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Abstract

We develop a model of interdependent value auctions in which two types of bid-

ders compete: insiders, who are perfectly informed about their value, and outsiders,

who are informed only about the private component of their value. Because of the

mismatch of bidding strategies between insiders and outsiders, the second-price auc-

tion is inefficient. The English auction has an equilibrium in which the information

outsiders infer from the history of drop-out prices enables them to bid toward attain-

ing efficiency. The presence of insiders has positive impacts on the seller’s revenue. A

laboratory experiment confirms key theoretical predictions, despite evidence of naive

bidding.

JEL Classification Numbers: C92, D44, D82.

Key Words: Interdependent value auctions, asymmetric information structure, second-

price auction, English auction, experiment.

1 Introduction

Most auction literature assumes that bidders hold rather equally informative information

about the value of the auctioned object, while each bidder’s information is privately known
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to him.1 However, there are real-world auctions in which there is an “information divide”

among bidders in the sense that some bidders know more about the value of auction object

than others. For instance, in art auctions, buyers with professional knowledge tend to

more accurately appraise the potential value of an object than non-professional buyers

(Ashenfelter and Graddy, 2003). In takeover auctions, buyers with existing shares of a

target firm may have access to inside information unavailable to competitors.2 In auctions

for gas and oil leases (i.e., OCS auctions), firms owning neighboring tracts may have better

information about the value of a lease—such as oil reserves or drilling conditions—than

non-neighboring firms do (Hendrick and Porter, 1988). While these examples illustrate

that informational asymmetry among bidders is commonly observed, they also highlight

that the information held by a better-informed bidder helps other bidders, in particular

less-informed ones, to evaluate the object.

We study an auction environment with insiders and outsiders in the interdependent

value setup, which we refer to as stratified information structure. In this environment,

bidders’ values are composed of a private value component and a common value component.

Our key assumption is that the set of bidders is partitioned into two types: insiders, who

are perfectly informed of their values, and outsiders, who are informed only of the private

value component and thus imperfectly informed of their values. Outsiders know the identity

of insiders. We allow for any arbitrary number of insiders and outsiders and study the

performance of two standard auction formats, second-price and English, in terms of their

revenue and efficiency.

When only one insider and one outsider exist, the second-price and English auctions are

equivalent and achieve an efficient allocation. With more than two bidders and at least one

insider, however, the second-price auction does not admit an efficient equilibrium. This

inefficiency arises from the mismatch between insiders’ and outsiders’ bidding strategy,

because the former depends on both private and common components of values, whereas

the latter depends on only the private component. Also, the one-shot nature of the second-

price auction offers no means to overcome such information divide between outsiders and

insiders.

In contrast, the English auction provides opportunities for outsiders to learn about

others’—both insiders and outsiders’—private information through the history of prices

at which bidders drop out. In an environment with standard information structure (i.e.,

1See, for instance, Myerson (1981) and Riley and Samuelson (1981) for the environment of private value
auctions, and Milgrom and Weber (1982) for auctions with affiliated values.

2Sometimes, a current management team of the target firm participates in the bidding competition,
which is a practice known as a management buyout (MBO). Shleifer and Vishny (1988) argue that the
managers’ special information about their company is one reason for an MBO.
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with no insider), each bidder’s private signal is fully revealed in equilibrium because his

equilibrium drop-out price is monotonically related to his private signal. The inference

problem becomes more complex in the presence of insiders who employ a (weakly) dominant

strategy of dropping out at their values that reflect both private and common components.

Our equilibrium construction for English auction overcomes this problem by extending the

equilibrium constructions in Milgrom and Weber (1982) and in Krishna (2003) to our setup,

which involves finding a system of equation that yields break-even signals at any given price.

It turns out that the resulting allocation is efficient. The main driving force of the efficiency

of English auction is that it enables the outsiders’ signals to be fully revealed through their

drop-out prices while guaranteeing that the insiders’ signal, albeit not fully revealed, can

be partially revealed to the extent that does not prevent allocation from being efficient.

This is achieved through a continuous updating process by which active outsiders take into

account the drop-out prices of inactive insiders (as well as those of inactive outsiders) to

update their break-even signals as the price rises and new bidders drop out.

We also explore the revenue implications of the stratified information structure in the

English auction. To investigate this, we consider two English auctions that differ by only

one bidder who switches from an outsider in one auction to an insider in the other. Using

our equilibrium construction for English auction, we show that for any realization of signal

profile, the switching of an outsider to an insider (weakly) increases the seller’s revenue.

This result is based on two effects of turning an outsider into an insider on bidders’ bidding

behavior. First, the switched bidder drops out at a higher price. Second, the higher drop-

out price of the switched bidder causes active outsiders to drop out at higher prices.

While our theory offers a benchmark for performance of auction formats in an environ-

ment with the stratified information structure, its predictions are based on the nontrivial

inference process in the English auction. Whether human bidders can behave rationally

up to the equilibrium analysis is an ultimately empirical question. To test the validity

of the theory, we design an experiment by varying the auction format—between English

and second-price—and the composition of insiders and outsiders. Specifically, we employ

three-bidder auctions of each format with three outsiders, two outsiders and one insider,

or one outsider and two insiders. Each combination of auction format and insider-outsider

composition serves as a single treatment. In order to make the outsiders’ inference problem

as transparent as possible, we let the computer play the role of insider who follows the

dominant strategy of dropping out at its own value. This was public information to all

human subjects.

Our experiment presents several findings. First, the English auction achieves a higher

level of efficiency than the second-price auction does when at least one insider is present.
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Furthermore, there is no significant difference in efficiency between the two auctions when

there is no insider. This finding on efficiency is consistent with our theory. Second, average

revenues tend to deviate upward from the equilibrium benchmark, particularly in both

auction formats with no insider. Despite this, the increase in the number of insiders has a

positive impact on revenues in the English auction, as the theory predicts. We also find a

similar pattern of the increase of revenues in the second-price auction with respect to the

number of insiders. Third, there is evidence of naive bidding in both auction formats in

the sense that subjects responded to their own signal less sensitively than predicted by the

equilibrium theory, while those with low signals tend to overbid. This behavioral pattern

is consistent with common findings of overbidding and the resulting winner’s curse in the

experimental literature. In addition, the degree of naive bidding in the data declines in

the English auction as the number of insiders increases. We conjecture that the presence

of insiders makes the outsider more cautious in bidding and creates a behavioral incentive

for the outsider to hedge against an informational disadvantage held by insiders. This may

work toward the alleviation of naive bidding and thus of the winner’s curse in our setup.

Literature This paper contributes to the literature that studies an auction environ-

ment in which bidders hold different amounts of information. Engelbrecht-Wiggans et al.

(1982) study a first-price common-value auction in which a single “insider” has proprietary

information about the common value of the object while other bidders have public infor-

mation. Hendrick and Porter (1988) and Hendrick et al. (1994) extend the analysis of

Engelbrecht-Wiggans et al. (1982) and study oil and gas drainage lease auctions. In first-

price common-value auctions, Campbell and Levin (2000) and Kim (2008) theoretically

examine the effects of an insider on revenues, whereas Kagel and Levin (1999) experimen-

tally study the effects of an insider on revenues and bidding behavior. Our paper differs

from these in some important manners. First, we study the implications of insider informa-

tion on efficiency as well as revenues in interdependent value auctions, whereas the existing

literature focuses on revenue implications under the pure common value assumption. In

addition, we study English auction and second-price auctions rather than first-price auc-

tion. Lastly, we provide an equilibrium analysis for any arbitrary number of insiders and

offer the revenue implication of introducing an extra insider, whereas existing literature

allows only a single insider.

The current paper also contributes to the literature that studies efficient auctions in the

interdependent value environment, such as Dasgupta and Maskin (2000), Perry and Reny

(2002), and Krishna (2003), to name a few. In particular, Krishna (2003) provides suffi-

cient conditions under which English auction with asymmetric bidders admits an efficient

4



equilibrium. Our efficiency result is established by adapting one such condition in Krishna

(2003) to the stratified information structure.

Goeree and Offerman (2002,2003) study an interdependent values environment similar

to ours but without insiders, in which bidders hold multidimensional information about

their private value and common value components. This multidimensionality causes an

inefficiency even in English auction, unlike our model in which the common value is de-

terministically related to the bidders’ information (or signals) about their private values.

In fact, such inefficiency persists in our setup if the insider’s information is truly multidi-

mensional (see Remark 1). In this light, the aim of the current paper is not to establish

the efficiency of English auction in a multidimensional information setup, but to offer a

conceivable information environment in which the information divide between bidders leads

to a stark contrast in the efficiency performance of the sealed-bid and dynamic auctions.

Our experimental findings contribute to the experimental literature of auctions that

investigates the effects of auction formats on outcomes and bidding behavior.3 There are

only a handful of experimental studies on performance of auction formats in the interde-

pendent value environment (e.g., Goeree and Offerman (2002) for first-price auctions and

Kirchkamp and Moldovanu (2004) for English and second-price auctions). Among them,

Boone et al. (2009) is closely related to our paper in terms of the introduction of stratified

information structure. Boone et al. (2009) study an auction environment with a restricted

structure of interdependent values and a single insider in which both English and second-

price auctions are inefficient, and report an experimental evidence that the English auction

performs better in both efficiency and revenues than the second-price auction. We study

the efficiency and revenue performance of the two standard auctions in a significantly more

general environment than Boone et al. (2009).

The rest of the paper is organized as follows. Section 2 develops an interdependent value

auction model with the stratified information structure and provides the theoretical results

for the second-price and English auctions. Section 3 describes the experimental design

and procedures. Section 4 summarizes experimental findings and Section 5 concludes. All

theoretical proofs are contained in the Appendix.4

3See Kagel (1995) and Kagel and Levin (2011) for an extensive survey
4The paper is supplemented by four Online Appendices that provide sample instructions of the ex-

periment and other technical results. These are available at https://sites.google.com/site/jikim72/
home/working_papers.
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2 Theory

2.1 Setup

A seller has a single, indivisible object to sell to one of n bidders. Let N = {1, · · · , n}
denote the set of bidders. The value of the object to each bidder is determined by n-

dimensional information s = (s1, . . . , sn) ∈ S = ×i∈N [0, s̄i], which we call a signal profile.

At this point, we do not specify who observes what signals, which is a central part of

our stratified information structure and will be discussed shortly. However, we adopt the

convention of referring to the ith signal, si, as bidder i’s signal. To denote signal profiles,

we let s−i = (sj)j 6=i, and let sB = (sj)j∈B for any subset of bidders B ⊆ N . It is assumed

that the distribution of the signal profile has full support on S.

Each bidder i’s value, denoted by vi(s), is assumed to be additively separable into two

parts, a private value component hi : R → R and a common value component g : Rn →
R: that is, vi(s) = hi(si) + g(s). We also assume that hi and g are twice continuously

differentiable, that hi(0) = g(0) = 0 for normalization, and that dhi
dsi

> 0 and ∂g
∂sj
≥

0 for all j ∈ N. . According to this function, each bidder i’s private value component

depends only on his own signal si, whereas the common value component depends on the

entire signal profile s.5 We adopt this functional form in part because it provides a natural

model of the stratified information structure in that some bidders often have superior

information than other do about the common value aspect of the object.6 We simplify the

private value function hi to be the identity function, i.e., hi(si) = si, so

vi(s) = si + g(s). (1)

This is without loss of generality since, by change of variables, one can define s̃i ≡ hi(si),

s̃ ≡ (s̃i)i∈N , and g̃(s̃) ≡ g(h−1
1 (s̃1), . . . , h−1

n (s̃n)) = g(s). Note that with this simplification,

the bidder i’s signal si itself becomes his private value component. We say that bidders are

symmetric when the signal distribution is symmetric (so that s̄i = s̄,∀i ∈ N) and g(s) is

invariant with respect to any permutation of s. It is easy to verify that the value function

satisfies the single crossing property : For all s and i 6= j, ∂vi
∂si

>
∂vj
∂si
. Moreover, for any s,

vi(s) > vj(s) if and only if si > sj, that is, whoever has a higher private value component

has a higher overall value. The allocation that assigns the object to a bidder with the

5Our efficiency and revenue results continue to hold in more general conditions for the value function.
They are available upon request.

6Some previous studies have adopted this value function in the standard information setup. For instance,
see Wilson (1998) and Hong and Shum (2003).
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highest value—or the highest private component—for every realization of the signal profile

in the support is called (ex-post) efficient.

The stratified information structure is modeled by partitioning N into I, a set of insid-

ers, and O, a set of outsiders : Each outsider i ∈ O knows only the private value component

si, whereas each insider i ∈ I knows both the private and common value components, si

and g(s), respectively. If N = O (i.e., there is no insider), the model reduces to the stan-

dard information case where every bidder i is informed only of his own signal si. We make

a parsimonious assumption on insiders’ information by specifying only that they know the

values of si and g(s) for each s, and being silent on what signals precisely they are informed

of.7 From the perspective of Bayesian games, si is the bidder i’s type if he is an outsider

while (si, g(s)) is the bidder i’s type if he is an insider.

We impose no restriction on the number of insiders or outsiders except that there are at

least one insider and one outsider, that is, |I| ≥ 1 and |O| ≥ 1. The information structure

described thus far is assumed to be common knowledge among bidders: in particular,

outsiders know who insiders are. This assumption is reasonable in the examples mentioned

in the introduction, because it is commonly known who owns neighboring tract in an OCS

auction, who are existing shareholders or current management trying to buy the target firm

in an takeover auction, and who are expert bidders in an artwork auction.

For the auction format, we focus on the sealed-bid second-price (SBSP) auction and

the English auction.8 In the second-price auction, the highest bidder wins the object and

pays the second highest bid. For the English auction, we consider the Japanese format,

where bidders drop out of the auction as the price continuously rises starting from zero

until only one bidder remains and is awarded the object at the last drop-out price.9 We

assume that bidders observe who has dropped out at what price. Combined with the

assumption that the identity of insiders is commonly known, this implies that bidders can

distinguish whether it is an insider or an outsider who has dropped out, so the inference of

his information will be made accordingly.

Despite the similarity in the pricing rules, the two auction formats are different in that

bidders in the English auction, especially outsiders, are given an opportunity to observe

others’ drop-out prices and update their information while this does not occur in the second-

price auction. In both auction formats, we assume that each insider, who knows his value

7In the first-price auction, however, what insiders know beyond their values can be important, because
it provides useful information about their opponents’ bids.

8We do not consider the first-price auction mainly because of its analytical intractability under the
stratified information structure. In the case of one insider and one outsider, however, an inefficiency result
can be established. Refer to Kim (2016) for this result.

9In both auction formates, ties are broken randomly.
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precisely, employs the weakly dominant strategy of bidding (or dropping out at) his value.

Remark 1. As mention in the Introduction, our model differs from a multi-dimensional

information setup in which private and common value components are determined inde-

pendently. In such environment, there is little hope of achieving the efficient allocation even

in a very simple setup with one insider and one outsider (in which the second-price and

English auctions are strategically equivalent). To see it, suppose that each bidder’s value

is given as a sum of private component, which can be 0, 1, or 2, and common component,

which can be 0 or 100, while there is no deterministic relationship between the two com-

ponents. For efficiency, the outsider who has private value equal to 1 must bid higher than

100 so as to outbid the insider who has private value equal to 0 and thus bids 100 if the

common value is 100. Given that the outsider’s bid can not depend on the common value

component, by bidding higher than 100, he would also outbid the insider who has private

value equal to 2 and thus bids 2 if the common value is 0, resulting in an inefficiency.

2.2 Second-Price Auction and Its Inefficiency

To begin, we provide the efficiency result with two bidders, one insider and one outsider.

In this case, the second-price and English auctions are (strategically) equivalent because

English auction ends as soon as one bidder drops out; thus, bidders have no chance to

update their information as in the second-price auction. With two bidders, both auction

formats yield the efficient allocation as shown by the following theorem. The proofs of this

theorem and all subsequent results are contained in the Appendix, unless stated otherwise.

Theorem 1 (Efficiency with Two Bidders). With n = 2, there is an ex-post equilibrium of

the second-price or English auction that achieves the efficient allocation.

With more than two bidders, however, the second-price auction ceases to be efficient:

Theorem 2 (Inefficiency of Second-Price Auction). Suppose that n ≥ 3 and ∂g
∂si

> 0 for

all i. Suppose also that the efficient allocation requires insiders to obtain the object with a

positive probability less than one. Then, there exists no efficient equilibrium for the second-

price auction.

The source of this inefficiency is that the bidding strategy of an outsider cannot ef-

ficiently adjust with that of an insider, since the former depends only on his own signal

whereas the latter depends on the entire signal profile. To illustrate this, consider the case

with three bidders. Recall that any bidder with the highest signal (i.e., the highest private

value component) must win for efficiency. Suppose that bidder 1 is an outsider while bidder
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2 is an insider and bids his value v2(s1, s2, s3). The existence of an efficient equilibrium

requires that any equilibrium bid b1(s1) of bidder 1 with s1 fixed at ŝ1 satisfies

max
{(s2,s3)|ŝ1≥max{s2,s3}}

v2(ŝ1, s2, s3) ≤ b1(ŝ1) ≤ min
{(s2,s3)|s2≥max{ŝ1,s3}}

v2(ŝ1, s2, s3), (2)

where the leftmost term is the maximal value for bidder 2 when bidder 1 should win (for

efficiency) while the rightmost term is the minimal value for bidder 2 when bidder 2 should

win. However, the inequality cannot hold since the left-hand side is equal to v2(ŝ1, ŝ1, ŝ1)

and thus greater than the right-hand side, which is equal to v2(ŝ1, ŝ1, 0), implying the lack

of an efficient equilibrium. What causes this inefficiency here is that the outsider’s bid does

not respond to the signal of third party (i.e., bidder 3) while the insider’s bid does.

While we are unable to fully analyze the equilibrium strategy for the second-price auc-

tion in the general setup, it is possible to pin down the equilibrium bid by outsider with

the highest signal in the symmetric setup:

Proposition 1. Suppose that I 6= ∅ and that bidders are symmetric. Then, in any undom-

inated equilibrium where all outsiders employ the same strictly increasing bidding strategy,

each outsider with the highest signal s̄ must bid v(̄s), where s̄ is n-dimensional vector with

every element being equal to s̄.

This result says that in any equilibrium where outsiders behave symmetrically, each

outsider with the highest type (or signal) must bid the highest possible value, which is

clearly higher than the equilibrium bid by the same type in the standard information

setup. The intuition is simple: if an outsider with the highest signal can raise his bid

(above the equilibrium level) and increase his winning probability, it must be against an

insider, in which case the deviation is profitable since the outsider pays the insider’s value

that is lower than his. This means that such an outsider type must be bidding the highest

possible value in any symmetric equilibrium. Thus, we can say that the presence of insider

induces outsiders with high signals to bid more aggressively (provided that the equilibrium

bidding strategy is continuous around s̄). This observation will turn out to be useful

for understanding a revenue implication of insiders in the second-price auction, later in

Section 2.4 (in particular, Example 3). The following example offers a detailed description

of equilibrium strategy for the second-price auction in a simple setup.

Example 1. Suppose that there are three bidders each of whom has a signal uniformly

distributed on the interval [0, 1]. For each i ∈ N = {1, 2, 3}, vi(s) = 2si +
∑

j 6=i sj.

We consider three information structures, I = ∅, I = {3}, and I = {2, 3}. Assuming

that insiders use the dominant strategy of bidding their values, we aim to find symmetric
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Bayesian Nash equilibrium bidding strategy for outsiders, denoted as B : [0, 1] → R+. In

the case of I = ∅, Milgrom and Weber (1982) provides a symmetric equilibrium bidding

strategy as follows:

B(si) = Es−i
[vi(si, s−i)|max

j 6=i
sj = si] =

5

2
si.

In the case of I = {2, 3}, the equilibrium bidding strategy for bidder 1, which is the

best response to value-bidding by bidders 2 and 3, is given as

B(s1) =

17
5
s1 if s1 ∈ [0, 5

6
]

7s1 − 3 otherwise.
(3)

Detailed analysis for this result is provided in Online Appendix I, where we also provide a

(numerical) analysis for the equilibrium strategy in the case I = {3}.
Note first that consistent with Proposition 1, the outsider with the highest type bids

B(1) = 7 − 3 = 4 (i.e., the highest possible value). A more detailed picture of the out-

sider’s equilibrium strategies is provided in Figure 1, where k is the number of insiders. It

shows that as the number of insiders increases, outsiders with high signals get to bid more

aggressively while those with low signals get to bid slightly less aggressively.

k=0
k=1k=2

0.2 0.4 0.6 0.8 1.0
s

1

2

3

4

Bid

Figure 1: Outsider’s equilibrium bidding strategy in the second-price auction

In Figure 2 below, we fix s1 at ŝ1 = 0.7 and illustrate how the equilibrium allocation

is given depending on (s2, s3). The area Ei is where bidder i has the highest signal and

should thus obtain the object in the efficient allocation. The dashed line corresponds to

the signals (s2, s3) at which the equilibrium bid of bidder 1 with ŝ1 = 0.7 is equal to

max{v2(ŝ1, s2, s3), v3(ŝ1, s2, s3)}, i.e., the higher of the two insiders’ bids. Thus, bidder 1 is

a winning (losing) bidder below (above) that line. This implies that in the shaded area Ai,

the object is allocated to bidder i, although his value is not the highest.
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s3

s2

ŝ1

ŝ1

A1

A1

A3

A2

E1 E2

E3

Figure 2: Inefficiency of equilibrium allocation in the second-price auction

2.3 Efficient Equilibrium of English Auction

We provide an equilibrium for English auction that yields the efficient allocation, by ex-

tending the equilibrium constructions in Milgrom and Weber (1982) and Krishna (2003)

in our setup. A key feature of our equilibrium construction consists of describing how out-

siders infer others’ signals from their drop-out prices and how to use this information to

determine their own drop-out prices. Assume for the moment that each outsider’s drop-out

price at any point in the auction is strictly increasing in his signal, so his signal is revealed

as he drops out. Moreover, insiders’ drop-out prices are equal to their values. Using this

information, active outsiders who have yet to drop out calculate the break-even signals

at each current price, which is defined as the signal profile that makes all active bidders

break even if they acquire the object at the current price. Then, each active outsider

stays in (resp. exits) the auction if his break-even signal at the current price is smaller

(resp. greater) than his true signal. The assumed monotonicity of each outsider’s drop-out

price with respect to his signal is ensured if his break-even signal is strictly increasing as a

function of the current price.

To formalize this idea, we introduce a few notations. Let A denote the set of active

bidders. Then, N\A, O\A, and I\A denote the set of inactive bidders, inactive outsiders,

and inactive insiders, respectively. With pi denoting the drop-out price of bidder i, let

pB = (pi)i∈B for a subset of bidders B ∈ N . Then, a price profile, pN\A, corresponds to

the history of the game at the point where only bidders in A are active. Next, suppose

that the current price is equal to p with a history pN\A. Suppose also that the signals of

inactive outsiders have been revealed to be sO\A. Given these revealed signals, we define

11



the break-even signal profile, denoted as (sA(p; pN\A), sI\A(p; pN\A)), to solve the following

system of equations:

vi(sO\A, sA(p; pN\A), sI\A(p; pN\A)) =

{
pi for i ∈ I\A
p for i ∈ A

(4a)

(4b)

The equations in (4a) says that given the profile (sO\A, sA(p; pN\A), sI\A(p; pN\A)), the value

of each inactive insider i is equal to his drop-out price pi, which is consistent with the

insiders’ value bidding strategy. The equations in (4b) says that if the active bidders

acquire the object at the current price p, then they would break even, which is why the

solution of (4) is called break-even signals. Then, the outsiders’ equilibrium strategy is

simple: After any history pN\A, each outsider i drops out (stays in) at price p if and only

if si ≤ (>)si(p; pN\A). Thus, if si(p; pN\A) is strictly increasing and continuous with p, an

outsider i with signal si drops out at a (unique) price p at which si = si(p; pN\A). This

means that each outsider’s signal is revealed via his drop-out price, as we assumed in order

to set up the system of equations (4).

The outsiders’ strategy of dropping out when the break-even signals equal their true

signals—combined with the insiders’ value bidding strategy—implies that if an outsider

(unilaterally) deviates to stay longer than prescribed by this strategy, then he would end

up paying a price higher than his true value when becoming a winner after all other bidders

have dropped out. This is because his break-even signal at the winning price is higher than

his true signal and also calculated by setting all other bidders’ signals or values at their

true levels. Likewise, exiting the auction earlier would cause the bidder to forgo a chance

to earn a positive payoff. Note that this observation depends crucially on the existence of

monotonic break-even signals as solution to the system in (4). The proof of Theorem 3

below establishes this monotonicity and use it to show that the drop-out strategy described

above constitutes an (ex-post) Nash equilibrium and also leads to the efficient allocation.10

Theorem 3 (Efficiency of English Auction). Consider the English auction with n ≥ 3.

(i) There exists an ex-post Nash equilibrium where each outsider i ∈ O\A drops out at

price p after history pN\A if and only if si < si(p; pN\A), where si(p; pN\A) solves

(4).11

10To be more precise, we prove the strict monotonicity of the signals SA(p; pN\A) by using the fact that
the value function given in (1) satisfies a sufficient condition provided by Krishna (2003), called the average
dominant condition.

11This result does not rule out the existence of other equilibria, in particular, where outsiders use
alternative drop-out strategies. In fact, Bikhchandani and Riley (1991) show that English auction admits
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(ii) The equilibrium strategy described in (i) leads to the efficient allocation.

An intuitive understanding of the efficiency result can be gained by comparing it with

the inefficiency of the second-price auction. For this, let us recall from the three bidder

example that the inefficiency of the second-price auction is caused by the mismatch between

the bids of outsider and insider, that is, the insider’s bid responds to a third party’s signal

while the outsider’s bid does not. This problem disappears in the English auction. To see

this, suppose that bidder 3 is the only insider, and that bidder 2 drops out first and reveals

his true signal, which bidder 1 learns and subsequently reflects in his drop-out strategy.

Then, there is no longer informational asymmetry between bidder 1 and 3 regarding s2.

Furthermore, from this point on, the bidding competition is reduced to the two bidder case

with one outsider and one insider, as in Theorem 1, where efficiency is easily obtained. In

the current example with three bidders and one insider, the argument for the efficiency

result based on this intuition can be completed by observing that the outsiders’ drop-out

strategy implies the following: (i) they drop out before the price reaches their values; (ii)

they drop out in order of their values. Because of (i), an insider with the highest value

always becomes a winner. In case an outsider has the highest value, efficiency is also

achieved because, given (ii), another outsider drops out and reveals his signal before the

highest-value outsider does so. The proof of Theorem 3 generalizes this argument to cases

with more insiders or outsiders.

The next example illustrates the construction of equilibrium strategy described above.

Example 2 (Equilibrium and Revenue in English Auction). Let us consider the same linear

example as in Example 1. In the case of I = ∅ (i.e., no insider), the equilibrium strategy

in Theorem 3 takes the same form as in MW: If no one has dropped out, the break-even

signal for each bidder i is given as p
4
, meaning that bidder i drops out at price equal to

4si; if one bidder j has already dropped out at pj and thereby revealed his signal sj, the

break-even signal for each remaining bidder i is given as 1
3
(p− sj), meaning that bidder i

drops out at a price equal to 3si + sj.

Let us turn to the case where I 6= ∅. If no one has dropped out or one outsider has

dropped out, an (active) outsider’s drop-out strategy remains the same as before. After an

insider j ∈ I has dropped out at price pj, the condition in (4) becomes

2si(p; pj) +
∑
k 6=i

sk(p; pj) = p for each i 6= j

a large class of equilibria in the standard information structure. It is an interesting question how the
equilibrium multiplicity is affected by the presence of insiders, which is beyond the scope of the current
paper, though, and left for future research.
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2sj(p; pj) +
∑
k 6=j

sj(p; pj) = pj,

which yields the break-even signal si(p; pj) for each i 6= j that solves

3si(p; pj) + 1
2
(pj − 2si(p; pj)) = p.

Given the equilibrium strategy that calls for each outsider i to drop out at price p satisfying

si(p; pj) = si, this equation implies that an outsider i drops out at a price equal to 3si +
1
2
(vj(s)− 2si).

Focusing on the case of a single insider, Table 1 reports the drop-out prices that result

from the equilibrium strategy in English auction with I = {3} and s1 > s2. Observe first

that a bidder with the highest signal never drops out earlier than others, implying that the

allocation is efficient. To examine the drop-out orders more carefully, the outsider who has

a higher signal, and thus a higher value, than the other outsider, always drops out later than

the latter. Interestingly, however, the drop-out orders between outsider and insider need

not be aligned with their values: for instance, in case (iii) of Table 1, bidder 2 drops out

later than bidder 3, though the former has a lower value than the latter. The efficiency of

resulting allocation is not affected despite this misalignment between the bidders’ drop-out

orders and their values.

The second drop-out price in the table corresponds to the sale price, which is (weakly)

higher than the sale price with no insider in the rightmost column. Thus, the seller’s ex-

post revenue becomes (weakly) higher if we switch one outsider to an insider. In fact, this

revenue result holds true generally in our setup, as will be shown in the next subsection.

Table 1: Drop-out prices for the English auction with I = {3} and s1 > s2

1st drop-out price
2nd drop-out price

(= sale price)
sale price with

I = ∅
(i) s3 > s1 > s2 p2 = 4s2 p1 = 3s1 + s2 3s1 + s2
(ii) s1 > s3 > s2 p2 = 4s2 p3 = v3(s) 3s3 + s2
(iii) s1 > s2 > s3 and

4s2 > v3(s)
p3 = v3(s)

p2 =
3s2 + 1

2 (v3(s)−2s2)
3s2 + s3

(iv) s1 > s2 > s3 and
4s2 < v3(s)

p2 = 4s2 p3 = v3(s) 3s2 + s3
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2.4 Revenue Implications of Insiders

Based on the equilibrium strategy given in Theorem 3, we study the impact of having more

insiders on the seller’s revenue. Our comparative statics exercise assumes no increase in the

total number of bidders, only increasing the number of insiders by turning some outsiders

into insiders. Though the source of such information enhancement is not modeled here, it

may be interpreted as resulting from the seller’s attempt to feed some selective bidders with

precise information on an auctioned object or the bidders’ information acquisition effort.

Let us consider two English auctions, E and E ′, which differ by only one bidder who

switches from an outsider in E to an insider in E ′. Given a signal profile s, let P (s) and

P ′(s) denote the seller’s revenue in E and E ′, respectively, under the equilibrium described

earlier.

Theorem 4. For any signal profile s ∈ ×i∈N [0, s̄i], P (s) ≤ P ′(s).

This result follows from establishing two facts: (i’) the switched insider drops out at a

higher price in E ′ than in E; (ii’) the higher drop-out price of the switched insider causes

(active) outsiders to also drop out at higher prices in E ′. To provide some intuition behind

(ii’), we revisit the three bidder example. Suppose that bidder 1 is a winner and pays

bidder 2’s drop-out price p2 after bidder 3, the only insider, first dropped out at p3. Then,

the break-even signals s1(p2; p3) and s3(p2; p3) satisfy

v1(s1(p2; p3), s2, s3(p2; p3)) = p2 > p3 = v3(s1, s2, s3). (5)

Because bidder 1 is active at p2, we have s1 > s1(p2; p3), which implies s3 < s3(p2; p3)

by (5). The fact that s1 > s1(p2; p3) means the break-even signal of the active outsider

underestimates his true signal, which has the effect of lowering the selling price p2. However,

this effect is mitigated by the fact that s3 < s3(p2; p3), that is, the insider’s signal is

overestimated. The underestimation of active outsiders’ signals results from their attempt

to avoid the winner’s curse by bidding as if the currently unknown signals are just high

enough to make them break even at the current price. This is why an outsider drops out

before the price reaches his value, as (i’) above suggests. Thus, an outsider becoming a

better-informed insider alleviates the detrimental effect of the winner’s curse on both his

and other outsiders’ drop-out prices.

Theorem 4 immediately implies the following corollary.

Corollary 1. Suppose that the set of insiders expands from I to I ′ ⊇ I (with the same set

of bidders). Then, the seller’s revenue (weakly) increases for each signal profile.

15



Our revenue prediction is reminiscent of the linkage principle of Milgrom and Weber

(1982) in that enhancing the bidders’ information has a positive impact on the seller’s

revenue. In the linkage principle, the extra information is publicly disclosed to all bidders

whereas, in our result, only a subset of bidders entertains better information. This dif-

ference, however, is somewhat diluted by the fact that, in English auction, the additional

information of bidders who switch to insiders is partially disclosed to the other bidders

during the bidding process. Another difference is that our revenue prediction holds ex-

post—that is, for every realization of the signal profile—and thus does not depend on the

assumption of affiliated signals.

One may ask how the presence of more insiders affects the revenue of the second-price

auction. Also, it will be interesting to see how the linkage principle, applied to the revenue

comparison between the second-price and English auctions, is affected by the presence of

insiders. Giving general answers to these questions is beyond the scope of the current paper

due to the lack of equilibrium analysis for the second-price auction in the general setup.

Instead, we rely on the analysis of the second-price auction in Example 1 to shed some

light on the above questions.

Example 3 (Revenue Comparison for English and Second-Price Auctions). Let us continue

with the setup in Example 1 and 2. Table 2 below reports the seller’s expected revenues

from the second-price and English auctions that are (numerically) calculated using the

equilibrium strategies in Example 1 and 2: Consistent with Theorem 4, the table shows

Table 2: Seller’s expected revenues from the second-price and English auctions

Number of insiders Second-Price Auction English Auction
k = 0 1.75 1.75
k = 1 1.92 1.83
k = 2 1.95 1.97
k = 3 2 2

that the expected revenue of English auction increases with the number of insiders (since its

ex-post revenue increases). The same is true for the second-price auction, while the increase

mostly occurs as k increases from 0 to 1. First, this is due to a more aggressive bidding by

the bidder who switches to an insider. Also, as we have observed from Proposition 1 and

Example 1, the presence of (more) insiders induces outsiders with high signals to bid more

aggressively, though it may make those with low signals slightly less aggressive. According

to the above table, however, the impact of having more than one insider on the revenue of

the second-price auction is only marginal, relative to its impact on English auction. Also,
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the insider’s positive impact on the revenue of the second-price auction does not occur in

the ex-post sense, unlike English auction.12 It is thus unclear whether the insider’s revenue

effect in the second-price auction is robust beyond the uniform distribution case.

Lastly, the above table shows that the revenue comparison between the two auction

formats is ambiguous: the expected revenue of the second-price auction is higher with one

insider and lower with two insiders than that of English auction. This suggests that the

linkage principle breaks down in our setup, provided that the revenues change continuously

as the signal distribution is slightly perturbed to allow for some affiliation.

3 Experimental Design and Procedures

The experiment was run at the Experimental Laboratory of the Centre for Economic Learn-

ing and Social Evolution (ELSE) at University College London (UCL) between December

2011 and March 2012. The subjects in this experiment were recruited from an ELSE pool of

UCL undergraduate students across all disciplines. Each subject participated in only one of

the experimental sessions. After subjects read the instructions, the instructions were read

aloud by an experimental administrator. Each experimental session lasted around 2 hours.

The experiment was computerized and conducted using experimental software z-Tree de-

veloped by Fischbacher (2007). Sample instructions are reported in Online Appendix II.

In the design, we use a variety of auction games with three bidders, i = 1, 2, 3. Each

bidder i receives a private signal, si, which is randomly drawn from the uniform distribution

over the set of integer numbers, {0, 1, 2, ..., 100}. Given a realization of signal profile s =

(s1, s2, s3), the object valuation for each bidder i is given by equation 1 where g(s) =
∑

j sj.

We have in total six treatments in terms of the auction formats—the SBSP auction

and the English auction—and the number of insiders varying from zero to two, k = 0, 1, 2.

A single treatment consisting of one auction format and a single value of k is used for

each session. We conduct 12 sessions in total with two sessions for each auction game

treatment. Each session consists of 17 independent rounds of auction games, where the

first two rounds were practice rounds in which auction outcomes were not counted for

actual payoffs. Throughout the paper, we use data generated only after the first two

rounds. The following Table 3 summarizes the experimental design and the amount of

experimental data. The first number in each cell is the number of subjects and the second

is the number of group observations in each treatment. In total, 233 subjects participated

12For instance, an outsider whose signal is equal to 1 and bids B(1) = 4 (almost) always reduces his bid
below 4 as he switches to an insider, decreasing the seller’s ex-post revenue.
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in the experiment.

Table 3: Experimental sessions and observations

Session
Auction format # of insiders (k) 1 2 Total

0 21 / 105 21 / 105 42 / 210
English 1 18 / 135 20 / 150 38 / 285

2 23 / 345 19 / 285 42 / 630
0 21 / 105 21 / 105 42 / 210

SBSP 1 20 / 150 16 / 120 36 / 270
2 17 / 255 16 / 240 33 / 495

We use an irrevocable-exit, ascending clock version of the English and the SBSP auctions

(Kagel et al., 1987; Kirchkamp and Moldovanu, 2004). In the English auction treatments,

each subject sees three digital clocks representing the bidding process on his or her computer

screen, one for each bidder in the group. The computer screen indicates which clock belongs

to whom and which belongs to an insider, if any. After one bidder stops his or her clock,

the remaining bidders observe that the bidder’s clock has stopped. If one more participant

drops out, the auction is over. The remaining bidder wins the auction and pays the price

at which the second bidder drops out. In the second-price auction treatments, there is only

one clock presented to each subject. The subject drops out by stopping his or her clock. If

the other two participants have not yet dropped out, their clocks continue to ascend. Once

all three bidders have stopped their own clocks, the auction is over. The remaining bidder

who chooses the highest price wins the auction and pays the price at which the second

bidder drops out. Ties are broken (uniform) randomly. Once subjects have dropped out,

they are not allowed to re-enter the auction.

In treatments with insider(s), each insider bidder is played by the computer, whereas

outside bidders are played by human subjects. The groups formed in each round depend

solely upon chance and are independent of the groups formed in any of the other rounds.

Once assigned to a three-bidder group, each subject observes his or her private signal and

the valuation formula. Other bidders’ signals in the formula are hidden.

The (computer-generated) insider always drops out at a price equal to its own valuation.

This information is common knowledge to subjects. Using computer-generated insiders has

the benefit of keeping our experiment close to the theory. Notice that if we use human

insiders instead, and they deviate from bidding their valuations, it will be more difficult to

interpret outsiders’ behavior within our theoretical framework.
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When an auction round ends, the computer informs each subject of the results of that

round, which include bids at which bidders dropped out, signals bidders received, auc-

tion object values, payments and earnings in the round. The next round starts with the

computer randomly forming new groups of three bidders and selecting signals for them.

Earnings were calculated in terms of tokens and exchanged into pounds at the rate of

40 tokens to £1. In order to avoid potentially adverse impacts of limited liability for losses

on bidding behavior,13 we provided each subject a relatively large amount of money, £10,

as the initial balance in the experiment. None of the subjects experienced bankruptcy

during the experiment. The total payment to a subject was the sum of his or her earnings

over rounds, plus the initial balance £10 and an extra £5 participation fee. The average

payment was about £18.32 (min £ 11.5, max £26.8). Subjects received their payments

privately at the end of the session.

4 Experimental Findings

4.1 Efficiency

Table 4 reports the frequency of efficient allocation as well as the average efficiency ratio

by measuring the economic magnitude of inefficient outcomes across auction treatments.

The efficiency ratio is defined as the actual surplus improvement over random allocation as

a percentage of the first-best surplus improvement over random assignment.14 This ratio

equals one if the allocation is efficient, and less than one otherwise. For auction treatments

with one insider (resp. two insiders), we group the data with respect to the ranking of the

insider’s value (resp. the outsider’s).

- Table 4 here -

The frequencies of efficient allocation are high in all treatments and range from 76%

(in the SBSP auction with k = 1) to almost 90% (in the English auction with k = 2).

The efficiency ratio shows similar patterns. In the symmetric information structure with

13Hansen and Lott (1991) argued that aggressive bidding behavior in a common value auction experiment
conducted by Kagel and Levin (1986) may be a rational response to limited liability rather than a result of
the winner’s curse. Lind and Plott (1991) designed an experiment eliminating the limited-liability problem
and found that this problem does not account for the aggressive bidding patterns in the experiment of
Kagel and Levin.

14Our measure of the efficiency ratio normalizes the realized surplus by both the best-case scenario
(efficiency) and the worst-case one (random assignment). This double-normalization renders a more robust
measure against the rescaling of the value support than an alternative measure such as the percentage of
the first-best surplus realized.
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no insider (k = 0), there is no significant difference in efficiency between the two auction

formats. In the presence of an insider, however, the efficiency outcomes are significantly

higher in the English auction than in the SBSP auction. These results are qualitatively

consistent with the theoretical predictions that when at least one insider is present in

auction, an efficient equilibrium exists in the English auction but not in the SBSP auction.

We further divide the data with respect to the value ranking of bidders. In the auctions with

one or two insiders (k ∈ {1, 2}), the efficiency ratio of the English auction is significantly

higher than that of the SBSP auction, regardless of the value ranking (except for the case

where the outsider has the second-highest value and k = 2).

To further examine the English auction’s superior efficiency performance, we divide the

English auction treatment data into two subsamples with respect to whether the SBSP

auction, if it had been used, would have produced an efficient or inefficient allocation

according to the theoretical prediction. Because of the small sample size of the inefficient

equilibrium allocations, we allow for a five-token margin to classify the case of inefficiency

such that a single data point is treated as inefficient if the equilibrium of the SBSP auction

is either inefficient or efficient but the difference between its two high bids is less than five

tokens.15 We then check how often subjects are able to achieve an efficient allocation in

each of these data points. We conduct the same analysis for the SBSP auction treatments.

Table 5 presents the frequencies of efficient allocation in each case in the treatments with

at least one insider with the number of observations in parentheses.

- Table 5 here -

In the case where the SBSP auction format predicts an efficient allocation, actual effi-

ciency frequencies are quite high, ranging from 81% (in the SBSP auction with k = 1) to

92% (in the English auction with k = 2). In contrast, the level of efficiency becomes much

lower in the case where the equilibrium allocation under the SBSP auction format is inef-

ficient: the frequencies of efficiency range between 33% (in the SBSP auction with k = 1)

and 66% (in the English auction with k = 2). In each treatment, the frequency difference

of efficient outcomes between these two cases is statistically significant at usual significance

levels. Thus, when it is predicted that the bidding mismatch problem between outsiders

and insiders would arise, subjects are more likely to fail to attain an efficient allocation.

Furthermore, in the case where the equilibrium of the SBSP auction predicts an inefficient

allocation, the English action performs significantly better than the second-price auction

15The results remain basically the same either whether we use no margin or small one. Also, whether
we perform a round by round analysis.
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when there is a single insider. In the case of two insiders, we find no difference between

the two auction formats. We summarize the efficiency outcomes as follows.

Finding 1 (efficiency) The English auction exhibits higher efficiency performance than

the second-price auction does in the presence of insiders, as theory predicts. In the

symmetric information structure where there is no insider, there is no difference of

efficiency performance between the two auction formats.

4.2 Revenue

Next, we compare revenue performance across treatments. Table 6 presents the average

percentage deviations of observed revenues from their theoretically predicted values across

treatments. For auction treatments with one insider (resp. two insiders), we divide the

data with respect to the ranking of the value of the insider (resp. the outsider).

- Table 6 here -

When all bidders are outsiders, observed revenues are significantly higher than theoret-

ically predicted ones. This tendency becomes weaker in auctions with at least one insider.

This may not be unexpected, because insiders in the experiment are computer-generated

and play the equilibrium strategy of bidding their own values. Despite this consideration,

observed revenues in the SBSP auction with k = 1 are significantly above the theoretical

prediction. In auctions with k = 1, the tendency of revenues to be higher than theoreti-

cally predicted strengthens when both outsiders have lower or higher values than the insider.

This apparently results from overbidding, relative to the BNE, by outsiders (see next sub-

section). In auctions with k = 2, the magnitude of the departures of observed revenues

from theoretical ones is not large, although some of the departures remain significant.

Our theory establishes the linkage principle of the English auction that for any signal

profile, the switch of an outsider to an insider weakly increases revenue. We thus run

regressions of observed revenues (resp. theoretical revenues) on signal profiles and dummies

for the number of insiders in each auction format. The results are reported in Table 7.16

- Table 7 here -

16As a robustness check of Table 7, we conduct regression analysis with more flexible functional speci-
fications of quadratic forms of signals or dummies for insider/outsider and their interactions with signals.
These results are reported in Online Appendix III. In essence, the empirical findings on the linkage principle
remain unchanged. These findings do not change either whether we include round fixed effects.
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Controlling for the signal profile, switching an additional outsider to an insider improves

revenues significantly in the English auction. The magnitudes of revenue improving with

an extra insider in the data are also consistent with those predicted by theory as shown

in regressions with theoretical revenues. Analogously, we observe the revenue-improving

outcomes in the SBSP auction data, which is qualitatively consistent with the prediction

in Table 2 of Example 3.

We summarize our revenue findings as follows.

Finding 2 (revenue) Revenues in the data tend to deviate above theoretically predicted

values, in particular in auctions with no insider. Despite this tendency, the increase

in the number of insiders has a positive impact on revenues in the English auction,

consistent with the linkage principle of the English auction. We find similar revenue-

improving patterns with extra insiders in the SBSP auction.

4.3 Bidding Behavior

In this section, we examine subjects’ bidding behavior and quantitative departures from

the BNE predictions. We begin this analysis with the SBSP auction.

SBSP Auction We run linear regressions of subjects’ bids on their private signals

with robust standard errors clustered at the individual level. Our theory predicts that the

BNE strategy has a kink at the signal value equal to 82.109 when k = 1 and that equal

to 500/6 when k = 2. We thus use the regression specifications with and without these

kinks.17 Table 8 reports the results of the regressions presenting p-values of the F -test for

the null hypothesis that observed bids follow the equilibrium strategy.

- Table 8 here -

The regression analysis indicates that subjects respond less sensitively to their own pri-

vate signals than theory predicts. The estimated coefficients on signals are significantly

lower than the theoretical prediction of approximately 3.5 in each insider treatment. Fur-

thermore, the constant term in the regression is significantly positive in each treatment also

suggesting that subjects tend to overbid relative to the equilibrium when signals are low.

The joint test based on the F -statistic indicates that subjects’ behavior differ significantly

from the equilibrium strategy. Overall, the overbidding pattern in our data is consistent

with previous findings in the literature (see Kagel, 1995; Kagel and Levin, 2002).

17For the sake of visual inspection, in Online Appendix V we present a set of scatter plots between
subjects bids and independent variables used in the regression analysis, such as their private signals, in the
SBSP and English auction treatments.
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English Auction We run censored regressions of the first drop-out and second drop-

out prices with the sample of outsiders for the English auction treatments. The censored

regression method is required because we observe only the first drop-out price for the lowest

bidder and the bids of two remaining bidders are right-censored, and because the second

drop-out price is left-censored by the first drop-out price. In the treatment with one insider

(k = 1), as the BNE strategy predicts, the regression specification for the second drop-out

price interacts with the signal of the second drop-out bidder; furthermore, the first drop-

out price interacts with the dummy indicating whether it is an insider who drops out first.

We further include an alternative specification by adding this dummy in the regression

equation to capture the potential empirical impact of this dummy on the constant term.

Table 9 reports the regression results and statistical tests for the joint null hypothesis that

observed bids follow the equilibrium strategy.18

- Table 9 here -

The regression analysis of the first drop-out prices reveals that the subjects respond less

sensitively to their private signal than the equilibrium strategy across insider treatments

predicts. Whereas the equilibrium behavior responds to the private signal by a factor of 4,

regardless of the number of insiders, the estimated coefficients are significantly lower than

this theoretical prediction. We also found that the constant term is significantly positive

in all insider treatments. Given these results, the null hypothesis that the first drop-

out prices follow the BNE strategy is rejected at usual significance levels. The estimated

coefficient on the private signal increases and the constant term declines as the number of

insiders increases. Thus, the presence of an insider who knows the value of the object may

make outsiders more wary of hedging against informational asymmetry between insider and

outsider and may help alleviate the winner’s curse.

We turn to the regression analysis of the second drop-out prices. Similar to the first

drop-out bidders, the second drop-out bidders respond less sensitively to their own pri-

vate signal than the equilibrium analysis predicts. However, they respond excessively to

the first drop-out prices. Despite the excessive responsiveness to the first drop-out price,

the combined behavioral response of the private signal and first drop-out price appears

less sensitive than the equilibrium strategy dictates. The joint null hypothesis that the

experimental behavior is equivalent to the equilibrium strategy is rejected at the usual

significance levels in each treatment. Finally, in the auction treatment with one insider

(k = 1), the subjects differentially responded to the identity of the first drop-out bidder:

18The censored regression approach, using the maximum likelihood estimation method, is given in detail
in Online Appendix IV. The analysis is robust to the inclusion of round fixed effects.

23



they tend to place more weight on the first drop-out price and less on their private signal

when the insider drops out first. This is qualitatively consistent with the BNE prediction.

Quantifying naive bidding The overbidding pattern in our interdependent value

environment with insider information is closely related to the findings of the winner’s curse

in the experimental literature of common value auctions (see Kagel and Levin, 2002).

Winning against other bidders implies that the outsider’s value estimate happens to be

the highest among outsiders as well as higher than each insider’s value. Thus, failure to

account for this adverse selection problem results in overbidding and can make the outsider

fall prey to the winner’s curse. Indeed, the winners in our data ended up with negative

surplus more frequently than the theory predicts.19

We employ a simple strategy of quantifying the extent to which subjects in our ex-

periment fail to account properly for the adverse selection problem and thus bid naively.

We define naive bidding as bidding based on the unconditional expected value (by com-

pletely ignoring the adverse selection problem). In both auction formats, the naive bidding

strategy takes the form bnaive (si) = 2si + 100. For the English auction, it means that the

naive bidder ignores any information from the first drop-out price. We then consider a

convex combination of the naive bidding strategy and the BNE one. For all bidders in the

second-price auction and the first drop-out bidders in the English auction, this combined

bidding strategy is represented by

b (si;α) = α× bnaive (si) + (1− α) bBNE (si) .

The equation for the second drop-out bidders in the English auction with first drop-out

price pj can be written as

b (si, pj;α) = α× bnaive (si) + (1− α) bBNE (si, pj) .

We estimate α by matching this form to the data for each treatment. α measures the

degree to which the subjects’ behavior departs from the BNE and is close to the naive

bidding strategy. In our setup, α is well identified. For instance, for the first drop-out

bidder in the English auction with each k, this convex combination can be rewritten as

b (si;α) = 100×α+ (2α + 4 (1− α)) si; then α is identified by matching the constant term

and the slope of this equation to the data. We pool samples of first drop-out and second

19Online Appendix V reports empirical and theoretical frequencies of the winner getting negative surplus
and average surplus across treatments.
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drop-out bids to estimate a single α for each treatment of the English auction.

We note that auctions with a single outsider in our experiment are a non-strategic

single-agent problem and that any deviation from the equilibrium strategy is driven by

failure in optimization. In auctions with more than one outsider, deviations from the BNE

can be resulted from the subject’s strategic response to others’ deviations on top of the

subject’s own deviation from optimization. Instead of developing fully a bounded rational

model to decompose these, we estimate the aforementioned specification of quantifying the

extent of naive bidding and compare them across treatments.

Table 10 reports the regression results of α estimates across auction treatments.

- Table 10 here -

There is substantial evidence of naive bidding in all treatments: an estimated param-

eter α is statistically significant at the usual significance level in all auction treatments.

Moreover, in the English auction the degree of naive bidding significantly decreases in the

number of insiders: estimated α̂ are 0.67 when k = 0, 0.51 when k = 1, and 0.28 when

k = 2. The degree of naive bidding when there is a single outsider is significantly lower

than those in the other cases where there are more than one outsider. We conjecture that

the presence of insiders makes the outsider more wary about information asymmetry and

thus motivates the outsider to hedge against such asymmetry. This may work toward the

correction of naive bidding and thus the winner’s curse in our setup. On the other hand,

we do not find similar monotonic patterns of α̂ in the SBSP auction.

We summarize the bidding behavior in the experiment as follows.

Finding 3 (bidding behavior) (i) There is evidence of overbidding relative to the equi-

librium prediction in both the second-price auction and the English auction. (ii) The

degree of this naive bidding declines significantly as the number of insiders in the

English auction increases.

5 Conclusion

We have proposed a model of interdependent value auctions with the stratified informa-

tion structure and examined key predictions of the model via a laboratory experiment.

Our model is distinct from the existing auction literature with insider information in a

couple of important respects. First, unlike the literature where a common value is typi-

cally assumed, we adopt the interdependent value setup and study the effects of insider
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information in standard auctions—the SBSP and English auctions—on their efficiency and

revenue. The English auction has an efficient equilibrium, whereas the second-price auction

suffers inefficiency caused by the presence of the insider. Second, we allow for any number

of insiders, in contrast to most studies where there is only one insider. This enables us to

study the effects of varying the number of insiders on the performance of the two auction

formats.

The experimental evidence supports the theoretical predictions on efficiency and rev-

enues. As the theory predicts, the English auction achieves efficiency more frequently than

the second-price auction when insider information is present, and revenues of the English

auction increase in the number of insiders after controlling for realized signals. Despite the

accordance of experimental data with the theory, there is substantial evidence of naive bid-

ding, as common in the experimental literature (see Kagel, 1995; Kagel and Levin, 2011).

However, the degree of naive bidding declines as more insiders are in the English auction.

This offers an interesting phenomenon that warrants further theoretical investigation such

as developing an alternative, behavioral model.

Appendix

Proof of Theorem 1: Suppose that bidder 1 is an insider and employs the undominated

strategy of bidding v1(s) for each s. Given this, the optimal bid b2(s2) of bidder 2 as an

outsider must satisfy

b2(s2) < v1(0, s2) if v1(0, s2) > v2(0, s2)

= v2(α, s2) if v1(α, s2) = v2(α, s2) for some α

> v1(s̄1, s2) if v1(s̄1, s2) < v2(s̄1, s2).

(6)

Assume first that v1(0, s2) > v2(0, s2), which implies by the single crossing property that

v1(s1, s2) > v2(s1, s2) for every s1 ∈ [0, s̄1]. Thus, it is efficient for bidder 1 to obtain

the object regardless of s1. Because bidder 1 bids v1(s1, s2), bidder 2 would incur a loss

by winning. Bidder 2 could avoid this loss by bidding any b < v1(0, s2) ≤ v1(s1, s2) and

losing. A similar argument can be used to establish that an optimal bid must be at least

v2(s̄1, s2) if v1(s̄1, s2) < v2(s̄1, s2), which leads to the efficient allocation. Lastly, assume

that v1(α, s2) = v2(α, s2) for some α ∈ [0, s̄1]. Such α is unique because of the single

crossing. Bidder 2’s optimal bid b has to lie in the interval [v1(0, s2), v1(s̄1, s2)] such that

there exists φ1(b, s2) ∈ [0, 1] satisfying v1(φ1(b, s2), s2) = b. Letting FS1|S2(·|s2) denote the
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distribution of s1 conditional on s2, the expected payoff of bidder 2 with s2 is∫ φ1(b,s2)

0

(v2(s1, s2)− v1(s1, s2))dFS1|S2s1s2.

The integrand is positive if and only if s1 < α, and thus the expression is maximized

by setting b = v1(α, s2) = v2(α, s2). Hence, bidder 2 wins if and only if s1 < α or

v1(s1, s2) < v2(s1, s2) because of the single crossing, meaning that the resulting allocation

is efficient.

Proof of Theorem 2. Suppose to the contrary that there exists an efficient equilibrium

of the second-price auction. For a given bidder i, we define Ei := {s ∈ ×i∈N [0, s̄i] | vi(s) ≥
vj(s) for all j 6= i}, that is the set of signals for which bidder i wins the object at the

efficient equilibrium. Because of the assumption that insiders obtain the good with some

positive probability less than one, there must exist an outsider i, an insider j, and a signal

profile s in the interior such that vi(s) = vj(s) > maxk 6=i,j vk(s) (or hi(si) = hj(sj) >

maxk 6=i,j hk(sk)). Fix any such profile s and let Eij(si) := {s′|s′i = si and s′ ∈ Ei ∩ Ej}.
Then, we can find another profile s̃ ∈ Eij(si) such that s̃i = si, s̃j = sj, and s̃k < sk,∀k 6=
i, j.

Next, given the efficient allocation and value bidding of bidder j, bid bi(si) of bidder i

with si has to satisfy

max
{s′∈Ei|s′i=si}

vj(s
′) ≤ bi(si) ≤ min

{s′∈Ej |s′i=si}
vj(s

′). (7)

If the first inequality were violated, bidder i with signal si would lose to bidder j when the

former has a higher value. If the second inequality were violated, bidder j would lose to

bidder i with signal s′i when the former has a higher value. From (7),

max
s′∈Eij(si)

vj(s
′) ≤ max

{s′∈Ei|s′i=si}
vj(s

′) ≤ bi(si) ≤ min
{s′∈Ej |s′i=si}

vj(s
′) ≤ min

s′∈Eij(si)
vj(s

′).

Thus, vj(·) has to be constant on Eij(si). This implies that for some constant k, vj(s
′) =

k,∀s′ ∈ Eij(si), which in turn implies that vi(s
′) = k,∀s′ ∈ Eij(si) because vi(s

′) = vj(s
′)

for any s′ ∈ Eij(si). Thus, for any s′ ∈ Eij(si), we must have hi(si) = hi(s
′
i) = k − g(s′);

this cannot be true, because given our assumption, we have g(s) > g(s̃) even though

s, s̃ ∈ Eij(si).

We provide the proofs of Theorem 3 and 4 in Section 2.3. To simplify the notation,

we let s(p) := (sO\A, sA(p; pN\A), sI\A(p; pN\A)) and si(p) = si(p; pN\A) for i ∈ I ∪ A, by
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omitting the price history pN\A. We first establish a couple of preliminary results in Lemma

2 and 3. To do so, let v = maxi∈N maxs∈×i∈N [0,s̄i] vi(s). Then, we can find some Mi ∈ R+

for each i such that vi(Mi, s−i) ≥ v for any s−i ∈ ×j 6=i[0, s̄j].
The following result from Krishna (2003) is used to prove the existence of solution of

(4):

Lemma 1. Suppose that R = (rij) is an m×m matrix that satisfies the dominant average

condition:
1

m

m∑
k=1

rkj > rij,∀i 6= j and
m∑
k=1

rkj > 0,∀j. (8)

Then, A is invertible. Also, there exists a unique x � 0 such that Ax = 1, where 1 is a

column vector of m 1’s.

Lemma 2. For any sO\A and pN\A, there exists a solution (sA, sI\A) : [maxi∈N\A pi, v] →
×i∈I∪A[0,Mi] of (4) such that for each i ∈ A, si(·) is strictly increasing.

Proof. Let v′A·B(s) denote a |A| × |B| matrix, where its ij element is ∂vi
∂sj

(s) for i ∈ A and

j ∈ B. We denote v′A·B for convenience. Let 0A and 1A respectively denote column vectors

of 0’s and 1’s with dimension |A|.
To obtain a solution to (4) recursively, suppose that the set of active bidders is A and

that the unique solution of (4) exists up to price p = maxk∈N\A pk. Let (sA, sI\A) denote this

solution at p. We extend the solution beyond p to all p ∈ [p, v]. To do so, we differentiate

both sides of (4) with p to obtain the following differential equation:(
v′A·A v′A·I\A
v′I\A·A v′I\A·I\A

)(
s′A(p)

s′I\A(p)

)
=

(
1A

0I\A

)
(9)

(sA(p), sI\A(p)) = (sA, sI\A).

The first matrix on the left-hand side can be written as v′I∪A·I∪A. Assume for the moment

that v′N ·N is invertible, which implies that its principal minors v′I∪A·I∪A and v′I\A·I\A are also

invertible. Then, by Peano’s theorem, a unique solution of (9) exists since the value func-

tions are twice continuously differentiable. We next show that v′N ·N is invertible and that

sA(p)′ � 0. To do so, we rewrite the last |I\A| lines of (9) as s′I\A = −(v′I\A·I\A)−1v′I\A·As
′
A.

Substituting this into the first |A| lines of (9) yields V s′A = 1A after rearrangement, where

V := v′A·A − v′A·I\A(v′I\A·I\A)−1v′I\A·A.

If V satisfies the dominant average condition for any A, then, with A = N , V = v′N ·N is
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invertible by Lemma 1. Moreover, by Lemma 1, s′A(p)� 0.

To prove that V satisfies the dominant average condition, let g′k = ∂g
∂sk

and g′A = (g′k)k∈A,

where g′A is considered a column vector. Let DA denote the |A|×|A| identity matrix. Then,

for any A,B ⊂ N ,

v′A·B =

{
DA + 1A(g′A)t if A = B

1A(g′B)t if A ∩B = ∅,

where (·)t denotes the transpose of the matrix. Using this, we can rewrite V as

V = DA + 1A(g′A)t − 1A(g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1
1I\A(g′A)t

= DA + (1− x)1A(g′A)t, (10)

where x = (g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1

1I\A. Because all entries in any given column of

the matrix 1A(g′A)t are identical and because the diagonal entries of DA are positive, the

first inequality of (8) is easily verified. The proof is complete if the second inequality of (8)

is shown to hold, for which it suffices to show x < 1:

x = (g′I\A)t
(
DI\A + 1I\A(g′I\A)t

)−1
1I\A

= (g′I\A)t

(
D−1
I\A −

(
1

1 + (g′I\A)tD−1
I\A1I\A

)
D−1
I\A1I\A(g′I\A)tD−1

I\A

)
1I\A

= (g′I\A)tD−1
I\A1I\A −

(
(g′I\A)tD−1

I\A1I\A

)2

1 + (g′I\A)tD−1
I\A1I\A

=
(g′I\A)tD−1

I\A1I\A

1 + (g′I\A)tD−1
I\A1I\A

=

∑
k∈I\A g

′
k

1 +
∑

k∈I\A g
′
k

< 1,

where the second equality is derived using the formula for an inverse matrix,

(
A+ bct

)−1
= A−1 −

(
1

1 + ctA−1b

)
A−1bctA−1,

with A = DI\A, b = 1I\A, and c = g′I\A.

Given the break-even signals obtained in Lemma 2, we consider each outsider i’s strategy

of dropping out (staying in) at p if and only if si < si(p) after any history pN\A. Along

with the insiders’ value-bidding strategy, we refer to this strategy profile as β∗.

Lemma 3. Given the strategy profile β∗, for any signal profile s ∈ S, (i) outsiders drop

out in order of their values; (ii) for each outsider i, pi ≤ vi(s); and (iii) at any outsider i’s
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drop-out price pi, sj(pi) ≥ sj for each insider j who is inactive at pi.

Proof. Consider two outsiders i and j with pi ≤ pj. Then, at price pi at which bidder i

drops out, we have

si = si(pi) = pi − g(s(pi)) = sj(pi) ≤ sj,

where the first equality and the inequality follow from the drop-out strategy of outsiders

i and j, respectively, whereas the second and third equalities follow from the break-even

condition at pi. This proves (i) because si ≤ sj implies that vi(s) ≤ vj(s).

To prove (ii), suppose to the contrary that pi > vi(s). Because si(pi) = si, this implies

that si + g(s(pi)) = pi > si + g(s), so g(s(pi)) > g(s). Given this, for each insider j ∈ I
(whether active or not), we must have

sj − sj(pi) ≥ g(s(pi))− g(s) > 0, (11)

where the first inequality holds because the break-even condition implies that for an inactive

insider j, sj + g(s) = vj(s) = pj = vj(s(pi)) = sj(pi) + g(s(pi)) and because, for an active

insider j, sj + g(s) = vj(s) ≥ pi = vj(s(pi)) = sj(pi) + g(s(pi)). The inequality (11) implies

that sj > sj(pi) for each insider j. Furthermore, for each active outsider j ∈ O ∩ A, we

have sj ≥ sj(pi). Thus, s ≥ s(pi), and thus vi(s) ≥ vi(s(pi)) = pi, which a contradiction.

To prove (iii), note first that we have si + g(s) = vi(s) ≥ pi = si(pi) + g(s(pi)) =

si + g(s(pi)) because of (ii) and the fact that si(pi) = si. This inequality implies that

g(s) ≥ g(s(pi)). If an insider j is inactive at pi, we must have vj(s) = pj = vj(s(pi)) or

sj(pi)− sj = g(s)− g(s(pi)) ≥ 0, which yields sj(pi) ≥ sj.

Proof of Theorem 3. We first prove Part (ii) by showing that the strategy profile β∗, if

followed by all bidders, leads to the efficient allocation. Then, we show that it constitutes

an ex-post equilibrium.

Given that outsiders drop out in order of their values (according to (i) of Lemma

3), the efficiency result follows if an outsider i with the highest value among outsiders

drops out before (after) an insider j with the highest value among insiders if and only if

vi(s) < (>)vj(s). In case vi(s) < vj(s), outsider i dropping out at some pi ≤ vi(s) (from (ii)

of Lemma 3) means that the insider j is a winner, because pi ≤ vi(s) < vj(s) is lower than

insider j’s drop-out price vj(s). Assume now that vi(s) > vj(s) and suppose to the contrary

that the outsider i drops out at some price pi < vj(s) at which only insiders, including j,

are active.20 Then, the break-even condition at pi implies that si = pi − g(s(pi)) = sk(pi)

20This holds because bidder i is the last to drop out among outsiders, according to (i) of Lemma 3.
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for each k ∈ I ∩A. Because si > sk for all those k, this means that sk(pi) > sk. Thus, due

to (iii) of Lemma 3, we have s(pi) = (sO, sI∩A(pi), sI\A(pi)) ≥ s with sk(pi) > sk, which

implies that pi = vk(s(pi)) > vk(s) for all k ∈ I ∩ A. This contradicts the value bidding

strategy of insiders.

Turning to the proof of Part (i), we show that β∗ constitutes an ex-post equilibrium, by

focusing on an arbitrary outsider i. If i has the highest value and follows the equilibrium

strategy to become a winner, his payoff is vi(s) −maxk 6=i pk ≥ vi(s) −maxk 6=i vk(s) ≥ 0.21

Then, any nontrivial deviation by i cannot be profitable, because it results in losing and

earning a zero payoff. Suppose now that there is some j with vj(s) > vi(s). If j is an

insider, any nontrivial deviation by i to become a winner makes him pay at least vj(s),

that is, more than his value. Let us therefore focus on the case where j is an outsider

with the highest value. Any nontrivial deviation by i would require him to wait beyond

some price p such that si(p) = si, and then become a winner after j drops out last at some

pj > p.22 Then, we must have si(pj) > si and sj(pj) = sj. Combining this with sI(pj) ≥ sI

(from (iii) of Lemma 3), we have s(pj) = (sO\{i}, si(pj), sI(pj)) ≥ s with si(pj) > si, so

vi(s(pj)) = pj > vi(s), implying that the deviation incurs a loss to i.

Proof of Theorem 4: Throughout the proof, for any variable x in E, we let x′ denote

its counterpart in E ′. For instance, p′k denotes the drop-out price of bidder k in E ′. Let

O = {1, 2, · · · , l} and thus I = {l+ 1, · · · , n}, and assume that v1(s) ≤ v2(s) ≤ · · · ≤ vl(s),

without loss of generality. Then, O′ = O\{i} and I ′ = I ∪ {i}.
First, according to (ii) of Lemma 3, switched insider i drops out at a (weakly) higher

price in E ′ than in E. The proof is complete if we show that all other outsiders drop out

at (weakly) higher prices in E ′ as well. Next, suppose by contradiction that some outsider

drops out at a lower price in E ′ than in E. For all outsiders k < i, we have p′k = pk,

because the history of drop-out prices is the same across E and E ′ until pi is reached.

Using this and our assumption, we define j = min{k | p′k < pk, and i < k ≤ l}. We first

make a few of observations: (i) a signal sk for each k < j with k 6= i is revealed in both E

and E ′ by the time the price clock reaches p′j, because pk ≤ p′k ≤ p′j for all such k23; (ii)

s′j(p
′
j) = sj = sj(pj) > sj(p

′
j), because pj > p′j; and (iii) s′i(p

′
j) ≥ si. (iii) here follows from

(iii) of Lemma 3 if i is inactive at p′j in E ′. If i is active at p′j, the monotonicity of s′i(·)
21The first inequality holds because each insider drops out at his value and each outsider drops out below

his value according to (ii) of Lemma 3.
22An argument similar to that in the proof of the efficiency can be used to show that because j has the

highest value, j drops out last (except for i) even under deviation by i.
23The second inequality here holds, because outsiders drop out in order of their values in E′.
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implies that s′i(p
′
j) ≥ s′i(pi) = si(pi) = si, because p′j ≥ pi.

24 We next show that

s′k(p
′
j) ≥ sk(p

′
j) for all k ∈ {j + 1, · · · , n}, (12)

which, given (i), (ii), and (iii) above, implies that s′(p′j) ≥ s(p′j)
25 with s′j(p

′
j) > sj(p

′
j), so

p′j = vj(s
′(p′j)) > vj(s(p

′
j)) = p′j, yielding the desired contradiction. To prove (12), observe

first that the break-even conditions at price p′j in E and E ′ yield

g(s(p′j)) = p′j − sj(p′j) > p′j − s′j(p′j) = g(s′(p′j)),

where the inequality holds because of (ii). We then prove (12) by considering two cases

depending on whether k ∈ {j+1, · · · , n} or not is active at p′j in E ′. Because each outsider

k ∈ {j + 1, · · · , l} is active at p′j in E ′, an inactive bidder k ∈ {j + 1, · · · , n} must be an

insider. For such k, we obtain (12) because the break-even conditions at price p′j in E and

E ′ yield

s′k(p
′
j) = pk − g(s′(p′j)) > pk − g(s(p′j)) = sk(p

′
j), (13)

where the inequality follows from (13).Turning to the case in which bidder k ∈ {j+1, · · · , n}
is active at p′j in E ′, he must also be active at p′j in E. This is because if k is an outsider,

p′j < pj and he drops out no sooner than j in E (because of (i) of Lemma 3) and because

if k is an insider, he drops out at the same price (i.e., his value) in E and E ′. Thus, we

obtain (12), because the break-even conditions at p′j in E and E ′ yield

s′k(p
′
j) = p′j − g(s′(p′j)) > p′j − g(s(p′j)) = sk(p

′
j),

where the inequality follows again from (13).
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(1) (2) (3) (4)

# of insiders Ranking of values (I  or O ) Freq. Ratio Freq. Ratio

0.78 0.80 0.83 0.84 0.17 0.39

0.76 0.74 0.83 0.89 0.05 0.00

0.70 0.65 0.81 0.83 0.08 0.03

0.73 0.79 0.88 0.93 0.02 0.01

0.83 0.75 0.80 0.90 0.55 0.03

0.83 0.86 0.89 0.93 0.01 0.00

0.73 0.80 0.87 0.92 0.00 0.00

0.83 0.91 0.79 0.90 0.37 0.58

0.94 0.87 0.99 0.97 0.01 0.02

(94)

Second-price auction

(210)

(270)

(83)

(93)

Table 4. Frequencies and ratios of efficient allocation

Note. The efficiency ratio is defined as (realized surplus minus random surplus) divided by (first-best surplus minus random surplus). The 

two columns on the right side report the p -value of the t -test for the null hypothesis that outcomes between the second-price auction and the 

English auction are equivalent. I  denotes an insider and O  an outsider. The number of observations is in parentheses

English auction

H0: (1) = (3) H0: (2) = (4)

0

2

All
(210)

All

I  = (highest-value)

I  = (second highest-value)

I  = (lowest-value)

1

All

O  = (highest-value)

O  = (second highest-value)

O  = (lowest-value)

(205)

(219)

(103)

(630)

(206)

(285)

(100)

(82)

(495)

(169)

(168)

(158)



(1) (2)

Theoretical allocation 

Second-price auction 
Inefficient Efficient

Theoretical allocation 

Second-price auction 
Inefficient Efficient

0.67 0.33 0.39 0.62

(20) (10) (10) (16)

0.19 0.81 0.15 0.85

(46) (194) (40) (219)

Total 0.24 0.76 Total 0.18 0.82

(66) (204) (50) (235)

Ho: Ineff-Eff=0 0.000 Ho: Ineff-Eff=0 0.003

(1) (2)

Theoretical allocation 

Second-price auction 
Inefficient Efficient

Theoretical allocation 

Second-price auction 
Inefficient Efficient

0.36 0.64 0.34 0.66

(21) (37) (25) (48)

0.15 0.85 0.08 0.92

(64) (373) (47) (510)

Total 0.17 0.83 Total 0.11 0.89

(85) (410) (72) (558)

Ho: Ineff-Eff=0 0.000 Ho: Ineff-Eff=0 0.000

0.017

0.136

Table 5. The decomposition of efficiency outcomes against theoretical predictions of the second-price auction

A. (# of insiders) = 1

Second-price auction English auction

Observed Allocation Observed Allocation

H0: (1) ≥ (2)

Inefficient Inefficient

Efficient Efficient

Second-price auction English auction

B. (# of insiders) = 2

Note. In discerning if the second-price auction format predicts an inefficient allocation for each sample, we allow a 5-token margin with which a 

sample is treated inefficient if the equilibrium of the second-price auction is either inefficient or efficient but the difference of its two high bids is 

less than 5 tokens.The last column on the right side reports the p -value from the t -test for the null hypothesis that the efficiency outcome of the 

second-price auction is no lower than that of the English auction. The bottom row reports the p-value from the t-test for the nully hypothesis that 

the frequencies of efficient allocation is the same between when the second-price auction format predicts an efficient allocation and when not. 

The number of observations is in parentheses. 

Observed Allocation Observed Allocation

Inefficient Inefficient

Efficient Efficient

H0: (1) ≥ (2)

0.408

0.001



# of insiders Ranking of values (I  or O ) English auction SBSP auction

0.22 0.26

(0.096, 0.023) (0.045, 0.000)

0.03 0.14

(0.014, 0.047) (0.024, 0.000)

0.06 0.28

(0.036, 0.101) (0.058, 0.000)

-0.02 0.03

(0.012, 0.112) (0.019, 0.165)

0.03 0.13

(0.012, 0.005) (0.036, 0.001)

0.00 0.01

(0.002, 0.453) (0.004, 0.063)

-0.01 -0.03

(0.003, 0.000) (0.005, 0.000)

0.02 0.03

(0.006, 0.008) (0.010, 0.001)

0.00 0.02

(0.001, 0.024) (0.006, 0.005)

Table 6. Average percentage deviations of observed revenues from theoretically predicted revenues

Notes. I  stands for an insider and O  represents an outsider. The first number in parentheses is a standard 

error of sample mean and the second number is p-value from t-test for the null hypothesis that the mean is 

equal to zero. 

0 All

2

All

O  = (highest-value)

O  = (second highest-value)

O  = (lowest-value)

All

I  = (highest-value)

I  = (second highest-value)

I  = (lowest-value)

1



Variables English SBSP English SBSP

k = 1       10.466***       10.491***       12.424***       13.554***

(1.983) (2.477) (.996) (1.374)

k = 2       18.716***        9.838***       21.897***       21.635***

(1.738) (2.218) (.873) (1.23)

s (1)        0.889***        0.766***        1.027***        0.638***

(.039) (.055) (.02) (.03)

s (2)        2.087***        1.837***        2.330***        2.515***

(.038) (.051) (.019) (.029)

s (3)        0.796***        0.761***        0.661***        0.629***

(.04) (.054) (.02) (.03)

constant       -7.739***       18.436***      -16.151***      -14.889***

(2.98) (3.883) (1.497) (2.154)

# of obs. 1125 975 1125 975

R
2 0.907 0.837 0.978 0.960

p-value H0: (k=0 ) = (k=1 ) 0.000 0.000 0.000 0.000

p-value H0: (k=1 ) = (k=2 ) 0.000 0.749 0.000 0.000

Theoretical revenuesObserved revenues

Table 7. Regression analysis of observed and theoretical revenues

Note. Standard errors are reported in parentheses. *, **, and *** represent 10%, 5%, and 1% significance level, respectively. 

s(1) = min[s], s(3)=max[s], s(2)=med[s]



Variables (k = 0 )

s i 2.754*** 2.309 2.309*** 2.756 2.756***

(0.16) (0.130)*** (0.13) (0.219)*** (0.22)

1[s i >82.109] -90.933

(79.09)

1[s i >82.109] ×s i 1.125

(0.89)

1[s i >500/6] -352.69

(226.80)

1[s i >500/6] ×s i 4.006

(2.50)

Constant 48.797*** 75.876 75.876*** 39.836 39.836***

(8.57) (7.273)*** (7.29) (12.048)*** (12.07)

R
2 0.71 0.6 0.7 0.58 0.65

# of obs. 630 447
 540 412

§ 495

Ho:( b,c)=( b,o) (s=3.5) (s=3.43578) n/a (s=17/5) (s=17/5,   1[.]=-300, s+1[.]s = 7)

   F test 16.21 54.56 5.5 3.64

   p value 0.00 0.00 0.00 0.02

Table 8. Regressions of bids on signals in the SBSP auctions

(k = 2)

Notes: Robust standard errors clustered by individual subjects are reported in parentheses. *, **, and *** represent 10%, 5%, and 1% 

significance level, respectively. 


Restricts sample to si≤82.109. 
§
 Restricts sample to si≤500/6. 

(k = 1)



first drop-out second drop-out first drop-out first drop-out second drop-out

Variables (1) (2) (3) (4) (5) (6) (7)

s i 2.878*** 1.893*** 3.258*** 2.394*** 2.456*** 3.48*** 1.268***

(0.14) (0.10) (0.16) (0.15) (0.16) (0.14) (0.10)

p/4 1.591*** 1.369*** 1.409*** 2.812***

(0.12) (0.21) (0.21) (0.19)

1[1st drop-out = insider]× s i -1.010*** -1.076***

(0.21) (0.22)

1[1st drop-out = insider] ×p/4 1.240*** 1.093***

(0.33) (0.35)

1[1st drop-out = insider] 10.775

(8.45)

Constant 77.893*** 46.28*** 65.669*** 22.705*** 17.285*** 32.089*** 21.836***

(9.61) (5.60) (10.13) (3.82) (6.28) (8.04) (6.79)

sigma 61.947 30.677 58.226 26.358 26.378 56.556 23.396

(8.365)*** (2.896)*** (6.230)*** (1.794)*** (1.810)*** (8.449)*** (1.785)***

pseudo-R
2 0.13 0.20 0.16 0.23 0.23 0.16 0.24

# of obs. 630 420 570 388 388 630 343

Ho:( b,c)=( b,o) (s=4) (s=3,p/4=1) (s=4)

(s=3,p/4=1, 

1[.]s+s=2, 

1[.]p/4+p/4=2)

(s=3,p/4=1, 

1[.]s+s=2, 

1[.]p/4+p/4=2, 

1[.]=0)

(s=4) (s=2,p/4=2)

   F test 40.17 45.63 21.11 36.65 30.63 9.43 48.41

   p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

second drop-out

Notes: Robust standard errors clustered by individual subjects are reported in parentheses. *, **, and *** represent 10%, 5%, and 1% significance level, respectively. 

Table 9. Censored regressions of bids in the English auctions

(k = 0 ) (k = 1 ) (k = 2 )



k=0 k=1 k=2 k=0 k=1 k=2

α 0.672 0.512 0.280 0.488 0.729 0.402

(.069)*** (.070)*** (.067)*** (.086)*** (.079)*** (.122)***

R
2 0.92 0.93 0.91 0.94 0.95 0.92

N 421 376 404 630 540 495

H 0 : α k  = α k'  α 0  = α 2  α 0  = α 1  α 1  = α 2  α 0  = α 2  α 0  = α 1  α 1  = α 2

F  test: 16.64 2.64 5.73 0.34 4.32 5.15

p  value 0.00 0.11 0.02 0.56 0.04 0.03

Second-price auctionEnglish auction: first and second drop-out prices

Note. Robust standard errors clustered by individual subjects are reported in parentheses. *,**, and *** represent 

10%, 5%, and 1% significance level, respectively. 

Table 10. Nonlinear least squares of naïve bidding



Online Appendix

Online Appendix I: Proof of Proposition 1 and Analysis for Ex-

ample 1

Proof of Proposition 1. Let B : [0, s̄] → R+ denote the symmetric bidding strategy

of outsiders. The restriction to undominated equilibrium implies that B(s̄) ≤ v(s) while

all insiders bid their values. Suppose for contradiction that B(s̄) < v(s). If an outsider i

with signals si = s̄ deviates to some bid greater than B(s̄), it only increases his chance of

winning against insiders, in which case his payoff is given by vi(s̄, s−i)−maxj∈I vj(s̄, s−i) =

s̄−maxj∈I sj > 0 (unless maxj∈I sj = s̄). Thus, this deviation is profitable.

Equilibrium of the Second-Price Auction with I = {2, 3}. We aim to find bidder

1’s bid that is the best response to the value bidding of the two insiders, bidders 2 and 3.

By symmetry, it suffices to focus on the case in which s2 ≥ s3 so v2(s) ≥ v3(s), meaning

that bidder 2 bids higher than bidder 3 does. Then, by bidding b, bidder 1 wins the object

to obtain a payoff equal to v1(s)−v2(s) = s1−s2 when b ≥ v2(s) and s2 ≥ s3, which can be

rewritten as s3 ≤ min{b− 2s2− s1, s2}. Given this and the uniform distribution of signals,

bidder 1’s payoff from biding b is given as

π(b; s1) =

∫ min{1, b−s1
2
}

0

(s1 − s2) min{b− as2 − s1, s2}ds2.

This expression is maximized by setting b = B1(s1) with B1(s1) defined in (3).

Equilibrium of the Second-Price Auction with I = {3}. Let B : [0, 1] → R+

denote a symmetric, non-decreasing bidding strategy for the two outsiders. We consider

the maximization problem faced by bidder 1 with any fixed signal s1 ∈ [0, 1], when bidder

2 follows the bidding strategy B and bidder 3 bids his value. By bidding b, he wins if

s2 ≤ B−1(b) and v3(s) ≤ b. Then, his payment is equal to v3(s) if v3(s) ≥ B(s2), and equal

to B(s2) otherwise. In the former case (the darker gray area A3 in Figure A), his (ex-post)

payoff is v1(s) − v3(s) = s1 − s3 while in the latter case (the lighter gray area A2 in the

graph below), his payoff is v1(s)−B(s2) = 2s1 + s2 + s3 −B(s2).

Given this and the uniform distribution of signals, the expected payoff of bidder 1 with
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s3

s2
1

1
b−s1
a

B−1(b)

B(s2) = v3(s)

b = v3(s)

s1 : fixed

A3

A2

s2

b−s2−s1
2

B(s2)−s2−s1
2

Figure A: An outsider’s payoff from bidding b in the second-price auction

s1 can be written as

π(b; s1) =

∫ B−1(b)

0

[∫ min{ b−s2−s1
2

,1}

max{B(s2)−s2−s1
2

,0}
(s1 − s3)ds3

]
ds2

+

∫ B−1(b)

0

[∫ max{B(s2)−s2−s1
2

,0}

0

(2s1 + s2 + s3 −B(s2))ds3

]
ds2.

The first (resp., second) integration corresponds to bidder 1’s payoff in the area A3 (resp,.

A2). Then, the requirement to maximize this payoff by setting b = B(s1) yields a differential

equation that can be used to solve for the function B. While we omit the detailed expression

for this differential equation, it yields a linear solution below a threshold signal s ' 0.82:

B(s1) =
1

10

(√
129 + 23

)
s1 for s1 ∈ [0, s],

where the threshold s solves equation B(s1)−s1
2

= 1. For s1 ≥ s, the first order condition

yields the following differential equation:

1

B′(s1)

∫ B(s1)−2s1
2

0

(3s1 + s−B(s1))ds+

∫ s1

B(s1)−2−s1

1

2

(
s1 −

B(s1)− s1 − s
2

)
ds = 0

Unfortunately, an analytical solution for this differential equation is unavailable. Instead,
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we rely on a numerical method to draw the graph of equilibrium bidding strategy for the

case of k = 1 in Figure 1.
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Online Appendix II 

 

Sample Instructions: English auction with one insider 

 

This is an experiment in the economics of decision-making. Research foundations have 
provided funds for conducting this research. Your earnings will depend partly on your 
decisions and partly on the decisions of the other participants in the experiment. If you 
follow the instructions and make careful decisions, you may earn a considerable amount of 
money.  

At this point, check the name of the computer you are using as it appears on the top of 
the monitor. At the end of the experiment, you should use your computer name to claim 
your payments. At this time, you will receive £5 as a participation fee simply for showing 
up on time. In addition, you will receive £10 as an initial balance you will use in this 
experiment. Any positive or negative earnings incurred during the experiment will be added 
into this balance. Details of how you will make decisions will be provided below. During 
the experiment we will speak in terms of experimental tokens instead of pounds. Your 
payments will be calculated in terms of tokens and then exchanged at the end of the 
experiment into pounds at the following rate: 

40 Tokens = 1 Pound 

In this experiment, you will participate in 17 independent and identical (of the same 
form) auction rounds. In each round you will act as a bidder in an auction and compete for 
a single hypothetical object with other two participants in your group. Note that the first 
two rounds are practice rounds in which your earnings will not be counted for actual 
payoffs. The remaining 15 auction rounds are real and any positive or negative earnings 
will be counted for actual payoffs. If your balance during the experiment goes below zero, 
you will become inactive and be excluded for any remaining auction rounds and will 
receive only £5 participation fee at the end of the experiment.  

 

An auction round 

 

Next, we will describe in detail the process that will be repeated in all 17 rounds. Each 
round starts by having the computer randomly form three-participant groups. In each group, 
one participant is played by the computer (called a computer participant), while the other 
two participants are played by persons. The groups formed in each round depend solely 
upon chance and are independent of the groups formed in any of the other rounds. That is, 
in any group each active person is equally likely to be chosen for that group. In a case 
where any other person was excluded due to its negative balance, there is a chance that you 
may become inactive in a particular round when you are matched with that person who was 
excluded.  

In the beginning of each round, each participant will be assigned a signal that will be 
randomly drawn from the set of integer numbers of tokens between 0 and 100 (numbers not 
including decimals). That is, any number from the set {0, 1, 2, …, 100} will be equally 
likely to be drawn. A signal you will be assigned in each round is independent of signals 



 

other participants will be assigned and is independent of a signal assigned to you in any of 
the other rounds. This will be done by the computer. 

The result of your draw of a signal will be your private information and will not be 
shared with another person in your group during each round. On the other hand, the 
computer participant will know not only its own signal but also the signals of other two 
human participants.  

The value of the object for each participant is determined by signals received by that 
participant and the other participants in the same group. Specifically, each participant’s 
value is the sum of his or her own signal multiplied by two and signals received by the 
other two participants. The determination of your value can be summarized by the 
following formula: 

 

Your value = 2 × (your signal) + (Other 1’s signal) + (Other 2’s signal) 

 

The information about your signal and value will be displayed at the top of the screen 
(see Attachment 1). Note that Other 2 in the screen is the computer participant. Because the 
signals the other participants received are not shared with you, you will not know the exact 
number of your value.  

To illustrate this more, consider an example in which your signal is 84 and the signals 
of the other two participants in your group, Other 1 and Other 2, are 43 and 26, respectively. 
The value for each participant will then be calculated to be 

 

Your value = 2 × 84 + 43 + 26 = 237 

Other 1’s value = 2 × 43 + 84 + 26 = 196 

Other 2’s value = 2 × 26 + 84 + 43 = 179 

 

Because each human participant does not know the signals the other two participants 
received, each person will be only informed of his or her own value as 

 

Your value = 2 × 84 + ??? + ??? 

 

After every participant is assigned a signal, the bidding process will get started with 
ascending price clocks (number boxes) shown in the middle of the computer screen (see 
Attachment 1). The left-hand clock represents your bidding and the middle clock represents 
the bidding of another human participant, while the right-hand clock represents the bidding 
of the computer participant.  

In the beginning of the bidding process, the three clocks will simultaneously start at -4 
and synchronously move upwards by 1 unit per half second until one participant drops out. 
If one participant stops his clock, the remaining two participants will observe, at the next 
bid increment, that participant’s clock having been stopped and turning red (see Attachment 
2). There will then be 3 seconds of time pause. From then on the two remaining clocks will 
synchronously increase by 1 unit per second. If one more participant drops out, the auction 



 

will then be over. The last remaining participant will become a winner of the object and 
will pay the price at which the second participant dropped out. If all remaining participants 
dropped out at the same price level or if the price level reached 500 (the maximum bid 
allowed), the winner will then be selected at random from the set of active participants and 
pay the price at which this event occurred.  

As soon as the price on your clock reaches the level you want to drop out, move the 
mouse over your clock (number box) and click on it. This will make you drop out of the 
bidding, that is, your clock stop. Once you have dropped out, you will not be allowed to re-
enter the auction in this round. Note that you cannot stop your clock before the clock 
reaches 0 (the minimum bid allowed).  

The computer participant will use a simple rule of drop-out decision: it will drop 
out at a price equal to its own value. The computer participant will always abide by this 
rule. 

When the first round ends, the computer will inform you of the results of this round, 
which include bids you and other participants dropped out at, signals you and other 
participants received, values of the object, payments and earnings in the round (see 
Attachment 3)1. This completes the first auction round. To move on to the second round, 
press the OK button at the bottom right hand side of the screen (see Attachment 3). 

After letting you observe the results of the first round, the second round will start by 
having the computer randomly form new groups of three participants and select signals for 
participants. You will be again asked to take part in the bidding process. After every 
participant has made a decision, you will observe the results of the second round.  This 
process will be repeated until all the 17 independent and identical auction rounds are 
completed. At the end of the last round, you will be informed that the experiment has ended. 
Note again that the first two rounds are practice rounds in which your earnings will not be 
counted for actual payoffs.  

 

Earnings 

 

Your earnings in each round can be summarized by the following formula: 

Earnings = (winning revenue) – (winning cost) 

The winning revenue is the value assigned to you if you won the object and zero 
otherwise. The winning cost is the price paid by you. If you did not win the object, the 
winning cost is equal to zero. The difference between the winning revenue and winning 
cost will determine your earnings in each round. 

Consider an example to understand the determination of earnings more easily. Suppose 
that signals assigned to you, another human participant, and the computer participant are 84, 
43, and 26, respectively as below. Further, suppose that Other 1 dropped at 142 and Other 2 
(the computer participant) dropped at 179 (equal to its own value), while you remained 
active.  

 

                                                 
1 In the history box of bidding screen (see the bottom box in Attachment 2), in case you were the winner in a 
previous round, you bidding in that round is denoted by -999. This is simply a feature in the programming. 



 

 
 

Because you were the last remaining bidder, you won the object and paid the price at 
which the second participant dropped out, 179. Your winning revenue is your own value, 
237. Your winning cost is the price paid by you, 179. Therefore, your earnings will be 
given by  

Your earnings = 237 – 179 = 58.  

 

The other two participants’ earnings will be equal to zero because they did not win the 
auction.  

Consider another example in which your signal is 54, while signals of another human 
participant and the computer participant are 60 and 15, respectively. Suppose that Other 2 
(the computer participant) dropped at 144 (its own value) and Other 1 dropped at 204, 
while you remained active.  

 

 
 

In this case, your value is 183, while the price you pay is 204. Thus, your earnings will 
be then 183 ‒ 204 = ‒ 21.  

Your payoffs in the experiment will be the sum of your earnings over the 15 rounds 
after the first two practice rounds, whose tokens will be converted into pounds at the end of 
the experiment, plus the initial balance £10. In addition, you will receive £5 participation 
fee. You will receive your payment as you leave the experiment.  

 

Rules 

 

  Please do not talk with anyone during the experiment. We ask everyone to remain 
silent until the end of the experiment. Your participation in the experiment and any 
information about your earnings will be kept strictly confidential. If there are no further 
questions, you are ready to start. An instructor will activate your program.  

Participant Signal Value Drop-out price Earnings 

You 84 2 × 84 + 43 + 26 = 237 -- 237 ‒ 179 = 58 

Other 1 43 2 × 43 + 84 + 26 = 196 142 0 

Other 2 26 2 × 26 + 84 + 43 = 179 179 0 

Participant Signal Value Drop-out price Earnings 

You 54 2 × 54 + 60 + 15 = 183 -- 183 ‒ 204 = ‒ 21

Other 1 60 2 × 60 + 54 + 15 = 189 204 0 

Other 2 15 2 × 15 + 54 + 60 = 144 144 0 



 

Attachment 1 

  



 

Attachment 2 

 



 

Attachment 3 

 



Variables English SBSP

k = 1       10.847***       10.861***
(1.986) (2.468)

k = 2       18.853***       10.435***
                    (1.74) (2.214)

s (1)        0.975*** 0.288

(.227) (.304)

s (2)        2.037***        1.710***

(.153) (.197)

s (3)        0.466**        1.075***

                    (.226) (.301)

s (1)
2        0.006***        0.009***

                    (.002) (.003)

s (2)
2 0.001 0.003

                    (.002) (.002)

s (3)
2 0.002 -0.004

                    (.002) (.002)

s (1) x s (2)       -0.007*        -0.014***

                    (.003) (.004)

s (1) x s (3) 0        0.009** 

                    (.003) (.004)
constant 2.36       15.850*

(6.665) (9.04)
# of obs. 1125 975

R 2 0.908 0.839

p-value H0: (k=0 ) = (k=1 ) 0.000 0.000

p-value H0: (k=1 ) = (k=2 ) 0.000 0.834

Note. Standard errors are reported in parentheses. *, **, and *** represent 10%,
5%, and 1% significance level, respectively. s(1) = min[s], s(3)=max[s], s(2)=med[s]

Online Appendix III
Regression analysis of observed revenues: alternative specifications



Variables English SBSP

k = 1       15.665**       17.633*  
(7.936) (9.763)

k = 2       29.069*  24.29
                    (15.381) (18.879)

s (1)        0.784***        0.626***

(.048) (.066)

s (2)        2.053***        1.716***

(.043) (.059)

s (3)        0.707***        0.622***

                    (.051) (.066)
1[s (1)  = s (Insider) ] -10.971      -16.276*  

                    (7.892) (9.833)
1[s (2)  = s (Insider) ] -5.224      -19.698*  

                    (8.303) (10.228)
1[s (3)  = s (Insider) ]      -23.238**      -31.405***

                    (9.224) (11.549)
1[s (1)  = s (Insider) ]× s (1)        0.245***        0.261***

                    (.067) (.092)
1[s (2)  = s (Insider) ]× s (2) 0.082        0.332***

                    (.058) (.075)
1[s (3)  = s (Insider) ]× s (3)        0.181***        0.310***

                    (.066) (.09)
constant 3.565       38.074***
                    (4.217) (5.168)
# of obs. 1125 975

R 2 0.91 0.844

p-value H0: (k=0 ) = (k=1 ) 0.049 0.071

p-value H0: (k=1 ) = (k=2 ) 0.084 0.484

Note. Standard errors are reported in parentheses. *, **, and *** represent 10%,
5%, and 1% significance level, respectively. s(1) = min[s], s(3)=max[s], s(2)=med[s]

Regression analysis of observed revenues: alternative specifications



Online Appendix IV: Maximum Likelihood Approach

The maximum likelihood approach addresses the censoring that exists in the observed data.

It distinguishes between the observed drop-out bid ds,ir and the reservation bid ps,ir. For

ease of exposition denote, denote g1(i, r) for all i ∈ N as the individual who first drops out

from i’s group in round r and the corresponding group as g(i, r). Let G1(r) be the collection

of all first bidders at round r. Therefore, for all i ∈ G1(r) we know p1,ir = d1,ir but for the

other two active bidders j ∈ g(i, r) \ g1(i, r) we only know that p1,jr > p1,g1(j,r)r, implying

that we observe a right-censored variable of their true drop-out price. For the second

stage, we know that for bidder g2(i, r), who drops out second, his/her reservation bid is

p2,g2(i,r)r = d2,g2(i,r)r; however, for the remaining bidder j we only know that d2,jr > d2,g2(i,r)r,

which again implies a right-censored variable.

Consider εks,ir = pks,ir−Γks,ir where Γks,ir follows from the right hand side of the regression

equation. We know that ds,g1(i,r)r = ps,ir if and only if i ∈ gs(i, r). If we define eks,ir =

dks,g1(i,r)r − Γks,ir ds,g1(i,r)r = ps,ir if and only if eks,ir = εks,ir.

Denoting θks =
(
αs

k, βs
k, δs

k, {σs,i : i : 1→ Nk}
)

and Ds ≡
(
ds,gs(i,r)

)
∀i∈Nk,r∈R

the infor-

mation on drop-out prices from the experiment, the density function associated with the

first bidding function p1,ir is given by

fp1,ir(b | ·) = f(p1,ir = d1,g1i,rr | ·)1[i∈g1(i,r)](1− F (p1,ir ≤ d1,g1i,rr | ·))1[i/∈g1(i,r)] .

Therefore, the maximum likelihood function is

Lk1
(
θk1 ;D1

)
=
∏
r∈R

∏
i∈Nk

[
1

σi
φ

(
ek1,ir
σi

)]1[i∈g1(i,r)]
[

1− Φ

(
ek1,ir
σi

)]1[i/∈g1(i,r)]

(14)

On the other hand, the maximum likelihood associated with the second bidders is

Lk2
(
θk2 ;D2

)
=
∏
r∈R

∏
i∈Nk\G1(r)

[
1

σi
φ

(
ek2,ir
σi

)]1[i∈g2(i,r)]
[

1− Φ

(
ek2,ir
σi

)]1[i/∈g2(i,r)]

(15)

This specification corresponds to a Partial maximum likelihood estimator. From Wooldridge

(2003) we know that, once the variance matrix is corrected for within-subject dependence,

the pooled partial maximum likelihood estimation analysis is consistent and asymptotically

normal.
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(1) (2) (3) (4)
# of insiders Ranking of values (I or O) Freq. negative Average Freq. negative Average

0.25 36.07 0.17 44.15 0.03 0.10

0.32 12.96 0.22 23.32 0.03 0.00

0.96 -21.78 0.95 -13.18 0.88 0.10

0.11 19.29 0.01 28.07 0.02 0.05

0.28 18.66 0.20 27.80 0.25 0.07

0.25 18.12 0.21 18.46 0.29 0.90

0.00 30.46 0.00 26.46 - 0.09

1.00 -10.87 1.00 -10.00 - 0.75

1.00 -40.50 1.00 -43.67 - 0.81

Online Appendix V

Table. Frequencies of negative surplus and average surplus

Second-price auction English auction

H0: (1) = (3) H0: (2) = (4)

I = (lowest-value)
(87) (103)

0 All (210) (210)

1

All
(184) (197)

I = (highest-value)
(27) (22)

I = (second highest-value)
(70) (72)

Note. The Bidder's surplus is defines as valuation minus price paid. The two columns on the right side report the p-value of the t-test for the null 
hypothesis that outcomes between the second-price auction and the English auction are equivalent. I denotes an insider and O an outsider. The number 
of observations is in parentheses. It excludes cases where Insiders win the auction. - No sufficient variation to compute significance tests

2

All
(158) (227)

O = (highest-value)
(118) (180)

O = (second highest-value)
(30) (44)

O = (lowest-value)
(10) (3)



(1) (2) (3) (4)
# of insiders Ranking of values (I or O) Freq. negative Average Freq. negative Average

0.07 62.06 0.00 55.53 0.00 0.16

0.06 32.16 0.00 34.22 0.00 0.45

0.75 -2.00 - - - -

0.00 29.32 0.00 28.79 - 0.87

0.08 38.99 0.00 38.99 - 0.56

0.07 29.42 0.00 26.60 0.00 0.24

0.00 31.82 0.00 26.60 - 0.03

1.00 - - - - -

- - - - - -

H0: (1) = (3) H0: (2) = (4)

Second-price auction English auction

Table. Theoretical predictions on frequencies of negative surplus and average surplus

0 All (161) (173)

1

All (142) (154)

I = (highest-value) (4) (0)

I = (second highest-value) (65) (72)

I = (lowest-value) (73) (82)

O = (lowest-value) (0) (0)

Note. The Bidder's surplus is defines as valuation minus price paid. The two columns on the right side report the p-value of the t-test for the null 
hypothesis that outcomes between the second-price auction and the English auction are equivalent. I denotes an insider and O an outsider. The number 
of observations is in parentheses. It excludes cases where Insiders win the auction. - No sufficient variation to compute significance tests

2

All (120) (179)

O = (highest-value) (112) (179)

O = (second highest-value) (8) (0)



C. (# of insiders) = 2

B. (# of insiders) = 1A. (# of insiders) = 0

Figure 3. Scatter plots of bids and signals: Second-price auctions



A.  (# of insiders) = 0

B.  (# of insiders) = 1

C.  (# of insiders) = 2

Figure 4. Scatter plots of bids and signals: English auctions


