . , Tm}

is an i.i.d. sequence; (ii) the union of supports of Xm,t, m = 1, ...,M is X = [a, b],

−∞ < a < b < ∞, and the distribution of Xm,t is absolutely continuous with respect

to the Lebesgue measure and has bounded density; (iii) the sampling scheme is such that

as Tm → ∞, Tm/T → λm ∈ (0, 1), where T =
∑M

m=1 Tm; (iv) {Xm,t : t = 1, . . . , Tm},

m = 1, ...,M are mutually independent.

Assumption 1-2 (Type II sampling): For each m = 1, ...,M, (i) {Xm,t : t = 1, . . . , T} is a

strictly stationary and α-mixing sequence with α(s) = O(s−A) for some A > (q−1)(1+q/2),

where q is an even integer that satisfies q > 4; (ii) Assumption 1-1 (ii) holds.

To construct a confidence interval with an asymptotically correct coverage error, an ad-

ditional assumption is introduced. The assumption involves regularity on the r-enlargement

of the contact sets defined in (32) and (33), which plays an important role in the asymptotic

approximation; see the proof of Proposition 6 in Appendix A.

Assumption 2: (i) There exists a positive non-random sequence {cT : T ≥ 1} that

satisfies cT → 0 and
√
TcT → ∞ as T → ∞; (ii) for each decreasing sequence rT → 0 and
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ε ∈ (0, 1),

Leb
(
Bm,j((1− ε)cT )\Bm,j(T

−1/2rT )
)

≤ rTj
∀j ;

Leb
(
B̃i,j((1− ε)cT )\B̃i,j(T

−1/2rT )
)

≤ rT ∀i ≠ j

for T > 1/ε, where Leb denotes the Lebesgue measure.

Let ν := {νi,j : i, j = 1, ...,M}, where νi,j is a zero-mean Gaussian process with covari-

ance kernel

Ci,j(x, y) = lim
T→∞

T · Cov
[(

Ĝ(2)
i (x)− Ĝ(2)

j (x)
)
,
(
Ĝ(2)

i (y)− Ĝ(2)
j (y)

)]
,

for x, y ∈ R. For subsets C :={Ci ⊂ X : i ∈ J } and D :={Dk ⊂ X : k ∈ K}, define

ΛC,D(ν) := −
1

T2

∑

i∈J

ˆ

Ci

max
j∈M(i)

{
λ−1/2
j νm,j(x)

}
dx (38)

+
A2,m

T 2
2

∑

k∈K

ˆ

Dk

max
(i,j)∈M̃(k)

{
λ−1/2
j νi,j(x)

}
dx,

where M(i) = {j ∈ {1, ...,M} : ij = 0} and M̃(k) = {(i, j) ∈ {1, ...,M}2 : ki,j = 0, i ≠ j}.

To control the asymptotic coverage error of the confidence interval described below, the

following regularity condition for the Gaussian process ν is introduced (see Linton, Song

and Whang (2010) for a related condition):

Definition 10. A Gaussian process ν is regular on (C,D) ⊂ X ×X if for any α ∈ (0, 1/2],

there exists ε̄ > 0 depending only on α such that

P {ΛC,D(ν) < ε̄} < 1− α (39)

and, for any c > 0,

limsupη↓0P {|ΛC,D(ν)− c| ≤ η} = 0. (40)

The following result establishes the asymptotic approximation of the estimator of the

Utopia Index.
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Proposition 6. Suppose that Assumptions 1-1 (or 1-2) and 2 hold. Then, (i)

√
T
(
Î2,m − I2,m

)
= ΛA∗

m,Ã∗(ν) + op(1),

where Λa,b(ν) is as defined in (38) (with λj = 1 under Assumption 1-2), A∗
m :=

{A∗
m,i

(
T−1/2rT , (1− ε)cT

)
: i ∈ J } and Ã∗ :={Ã∗

k

(
T−1/2rT , (1− ε)cT

)
: k ∈ K};

(ii)
√
T
(
Î2,m − I2,m

)
→p 0 if infx∈X [Gm(x)−maxj≠m{Gj(x)}] > η̄ or

infx∈X [minj≠m{Gj(x)}−Gm(x)] > η̄ for some η̄ > 0.

Proposition 6 implies that the asymptotic distribution of
√
T
(
Î2,m − I2,m

)
is a func-

tional of the Gaussian process ν, which is is non-degenerate if ν is regular on A∗
m and Ã∗.

It also shows that the asymptotic distribution may degenerate to zero if Gm corresponds

to the upper envelope G2 or the lower envelope G2, sufficiently far away from the other

distribution functions.

In general, the asymptotic distribution depends on the latent set of distributions G,

so the critical values can not be tabulated and need to be estimated by a simulation or

resampling procedure.

3.3 Subsampling approximation

This paper considers a subsampling method (Politis and Romano (1994), Politis, Romano

and Wolf (1999)) to approximate the asymptotic distribution of the estimator Î2,m.

The proposed subsampling procedure for the Type I data is based on the following

steps:

(i) Calculate the test statistic Î2,m using the original full sample WT := {Xm,t : t =

1, . . . , Tm;m = 1, ...,M}.

(ii) Generate subsamples Wb,m,i, i = 1, ..., L(T ), of size bm from {Xm,t : t = 1, . . . , Tm}
for m = 1, ...,M , with L(T ) := min{L(T1), ..., L(TM)} and L(Tm) :=

(
Tm

bm

)
.

(iii) Compute test statistics Îm,b,i using the subsamples {Wb,m,i : m = 1, ...,M} for

i = 1, ..., L(T ).
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(iv) Approximate the subsampling distribution

ŜT,b(w) :=
1

L(T )

L(T )∑

i=1

1
(√

b
∣∣ Îm,b,i − Î2,m

∣∣≤ w
)

with b =
∑M

m=1 bm.

In practice, it can be computationally too costly to consider all
(
Tm

bm

)
subsets if Tm is

large. In this case, the usual practice is to generate a fixed moderate number, say L(Tm) =

1000, of random samples (without replacement) of size bm from {Xm,t : t = 1, . . . , Tm}.

Similarly, for the Type II data, the following steps can be used:

(i)* Calculate the test statistic Î2,m using the original full sample WT := {Xm,t : t =

1, . . . , T ;m = 1, ...,M}.

(ii)* Generate subsamples Wb,i := {Yi, . . . , Yi+b−1}, i = 1, . . . , L(T ), of size b from WT

with Yi = (X1,i, ..., XM,i) and L(T ) = T − b+ 1.

(iii)* Compute test statistics Îm,b,i using the subsamples Wb,i for i = 1, . . . , L(T ).

(iv)* Approximate the subsampling distribution

ŜT,b(w) :=
1

L(T )

L(T )∑

i=1

1
(√

b
∣∣ Îm,b,i − Î2,m

∣∣≤ w
)
.

Let sT,b(1−α) := inf{w : ŜT,b(w) ≥ 1−α} be the (1−α) sample quantile of ŜT,b(·) for

α ∈ (0, 1/2]. As shown in Proposition 6, there are some cases in which
√
T
(
Î2,m − I2,m

)

degenerates to zero. In this case, the subsampling distribution ŜT,b(·) also degenerates

to zero and therefore it is hard to ensure that sT,b(1 − α) converges to zero more slowly

than
√
T
(
Î2,m − I2,m

)
. To avoid the technical difficulty, the critical value is defined as

cT,b,η(1 − α) = max{sT,b(1 − α), η}, where η > 0 is an arbitrary small fixed constant, say

η = 10−6; see Lee, Song and Whang (2018) for a similar idea in a different context.

The (1− α) level confidence interval for I2,m is defined as follows:

CIT,b :=

{
I ∈ [0, 1] : Î2,m −

cT,b,η (1− α)√
T

≤ I ≤ Î2,m +
cT,b,η (1− α)√

T

}
. (41)
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The following proposition shows that the subsampling confidence interval has asymptoti-

cally correct coverage.

Proposition 7. Suppose that Assumptions 1-1 (or 1-2) and 2 hold. If bm → ∞, bm/b →

λm, and b/T → 0 under Assumption 1-1 (or b → ∞ and b/T → 0 under Assumption 1-2),

then

lim
T→∞

Pr (I2,m ∈ CIT,b) ≥ (1− α),

with equality holding if ν is regular on A∗
m and Ã∗.

The result of Proposition 7 can be used to test a hypothesis on the Utopia Index

by inverting the subsampling confidence interval. In some cases, however, one might be

interested in testing the hypothesis directly based on a test statistic. Of particular interest

are the following hypotheses HA
0 : I2,m = 1 vs. HA

1 : I2,m < 1, HB
0 : I2,m = 0 vs.

HB
1 : I2,m > 0, and HC

0 : I2,m = I2,n vs. HC
1 : I2,m ≠ I2,n for m ≠ n.

As test statistics for the hypotheses HA
0 , HB

0 , and HC
0 , one may consider the Wald-

type statistics WA
T =

√
T
(
Î2,m − 1

)
, WB

T =
√
T Î2,m, and WC

T =
√
T
∣∣ Î

2,m
− Î2,n

∣∣,

respectively. Then, one may reject HA
0 , HB

0 , and HC
0 if WA

T < min{s̄T,b(α),−η}, WB
T >

max{s̄T,b(1−α), η}, and WC
T > max{s̃T,b(1−α), η}, respectively, where s̄T,b(γ) and s̃T,b(γ)

denote the γ ∈ (0, 1/2] sample quantiles of

S̄T,b(w) :=
1

L(T )

L(T )∑

i=1

1
(√

b
(
Îm,b,i − Î2,m

)
≤ w

)
;

S̃T,b(w) :=
1

L(T )

L(T )∑

i=1

1
(√

b
∣∣
(
Îm,b,i − În,b,i

)
−

(
Î2,m − Î2,n

) ∣∣ ≤ w
)
,

respectively.

Likewise, the subsampling p-values for the tests WA
T , WB

T , and WC
T can be computed
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by

pA :=
1

L(T )

L(T )∑

i=1

1
(
min

{√
b
(
Îm,b,i − Î2,m

)
,−η

}
≤ WA

T

)
;

pB :=
1

L(T )

L(T )∑

i=1

1
(
max

{√
b
(
Îm,b,i − Î2,m

)
, η
}
≥ WB

T

)
; (42)

pC :=
1

L(T )

L(T )∑

i=1

1
(
max

{√
b
∣∣
(
Îm,b,i − În,b,i

)
−

(
Î2,m − Î2,n

) ∣∣, η
}
≥

∣∣ WC
T

∣∣
)
,

respectively.

The following proposition shows that the tests have asymptotically correct size and are

consistent against the alternatives:

Proposition 8. Suppose that Assumptions 1-1 (or 1-2) and 2 hold. If bm → ∞, bm/b →

λm, and b/T → 0 under Assumption 1-1 (or b → ∞ and b/T → 0 under Assumption 1-2).

Then, for a=A, B, and C, we have

(i) lim
T→∞

Pr(Reject Ha
0 ) ≤ α under Ha

0 ;

(ii) lim
T→∞

Pr(Reject Ha
0 ) = 1 under Ha

1 .

4 Monte Carlo Experiments

This section investigates the finite sample properties of the subsampling confidence intervals

and the subsampling tests using simulation experiments.

In the experiments, T observations of X1, X2, X3, X4, X5 and X6 were generated

independently from U(0, 0.75), U(0, 0.8), U(0, 1), U(0, 1), U(0.2, 1), and U(0.25, 1), respec-

tively (M = 6). The true Utopia Index values are given by I2,1 = 0, I2,2 = 0.0967,

I2,3 = I2,4 = 0.4167, I2,5 = 0.8967, and I2,6 = 1.

The sample size is T ∈ {100, 500, 2000, 8000, 32000}. The subsample size was selected

using the fixed rule b = ⌊T γ⌋ for γ ∈ {0.70, 0.75, 0.80}. The number of subsamples and the

number of simulation repetitions were fixed to be 1000. Furthermore, η = 10−6 was used,

but the simulation results were not sensitive to this choice.
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Table 1: Coverage probabilities of subsampling 95% confidence intervals
γ T m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

0.70 100 0.953 0.859 0.860 0.853 0.825 0.979
500 0.994 0.881 0.913 0.892 0.859 1.000
2000 1.000 0.874 0.927 0.928 0.909 1.000
8000 1.000 0.924 0.932 0.942 0.937 1.000
32000 1.000 0.916 0.942 0.953 0.946 1.000

0.75 100 0.959 0.844 0.839 0.841 0.841 0.985
500 0.993 0.833 0.915 0.894 0.855 1.000
2000 1.000 0.883 0.924 0.927 0.899 1.000
8000 1.000 0.907 0.928 0.945 0.926 1.000
32000 1.000 0.943 0.938 0.940 0.928 1.000

0.80 100 0.946 0.848 0.820 0.854 0.836 0.984
500 0.997 0.846 0.891 0.888 0.847 1.000
2000 1.000 0.863 0.898 0.897 0.877 1.000
8000 1.000 0.900 0.930 0.920 0.927 1.000
32000 1.000 0.937 0.933 0.933 0.937 1.000

Table 1 presents the empirical coverage probabilities of the subsampling confidence in-

tervals at level 0.95. As expected, for m ∈ {2, 3, 4, 5}, the simulated probabilities generally

tend to the nominal confidence level as the sample size increases. On the other hand, for

m ∈ {1, 6}, the subsampling confidence intervals are conservative and the coverage prob-

abilities tend to 1 rather quickly as the sample size increases. These instances correspond

to the ‘boundary’ or ‘non-regular’ case where the asymptotic distributions degenerate to

zero, as discussed in Propositions 6 (ii) and 7.

Table 2 gives the rejection probabilities of the subsampling tests. For brevity, the

results with γ = 0.75 and T ∈ {100, 500, 2000} are reported; other results are analogous.

For each m ≠ n, the proposed subsampling tests were applied to the following 4 hypotheses:

H1
0 : I2,m = 0 vs. H1

1 : I2,m > 0, H2
0 : I2,m = 1 vs. H2

1 : I2,m < 1, H3
0 : I2,m = I0

2,m vs.

H3
1 : I2,m ≠ I0

2,m with I0
2,m = 0.4167, and H4

0 : I2,m = I2,n vs. H4
1 : I2,m ≠ I2,n. The

analysis examines both the size and power performances of the subsampling tests.

As the sample size increases, the results show that the Type I errors quickly go to zero

when I2,m = 0 or 1, while they tend to the nominal significance level 0.05 when I2,m = I0
2,m

or I2,m = I2,n. This is expected from Proposition 8, because the former corresponds to the

boundary case where the asymptotic distributions degenerate to zero, while the latter case

22



has a regular Gaussian process ν, leading to a test with an asymptotically exact size.

On the other hand, the rejection probabilities increase as the distributions deviate from

the null hypotheses. They tend to 1 under the fixed alternative hypotheses as the sample

size increases, confirming consistency of the proposed tests.

5 Wellbeing of Chinese Households

Evolving government policy after the Communist Revolution changed fundamentally the

nature of Chinese families and the extent to which household wellbeing is reflective of such

change seems of interest.

At the outset, around 1950, households were classified into ordered social classes (‘chéng

fèn’) according to employment status, income source, and political loyalty. Farmland was

redistributed from landlord to landless peasant and class labels became a primary criteria

for individual advancement.

Later, the Cultural Revolution (CR), an ‘equalizing’ movement designed to curtail in-

tergenerational transfer of social and educational advantage by elites, saw school closures

at all levels. When higher education institutions reopened, young people from lower classes

were given educational and occupational preference.

The end of the CR saw renewed educational recruitment on merit, a profound growth

spurt precipitated by Economic Reform and the introduction of the One Child Policy which

ultimately increased investment in child education (Anderson and Leo (2009)). The extent

to which these events affected household wellbeing in terms of their a vintage-equivalent,

adult-equivalised income distribution is at question.

The CR affected the average number of years and quality of schooling experienced by

birth cohort. Those born between 1948-1955 possibly missed senior high school and those

born between 1956-1963 missed part of primary school and junior high school.

Thus, three household types (vintages) can be distinguished by the era in which their

head of household was educated (M = 3). ‘Pre-CR household’ heads (older than 51)

completed their education before the CR, an educationally immobile era with low levels

of education and equality of opportunity. ‘CR household’ heads (age between 39 and

51) educational opportunities were equalized by suspending education for most. ‘Post-CR
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Table 2: Rejection probabilities of tests with 5% nominal level
T H0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

100 I2,m = 0 0.041 0.348 0.957 0.946 1.000 1.000
I2,m = 1 1.000 1.000 1.000 1.000 0.457 0.015

I2,m = I0
2,m 0.995 0.884 0.161 0.159 1.000 1.000

I2,m = I2,n

n = 1 - 0.223 0.868 0.878 1.000 1.000
n = 2 0.223 - 0.687 0.676 1.000 1.000
n = 3 0.868 0.687 - 0.142 0.972 0.998
n = 4 0.878 0.676 0.142 - 0.965 0.997
n = 5 1.000 1.000 0.972 0.965 - 0.317
n = 6 1.000 1.000 0.998 0.997 0.317 -

500 I2,m = 0 0.007 0.530 1.000 1.000 1.000 1.000
I2,m = 1 1.000 1.000 1.000 1.000 0.817 0.000

I2,m = I0
2,m 1.000 1.000 0.087 0.106 1.000 1.000

I2,m = I2,n

n = 1 - 0.415 1.000 1.000 1.000 1.000
n = 2 0.415 - 0.998 0.996 1.000 1.000
n = 3 1.000 0.998 - 0.085 1.000 1.000
n = 4 1.000 0.996 0.085 - 1.000 1.000
n = 5 1.000 1.000 1.000 1.000 - 0.741
n = 6 1.000 1.000 1.000 1.000 0.741 -

2000 I2,m = 0 0.000 0.912 1.000 1.000 1.000 1.000
I2,m = 1 1.000 1.000 1.000 1.000 0.997 0.000

I2,m = I0
2,m 1.000 1.000 0.076 0.073 1.000 1.000

I2,m = I2,n

n = 1 - 0.852 1.000 1.000 1.000 1.000
n = 2 0.852 - 1.000 1.000 1.000 1.000
n = 3 1.000 1.000 - 0.062 1.000 1.000
n = 4 1.000 1.000 0.062 - 1.000 1.000
n = 5 1.000 1.000 1.000 1.000 - 0.994
n = 6 1.000 1.000 1.000 1.000 0.994 -
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household’ heads (age less than 39), completed their education after the CR and were

unaffected by it in an era with more investment in education for larger portions of the

population.

Direct comparison of the household income distributions of the three household types

is difficult, because households of identical circumstances but different vintages would have

different incomes due to the life cycle (Friedman (1957), Ando and Modigliani (1963),

Modigliani (1976)).

Using a sample of 6,822 urban households from The Chinese Household Income Project

(Li, Luo, Wei and Yue (2008)), vintage-equivalent wellbeing distributions for the 3 house-

hold types were generated (see Appendix B for details). The Pre-CR cohort contained

2,400 households, the CR 3,118 and the Post-CR 1,306 households. Household Wellbeing

was based upon total adult-equivalised income and measured as the log of total household

income deflated by the square root of household size (Brady and Barber (1952)). Income

is measured in Chinese yuan and refers to the year of 2002.

This survey is the only available data set to hand linking households through the child-

parent-grand parent relationship to the social class designation accorded grandparents at

the time of the Communist Revolution.

The three income distributions are analyzed using the foregoing classification schemes

and inference methods. Figure 1 and Figure 2 show kernel estimates of the probability

density functions and, according with Daltonian social preferences, empirical ICDF Ĝ
(2)
m

for each of the three cohorts, m = 1, 2, 3. The sample range is X̂ = [8.38, 11.41]. Visual

inspection of Figure 2 indicates that the income distribution of the Pre-CR cohort is second-

degree dystopian. The other two cohorts are incomparable, because the income distribution

of the CR cohort is more equal than that of the Post-CR cohort. The optimal set thus

consists of the CR and Post-CR cohorts and neither cohort is utopian. The Utopia Index

facilitates ranking of these incomparable cohorts.

To illustrate the construction of the index, Figure 3 shows the deviations from the lower

envelope, or Ĝ
(2)
m − Ĝ2, m = 1, 2, 3, which are used to compute the transvariation T̂2 and

violation areas Â2,m, m = 1, 2, 3. The transvariation T̂2 = 0.3087 is the total area below

the supremum of the three cohorts, in this case the graph of the Pre-CR cohort. In the
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Figure 1: Income distributions of three cohorts
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Figure 2: Empirical ICDFs of three cohorts
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Figure 3: Deviations from the lower envelope

figure, this area is marked in light gray color. The violation area Â2,m for a given cohort

is the total area below the graph for that cohort. Clearly, the violation area is smallest for

the Post-CR cohort; Â2,Post-CR = 0.0082, corresponding to the dark gray area in Figure 3.

The Utopia Index normalizes the violation area by the transvariation: Î2,Post-CR = 0.9734.

The CR cohort has a lower score Î2,CR = 0.7262 and the Pre CR cohort has the lowest

score Î2,Pre-CR = 0.0001.

Table 3 summarizes various statistical inference results. Throughout the empirical ap-

plications, the results were not very sensitive to the choice of the tuning parameters, and

we fixed γ = 0.75 for subsample size bm = ⌊T γ
m⌋, m = 1, 2, 3 and η = 10−6.

The subsampling standard errors for Î2,Pre-CR, Î2,CR, and Î2,Post-CR are 0.0002, 0.0350,

and 0.0134, respectively, implying a high level accuracy. The subsampling 95% confidence

intervals
[
CIL0.95, CIH0.95

]
and the p-values of various hypothesis tests are also provided.

It is evident from the reported results that households whose head was educated in the

Post-CR era have a wellbeing distribution that is very close to utopian, a finding consistent

with the dominant judgment about the socioeconomic significance of the historical events.

Since FSD plays an important role in welfare economics in addition to SSD, the anal-

ysis was repeated for FSD. The FSD results at the bottom of Table 3 further support the

aforementioned conclusions about the rankings of the three cohorts. A noteworthy differ-
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Table 3: Statistical inference results

m = Pre-CR m = CR m = Post-CR

Utopia Index Î2,m 0.0001 0.7262 0.9734
Rank 3 2 1
Standard Error 0.0002 0.0350 0.0134
CIL0.95 0.0000 0.6552 0.9454
CIH0.95 0.0003 0.7973 1.0000
p-value I2,m = 0 0.2510 0.0000 0.0000
p-value I2,m = 1 0.0000 0.0000 0.0690
p-value I2,m = I2,n

n = Pre-CR - 0.0000 0.0000
n = CR 0.0000 - 0.0000
n = Post-CR 0.0000 0.0000 -

Utopia Index Î1,m 0.0027 0.5413 0.9176
Rank 3 2 1
Standard Error 0.0031 0.0245 0.0171

ence is the substantial decrease in the relative wellbeing measure for the CR cohort: under

first-order comparison, the index falls from 0.7262 (0.0350) to 0.5413 (0.0245), reflecting

that first-order comparison does not reward the intense equalizing measures invoked during

the CR era.

6 Active Investment Strategies

The second application analyzes the investment returns to two distinct sets of stock bench-

mark portfolios from the empirical asset pricing literature.

The first benchmark set consists of six active portfolios (M = 6) of US common stocks

that are formed, and periodically re-balanced, based on the market capitalization of equity

(‘size’) and book-to-market equity ratio (‘valuation’). The six portfolios are labeled as

Small Growth (SG), Small Blend (SB), Small Value (SV), Large Growth (LG), Large

Blend (LB) and Large Value (LV). These portfolios are of particular interest, because a

wealth of empirical research, starting with Banz (1981) and Basu (1983), suggests that the

low historical average returns to SG stocks and high average for SV stocks defy rational

explanations based on investment risk.

The second benchmark set consist of six portfolios that are based on market capitaliza-
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tion and recent past return: Small Loser (SL), Small Neutral (SN), Small Winner (SW),

Large Loser (LL), Large Neutral (LN) and Large Winner (LW). Past return is measured

using a one-month lagged trailing window of 11 months, to avoid the short-term reversal

effect (Jegadeesh (1990)) and exploit the intermediate-term momentum effect (Jegadeesh

and Titman (1993)). The historical average return to SL stocks seems abnormally low and

that of SW stocks appears exceptionally high.

Choice from these benchmark portfolios is considered without allowing for portfolio

mixtures, since many active money managers specialize on security selection for a given

market segment or investment style in order to exploit economies of scale and specialization.

Monthly, percentage, value-weighted portfolio returns from January 1927 to August

2016 (T = 1, 076) from Kenneth French’s data library are analyzed. The sample range is

X̂ = [−35.14, 83.55] for the first data set and X̂ = [−39.34, 92.17] for the second data set.

It is assumed that the investor possesses no conditioning information and focuses on

the unconditional distribution. The use of the empirical distribution as a CDF estimator

is justified by the long time series (T = 1, 076), low return frequency, small number of

benchmark portfolios (M = 6) and the careful stock selection and portfolio construction

rules used in building the benchmark portfolios.

Bali, Demirtas, Levy and Wolf (2009) and Bali, Brown and Demirtas (2013) analyze

similar data sets using pairwise ASD comparisons. The proposed Utopia Index framework

allows for a joint analysis of a cross-section of benchmark portfolios and consistent statistical

inference.

6.1 Portfolios formed on size and valuation

In the first data set, four out of six portfolios (SB, SV, LG, LB) are classified as second-

dergee optimal. Thus, the optimality criterion leads to indecision in this case.

Figure 4 shows the deviations from the second-order lower envelope for each of the six

portfolios. The violation area is smallest for the SV portfolio-the dark gray area in the

figure. Investing in SV stocks thus comes closest to being the optimal investment style for

all risk-averse investors.

The Utopia Index for the SV portfolio takes the value Î2,SV = 0.8502; SV stocks are
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Figure 4: Deviations from the lower envelope for portfolios based on size and valuation

ranked above each of the other market segments at conventional significance levels. By

contrast, investing in SG stocks comes closest to being dystopian; Î2,SG = 0.0612; the null

of dystopianity cannot be rejected for this market segment. The Utopia Index thus confirms

the notion that SV stocks offer a return premium over SG stocks.

Table 4 shows further details about the test results. It includes the subsampling con-

fidence intervals and the p-values for the hypotheses of dystopianity and utopianity, for

each portfolio, and the hypothesis that two portfolios have the same score, for every pair

of portfolios. Significant differences occur between the SG, SB and SV portfolios, consis-

tent with the existing evidence about the book-to-market effect being concentrated in the

small-cap stock market segment.

6.2 Portfolios formed on size and past return

In the second data set, the optimality criterion again leads to indecision. Four of the six

portfolios (SN, SW, LN, LW) are optimal in the sample.

Figure 5 shows the deviations from the lower envelope for each of the portfolios. The

violation area is smallest for the SW portfolio and largest for the LL portfolio. The Utopia

Index therefore identifies the former as the most appealing investment style and the latter

as the least appealing: Î2,SW = 0.9477 and Î2,LL = 0.0702. The violation area is relatively
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Table 4: Inference results for portfolios based on size and valuation

m = SG m = SB m = SV m = LG m = LB m = LV

Utopia Index Î2,m 0.0612 0.6765 0.8502 0.2660 0.3304 0.5215
Rank 6 2 1 5 4 3
Standard Error 0.0833 0.0631 0.0559 0.0917 0.0623 0.0842
CIL0.95 0.0000 0.5550 0.7504 0.0614 0.1648 0.3529
CIH0.95 0.2716 0.7981 0.9501 0.4706 0.4960 0.6900
p-value I2,m = 0 0.4139 0.0000 0.0000 0.0302 0.0000 0.0000
p-value I2,m = 1 0.0000 0.0000 0.0268 0.0000 0.0000 0.0000
p-value I2,m = I2,n

n = SG - 0.0000 0.0000 0.1633 0.0190 0.0000
n = SB 0.0000 - 0.0145 0.0000 0.0000 0.0000
n = SV 0.0000 0.0145 - 0.0000 0.0000 0.0000
n = LG 0.1633 0.0000 0.0000 - 0.4351 0.0123
n = LB 0.0190 0.0000 0.0000 0.4351 - 0.0034
n = LV 0.0000 0.0000 0.0000 0.0123 0.0034 -

small and SW stocks are even closer to being utopian than SV stocks in Section 6.1. The

top ranking of the SW strategy is statistically significant at every conventional significance

level. By contrast, for the SL and LL strategies, the null of dystopianity cannot be rejected.

These results are again consistent with existing conclusions in the Investments literature.

Table 5 contains more detailed test results. Among other things, it shows that the

momentum effect is strong in both the small-cap segment and the large-cap segment. Large

winner stocks therefore appear utopian within the universe of large-cap stocks.

7 Concluding Remarks

The applications illustrate the insights obtained from using the Utopia Index. In both

applications, the choice sets contain a single prospect which ranks above all alternatives at

conventional significance levels, despite the incomparability problem.

In the analysis of Chinese household income distributions, that unique prospect is the

Post-CR educated cohort, consistent with the dominant views about the socioeconomic

developments in Chinese modern history.

In the Investments application, the unique prospect is the Small Value stock portfolio

in one investment universe and the Small Winner portfolio in another universe, consistent
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Figure 5: Deviations from the lower envelope for portfolios based on size and past return

Table 5: Inference results for portfolios based on size and past return

m = SL m = SN m = SW m = LL m = LN m = LW

Utopia Index Î2,m 0.0866 0.6418 0.9477 0.0702 0.4116 0.7004
Rank 5 3 1 6 4 2
Standard Error 0.0658 0.0288 0.0117 0.0759 0.0529 0.0559
CIL0.95 0.0000 0.5872 0.9290 0.0000 0.3167 0.5942
CIH0.95 0.2429 0.6965 0.9664 0.2916 0.5065 0.8066
p-value I2,m = 0 0.2193 0.0000 0.0000 0.1879 0.0000 0.0000
p-value I2,m = 1 0.0000 0.0000 0.0067 0.0000 0.0000 0.0000
p-value I2,m = I2,n

n = SL - 0.0000 0.0000 0.8920 0.0000 0.0000
n = SN 0.0000 - 0.0000 0.0000 0.0000 0.3926
n = SW 0.0000 0.0000 - 0.0000 0.0000 0.0000
n = LL 0.8920 0.0000 0.0000 - 0.0000 0.0000
n = LN 0.0000 0.0000 0.0000 0.0000 - 0.0000
n = LW 0.0000 0.3926 0.0000 0.0000 0.0000 -
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with the conventional wisdom among investment practitioners and numerous studies in the

empirical asset pricing literature.

In the wellbeing application, the Pre-CR cohort is ranked below all alternatives and,

moreover, dystopianity cannot be rejected; by contrast, in the financial application, two

investments portfolios are tied for the bottom rank, in both investment universes.

Our test procedure is feasible and consistent for a general class of dynamic processes.

The procedure can also be applied for statistical inference about standard ASD relations

which arise as the special case of pairwise comparison (M = 2). The applications in this

study involve a favorable combination of a small number of prospects (M = 3 cohorts of

households or M = 6 stock portfolios) and a large number of observations (T > 1, 000

individual households or investment returns). To deal with less favorable data dimen-

sions, further research could focus on developing small-sample bias-correction methods and

consistent bootstrap methods.
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Appendix A

Proof of Proposition 1: For every G 2 G and y 2 X , G(2)(y) =
´ x
a G(y)dy = EG[max(y�

x, 0)] = �EG[min(x� y, 0)] = �EG[vy(x)]. By minimizing G(2)(y) over G for every y 2 X ,

the lower envelope thus results from maximizing expected value for every elementary utility

function, or (9). ⌅

Proof of Proposition 2:

max
G2G

EG[uw(x)] = max
G2G

ˆ b

a

w(y)EG[vy(x)]dy

= �min
G2G

ˆ b

a

w(y)G(2)(y)dy

 �
ˆ b

a

w(y)G2(y)dy

= �
ˆ b

a

w(y)G(2)
m (y)dy

=

ˆ b

a

w(y)EGm [vy(x)]dy= EGm [uw(x)].

The first equality follows from uw(x) =
´ b
a w(y)vy(x)dy and the second one from

G(2)(y) = �EG[vy(x)]. The inequality follows from G(2)
n (x) � G2(x), for all n = 1, · · · ,M .

The third equality follows from utopianity of prospect Pm; the last two equalities are based

on the same insights as the first two inequalities. ⌅

Proof of Proposition 2.3: The proof is based on the following chain of arguments for

any uw 2 V⇤
2 (X2,m):
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EGm [uw(x)] =

ˆ
w(y)EGm [vy(x)] dy

= �
ˆ

w(y)G(2)
m (y)dy

= �
ˆ

w(y)G2(y)dy (1)

= �
ˆ

w(y)

✓
min
n2P

G(2)
n (y)

◆
dy

� �min
n2P

ˆ
w(y)G(2)

n (y)dy (2)

= max
n2P

ˆ
w(y)EGn [vy(x)] dy

= max
n2P

EGn [uw(x)] .

Equality (1) is based on w(y) = 0 for all y 2 X2,m; inequality (2) is based on the

concavity of the pointwise minimum. The condition on the mean EGm [x] is needed to deal

with the risk neutral preferences ub(x) = x � b which are always permissible regardless of

X2,m. ⌅

Proof of Proposition 2.4: As in the proof of Proposition 2.1, note that G(2)(y) =

�EG[vy(x)], for every G 2 G and y 2 X . By maximizing G(2)(y) over G for every y 2 X ,

the upper envelope thus minimizes expected value for every elementary utility function, or

(20). ⌅

Proof of Proposition 2.5: By analogy to the proof of Proposition 2.2, the following

arguments are used:

min
G2G

EG[uw(x)] = �max
G2G

ˆ b

a

w(y)G(2)(y)dy

� �
ˆ b

a

w(y)G2(y)(y)dy

= �
ˆ b

a

w(y)G(2)
m (y)dy= EGm [uw(x)].
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⌅

Proof of Proposition 3.1: We shall establish Proposition 3.1 under Assumption 1-2,

because the corresponding proof under Assumption 1-1 is similar.

Let �̂m,j = Ĝ(2)
m � Ĝ(2)

j denote the estimator of �m,j and Bm(r) =
SM

j=1 Bm,j(r). The

proof first writes

p
T
⇣
Â2,m �A2,m

⌘
(3)

=

ˆ
X

p
T


max

1jM

n
�̂m,j(x)

o
� max

1jM
{�m,j(x)}

�
dx (4)

=

ˆ
X

p
T


max

1jM

n
�̂m,j(x)��m,max(x)

o�
dx

=

ˆ
X


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx

=

ˆ
X\Bm((1�")cT )


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx

+

ˆ
Bm((1�")cT )


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx

:= A1T + A2T .

As for A1T , observe that for any positive sequence r0T ! 0,

Pr

✓ˆ
X\Bm((1�")cT )


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx > r0T

◆

 Pr

✓ˆ
X\Bm((1�")cT )


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
�

p
T (1� ")cT

o�
dx > r0T

◆


MX

j=1

Pr

✓
sup
x2X

p
T
⇣
�̂m,j(x)��m,j(x)

⌘
>

p
T (1� ")cT

◆
! 0. (5)

The first inequality holds because (�m,j(x)��m,max(x)) < �(1� ")cT for x 2 X\Bm((1�

")cT ); the second inequality follows from the inequality Pr([Ai) 
P

i P (Ai); the final

convergence to 0 holds because
p
T
⇣
�̂m,j ��m,j

⌘
is asymptotically tight (Lemma A.1 of

Linton, Post and Whang (2014)).

3



As for A2T , write

ˆ
Bm((1�")cT )


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx (6)

=

ˆ
Bm((1�")cT )\Bm(

rTp
T
)


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx

+

ˆ
Bm(

rTp
T
)


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o�
dx.

The first term on the right hand side of (6) is bounded by

�����

ˆ
Bm((1�")cT )\Bm(

rTp
T
)


max

1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘o�
dx

�����

 max
1jM

⇢
sup
x2X

���
p
T
⇣
�̂m,j(x)��m,j(x)

⌘���
�
·
ˆ
Bm((1�")cT )\Bm(

rTp
T
)

dx

= Op(rT ) = op(1), (7)

where the first equality holds by Assumption 2(ii) and asymptotic tightness of
p
T
⇣
�̂m,j ��m,j

⌘
.

Let J :={(i1, ..., iM) 2 {0, 1}M : ij = 0 for some 1  i  M}. For i 2 J and 0 < r < s,

let

Am,i(r, s) := A⇤
m,i(r, s)

[
A⇤⇤

m,i(r, s), (8)

where

A⇤
m,i(r, s) :=

0

@
\

{j:ij=0}

B
ij
m,j(r)

1

A
\
0

@
\

{j:ij=1}

B
ij
m,j(s)

1

A ,

A⇤⇤
m,i(r, s) :=

0

@
\

{j:ij=0}

B
ij
m,j(r)

1

A
\
0

@
\

{j:ij=1}

⇣
B

ij
m,j(r)\B

ij
m,j(s)

⌘
1

A ,

with B0
m,j(r) := B1,j(r) and B1

m,j(r) := X\Bm,j(r). Then, we may write Bm(r) as a union
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of the disjoint intervals, that is,

Bm(r) :=
M[

j=1

Bm,j(r) =
[

i2J

Am,i(r, r). (9)

We have

ˆ
Bm

⇣
rTp
T

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx

=
X

i2J

ˆ
Am,i

⇣
rTp
T
,
rTp
T

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx (10)

=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx (11)

+
X

i2J

ˆ
A⇤⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx

=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx (12)

+ op(1)

=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
j2M(i)

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o
dx+ op(1) (13)

=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
j2M(i)

np
T
⇣
�̂m,j(x)��m,j(x)

⌘o
dx+ op(1), (14)

where M(i) = {j 2 {1, ...,M} : ij = 0}. In the above equations, the equalities (10) and

(11) hold by (8) and (9), respectively. The equality (12) holds because

�����
X

i2J

ˆ
A⇤⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T (�m,j(x)��m,max(x))

o
dx

�����

 max
1jM

⇢
sup
x2X

���
p
T
⇣
�̂m,j(x)��m,j(x)

⌘���
�
·
X

i2J

ˆ
T

{j:ij=1}

⇣
Bm,j((1�")cT )\Bm,j(

rTp
T
)
⌘ dx

= op(1)

by Assumption 2(ii) and asymptotic tightness of
p
T
⇣
�̂m,j ��m,j

⌘
.

On the other hand, the equality (13) holds because: for each i 2 J and for any positive

5



constant ⌘ > 0,

Pr

 ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘

h
max

1jM

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o

� max
j2M(i)

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o i
dx > ⌘

!

Pr

 
sup
x2X

h
max
j /2M(i)

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o

� max
j2M(i)

np
T
⇣
�̂m,j(x)��m,max(x)

⌘o i
> 0

!

Pr

 
sup
x2X

h
max
j /2M(i)

np
T
⇣
�̂m,j(x)��m,j(x)

⌘o

� max
j2M(i)

np
T
⇣
�̂m,j(x)��m,j(x)

⌘o i
> (1� ")

p
TcT

!

! 0,

where the second inequality holds since � rTp
T
 (�m,j(x)��m,max(x))  0 for j 2 M(i)

and (�m,j(x)��m,max(x)) < �(1�")cT for j /2 M(i) and the last convergence to zero holds

by Assumption 2(i) and the asymptotic tightness of
p
T
⇣
�̂m,j ��m,j

⌘
for j = 1, ...,M.

Similarly, the last equality (14) holds using � rTp
T

 (�m,j(x)��m,max(x))  0 for

j 2 M(i).

Combining (4), (6), (7) and (14), it follows that

p
T
⇣
Â2,m �A2,m

⌘
=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
j2M(i)

np
T
⇣
�̂m,j(x)��m,j(x)

⌘o
dx+ op(1).

(15)

By weak convergence of
p
T
⇣
�̂m,j ��m,j

⌘
to the tight Gaussian process ⌫1,j, one can

conclude that

p
T
⇣
Â2,m �A2,m

⌘
=
X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
j2M(i)

{⌫m,j(x)} dx+ op(1). (16)
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Similarly, for k 2 K and 0 < r < s, let

Ãk(r, s) := Ã⇤
k(r, s)

[
Ã⇤⇤

k (r, s), (17)

where

Ã⇤
k(r, s) :=

0

@
\

{(i,j):i 6=j,ki,j=0}

B̃
ki,j
i,j (r)

1

A
\
0

@
\

{(i,j):i 6=j,ki,j=1}

B̃
ki,j
i,j (s)

1

A ,

Ã⇤⇤
k (r, s) :=

0

@
\

{(i,j):i 6=j,ki,j=0}

B̃
ki,j
i,j (r)

1

A
\
0

@
\

{(i,j):i 6=j,ki,j=1}

⇣
B̃

ki,j
i,j (r)\B̃ki,j

i,j (s)
⌘
1

A ,

with B̃0
i,j(r) := B̃i,j(r) and B̃1

i,j(s) := X\B̃i,j(s). Then, we may write

B̃(r) :=
[

i 6=j

B̃i,j(r) =
[

k2K

Ãk(r, r). (18)

By replacing �m,j, max1jM , �m,max, Bm,j(r) , Bm(r), Ai , A⇤
i , A

⇤⇤
i , and M(i) by

�i,j, max1i 6=jM ,�max(x), B̃i,j(r), B̃(r), Ãk, Ã⇤
k, Ã⇤⇤

k , and M̃(k), respectively, in the

above arguments, one can establish

p
T
⇣
T̂2 � T2

⌘
(19)

=
X

k2K

ˆ
Ã⇤

k

⇣
rTp
T
, (1�")cT

⌘ max
(i,j)2M̃(k)

np
T
⇣
�̂i,j(x)��i,j(x)

⌘o
dx+ op(1)

=
X

k2K

ˆ
Ã⇤

k

⇣
rTp
T
, (1�")cT

⌘ max
(i,j)2M̃(k)

{⌫i,j(x)} dx+ op(1). (20)

Therefore, from (16), (19) and using the delta method, it follows that

p
T
⇣
Î2,m � I2,m

⌘
= �

p
T

 
Â2,m

T̂2

� A2,m

T2

!

= � 1

T2

X

i2J

ˆ
A⇤

m,i

⇣
rTp
T
, (1�")cT

⌘ max
j2M(i)

{⌫m,j(x)} dx (21)

+
A2,m

T 2
2

X

k2K

ˆ
Ã⇤

k

⇣
rTp
T
, (1�")cT

⌘ max
(i,j)2M̃(k)

{⌫i,j(x)} dx+ op(1).
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This establishes part (i) of Proposition 3.1.

We now prove part (ii). Suppose that infx2X [Gm(x)�maxj 6=m{Gj(x)}] > ⌘̄ for some

⌘̄ > 0. Then, Gm is dystopian and A2,m = T2,m, so that I2,m = 0. In this case, we have

p
T
⇣
Î2,m � I2,m

⌘

=
1

T̂2

p
T
⇣
Â2,m � T̂2

⌘

=
1

T2

ˆ
X

min
1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T�m,j(x)

o
dx + op(1). (22)

Now, given �̂m,m = �m,m = 0 and infx2X �m,j(x) > ⌘̄, asymptotic tightness of
p
T
⇣
�̂m,j(x)��m,j(x)

⌘

implies that the right hand side of (22) is op(1).

On the other hand, suppose that infx2X [minj 6=m{Gj(x)}�Gm(x)] > ⌘̄ for some ⌘̄ > 0.

Then, Gm is utopian and A2,m = 0, so that I2,m = 1. In this case,

p
T
⇣
Î2,m � I2,m

⌘

=� 1

T̂2

p
T
⇣
Â2,m �A2,m

⌘

=� 1

T2

ˆ
X

max
1jM

np
T
⇣
�̂m,j(x)��m,j(x)

⌘
+
p
T�m,j(x)

o
dx + op(1). (23)

Given �̂m,m = �m,m = 0 and supx2X �m,j(x) < �⌘̄, asymptotic tightness of
p
T
⇣
�̂m,j(x)��m,j(x)

⌘
implies that the right hand side of (23) is again op(1) as was

to be shown. ⌅

Proof of Proposition 3.2: If the Gaussian process ⌫ is regular on A⇤
1 and Ã⇤, then

Proposition 3.1 implies that
p
T
⇣
Î2,m � I2,m

⌘
converges weakly to a non-degenerate lim-

iting law. Therefore, the asymptotic coverage probability is (1 � ↵) by Lemma 3.2.1 of

Politis, Romano and Wolf (2000).

Otherwise, the coverage probability

Pr (I2,m 2 CIT,b) = Pr
⇣p

T
��� Î2,m � I2,m

��� max{sT,b(1� ↵/2), ⌘}
⌘

= Pr (op(1)  max{op(1), ⌘}) ! 1.
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This establishes Proposition 3.2. ⌅

Proof of Proposition 3.3: We shall prove the result for the case a = C, because the

proofs of the case a = A,B are similar.

For subsets Cm,n = {(Cm,i, Cn,i) ⇢ X ⇥ X : i 2 J } and D :={Dk ⇢ X : k 2 K}, define

⇤̃C,D(⌫) :=
1

T2

X

i2J

"ˆ
Cn,i

max
j2M(i)

n
��1/2
j ⌫n,j(x)

o
dx�

ˆ
Cm,i

max
j2M(i)

n
��1/2
j ⌫m,j(x)

o
dx

#
(24)

� (A2,n �A2,m)

T 2
2

X

k2K

ˆ
Dk

max
(i,j)2M̃(k)

n
��1/2
j ⌫i,j(x)

o
dx.

Then, by an argument similar to the proof of Proposition 3.1, we can establish the following

asymptotic approximation:

p
T
h⇣

Î2,m � I2,m

⌘
�
⇣
Î2,n � I2,n

⌘i
= ⇤̃A⇤

m,n,Ã⇤(⌫) + op(1),

where A⇤
m,n = {(A⇤

m,i

�
T�1/2rT , (1� ")cT

�
, A⇤

n,i

�
T�1/2rT , (1� ")cT

�
) ⇢ X ⇥ X : i 2 J },

Ã⇤ is as defined in Proposition 3.1, and A⇤
m,i and A⇤

n,i are as defined in (32) with B1,j

replaced by Bm,j and Bn,j, respectively. If ⌫ is regular on in the sense that it satisfies (39)

and (40) with ⇤ replaced by ⇤̃, then the result of Proposition 3.3 (i) holds with equality

under the null hypothesis HC
0 . Otherwise, the rejection probability converges to 0.

To prove (ii), consider the subsampling distribution (not scaled by
p
b )

Ŝ0
T,b(w) :=

1

LT )

L(T )X

i=1

1
⇣���
⇣
Îm,b,i � Î2,m

⌘
�
⇣
În,b,i � Î2,n

⌘ ��� w
⌘
.

The distribution Ŝ0
T,b(·) converges in distribution to a point mass at 0. It follows that

cBT,b,⌘(1�↵/2)/
p
b converges to 0. Since lim infT!1(T/b) > 1 and

�� Î2,m� Î2,n

��!
�� I

2,m
�

I2,n

�� in probability (with
�� I

2,m
� I2,n

��> 0 under HA
1 ), it follows by Slutsky’s theorem

that the asymptotic rejection probability is one. ⌅

9



Appendix B

Household wellbeing is measured as some monotonic non decreasing function of adult-

equivalised household income. Lifecycle theory (Friedman (1957)) predicts that, households

identical in every respect except for their vintage or lifecycle stage (determined by the age of

the head of household), will have different incomes. Thus in order to examine income based

wellbeing distributions of households of Pre-CR, CR and Post-CR cohorts at a common

vintage, an adult-equivalent household income function was estimated and adult-equivalent

household incomes were projected for each cohort at a common vintage. Because vintage

also affected household size (which in turn affects household wellbeing) a household size

equation was also generated. After some experimentation the preferred specifications are

reported in Table B-1.

Aside from the age (vintage) of the household the primary drivers of household income

was assumed to be the aggregate level of education (the sum of husbands and wives educa-

tion levels) and the size of the household. Income turned out to be an increasing concave

quadratic form in the aggregate level of education (modified by the vintage of the house-

hold) which, because of increasing returns to education, becomes convex in the Post-CR

period. Household size has a negative effect on household wellbeing the magnitude of which

is diminished in the CR era. Generally household income increases with vintage though

the impact is diminished in the Post-CR era.

Household size was modeled as a function of household vintage, social class and aggre-

gate years of education and turned out to be a concave quadratic function of the household

vintage in Pre-CR and Post-CR eras which becomes convex in the CR with an overall

increase in family size during the CR. Family size is negatively related to education years

though this effect is diminished in the CR and Post-CR eras. Social class has a negative

effect on family size (higher class means smaller families).

These equations were used to project adult-equivalent household income distributions

for households of vintage 50 in each cohort. Of 6,822 households 2,400 were in the Pre-CR

cohort, 3,116 in the CR cohort and 1,306 in the Post-CR cohort.
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