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Abstract

We investigate how the network structure of financial linkages and uncer-

tainty about the location of a shock affect the likelihood of contagion and the

formation of prices in a double auction market experiment. Core-periphery

networks are highly susceptible to contagion and generate fire sales of assets

that exacerbate financial contagion beyond the mechanical role of network

structure. In contrast, contagion is minimal on circle networks and market

prices remain stable. Uncertainty on the location of the shock has little influ-

ence. The traders’ comprehension level of the network-driven risk is predictive

of their behavior and the likelihood of bankruptcy.
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1 Introduction

The complex architecture of linkages among financial institutions is a pervasive fea-

ture of financial markets. In the aftermath of the financial crisis of 2007-2008, it was

widely viewed as a critical factor in shaping systemic risk, and its impact may have

been amplified by the market participants’ lack of information on where a shock hits

the system1. A growing number of theoretical studies validate these views by show-

ing that the structure of the network of linkages and the information about where

a shock hits the network are one of the determinants of the robustness of the finan-

cial system2. However, empirical studies struggle to identify these effects because

the financial network endogenously evolves in response to incentives, including the

outcomes of interest, and it is challenging to observe potential confounds such as

preferences and information held by market participants.

This paper reports the results of a laboratory market experiment where we sys-

tematically vary the architecture of the financial network and the structure of in-

formation on the location of a shock in the network. We integrate the classical

continuous double auction experimental asset market à la Smith [1962] with the

canonical 3-period economy framework in the theoretical literature of financial con-

tagion with economic agents connected by a network of cross-holdings (e.g., Allen

and Gale [2000] and Acemoglu et al. [2015]). The 3-period economy set-up allows

an investigation of the trade-off between long-term investment and holding short-

term liquidity to cushion the effect of a shock where the network of cross-holdings

determines the risk a trader is exposed to. The double auction institution allows us

to inspect the process of price formation in the laboratory and observe anomalous

market behaviors such as market freezes and fire sales. Thus, we can deepen our

understanding of the decomposition between spillover effects purely driven by the

mechanical network propagation process and those further amplified by fire sales of

assets and resulting price collapses.

Specifically, each individual is endowed with one unit of a long-term asset, a

1See, for instance, Haldane [2009], Sorkin [2010], Plosser [2009], Tucker et al. [2009], and Yellen
[2013].

2For a recent survey of the literature on financial contagion in networks, see Cabrales et al. [2016].
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per-unit value of the asset, and a network of cross-holdings of short-term debts with

the other participants. As Figure 1 shows, we consider treatments with both circle

networks, which are the standard benchmark in the theoretical literature, as well

as core-periphery networks with some highly connected individuals in the core and

some poorly connected ones in the periphery, which are a stylized representation of

real financial networks3. Before trading, one and only one participant is hit by a

shock of small, medium or large size. Motivated by Caballero and Simsek [2013], we

consider treatments with complete and incomplete information about the recipient

of the shock, where in the latter one the recipient is the only participant who knows

who was hit by the shock. In the first period, individuals can trade their assets using

a continuous double auction institution. The assets yield a return only in the final

period and are completely illiquid at the intermediate period, so participants have

an incentive to sell to raise liquidity in case they are (directly or possibly indirectly)

affected by the shock. After trading ends, in the intermediate period all short-term

debts have to be repaid and individuals who are unable to do so go bankrupt and

lose any assets in their possession. In the final period, participants who did not go

bankrupt earn the return from any assets that they hold.

Our main results are that network structure has a substantial impact on contagion

and market outcomes, whereas information has a negligible effect. The difference be-

tween the contagion rates of core-periphery and circle networks range from 19% to

46%, and these differences are generally higher than those predicted by benchmark

simulations. Additionally, in core-periphery networks contagion occurs more fre-

quently when a core, rather than a peripheral, node is hit by a shock. The contagion

rates we observe in the laboratory for core-periphery networks are also significantly

higher than those predicted by a benchmark simulation which only accounts for the

mechanical process of shock propagation, suggesting that price reactions play a role

3There is a growing list of empirical studies identifying financial markets in the real world with a
core-periphery network structure. To name a few, Li and Schürhoff [2014] for municipal bonds,
Bech and Atalay [2010] for the federal funds market, Hollifield et al. [2014] for securitization
markets, Boss et al. [2004] and Langfield et al. [2014] for interbank markets, Maggio et al. [2016]
for corporate bond markets, and Battiston et al. [2012] for the US Federal Reserve Bank loans
program.
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in exacerbating contagion. Indeed, prices tend to collapse in core-periphery net-

works up to about 40% of the prices in circle networks, which remain stable and

close to equilibrium values. This collapse is driven by widespread sales of assets and

depressed demand for buying assets in core-periphery networks, whereas the mar-

ket maintains a balanced volume of buying and selling requests in circle networks.

Finally, there is no difference in contagion rates, price levels or trading behavior

between the complete and incomplete information treatments.

The contagion rates observed in core-periphery networks are also higher than

benchmark simulations that account for the price formation process, and we find

evidence that this adverse outcome is driven by heterogeneity among participants

in the comprehension of the network-driven risk. At the end of the experiment,

we use an incentivized task to elicit subjects’ comprehension of optimal strategies

across different nodes in the network. We find that those with a higher network

comprehension score tend to be more likely to sell the asset, and hence less likely to

face the risk of going bankrupt. This association between a subject’s comprehension

and their likelihood of bankruptcy is significant in the core-periphery networks, but

not in the circle networks.

Our paper relates to several strands of the literature in economics and finance. Its

fundamental contribution is to be the first investigation of the causal link between

financial networks and systemic risk in a setting where the price is endogenously

determined through an asset market. In doing so, it brings together the large body

of work on experimental asset markets with the recent theoretical literature on con-

tagion.

A recent survey by Cabrales et al. [2016] provides a useful classification of the

theoretical literature into contagion through shock transmission and informational

contagion. Acemoglu et al. [2015] and Glasserman and Young [2015] are the two

most relevant papers to ours in the former category4. Acemoglu et al. [2015] focus

4Allen and Gale [2000] and Freixas et al. [2000] made pioneering contributions. A separate strand
of the literature analyzes a set-up where the network represents mutual ownerships of claim on
underlying projects rather than borrowing and lending relationships. Selected contributions in
this vein include Cabrales et al. [2014], Elliott et al. [2014], Elliott and Hazell [2016] and Galeotti
et al. [2016].
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their analysis on regular networks and show that the susceptibility to contagion is

non-monotonic in connectedness and shock size, while Glasserman and Young [2015]

give bounds on contagion independent of the network. In the information contagion

category, Caballero and Simsek [2013] is the most relevant paper. They use the

same framework as Acemoglu et al. [2015] and Glasserman and Young [2015], and

show that contagion and fire sales of asset are more likely to occur when players

do not know who is the recipient of a shock compared to the complete information

benchmark. Our experimental results provide strong evidence on the causal impact

of network structure on contagion by comparing circle networks and core-periphery

networks, which have not been explicitly investigated by Acemoglu et al. [2015] and

Caballero and Simsek [2013]. In contrast, we find little evidence on the impact of

information contagion as suggested by Caballero and Simsek [2013]. A potential

reason is that their theoretical model assumes agents are extremely ambiguity or

risk averse, which is a behavioral assumption that is too strong to be realistic in the

laboratory.

The only experimental paper that investigates the causal link between network

structure and systemic risk is Duffy et al. [2016]5. They test the 4-agent model by

Allen and Gale [2000], and they find that contagion occurs in both a circle and a

complete (i.e. all agents are connected) network, but it is less likely in the latter.

Our work differs from theirs in several crucial aspects. First, we introduce a trading

market for assets that permits an investigation of the link between the evolution of

market prices and the structures of network and information, whereas Duffy et al.

[2016] use a game situation of whether to withdraw subjects’ deposit or not which

abstracts away from the role of market pricing. Secondly, we consider a richer set of

networks, including core-periphery networks that are representative of real financial

networks. Third, we introduce information treatments which allow an investigation

of informational contagion in addition to contagion via the transmission of shocks

5A large empirical literature investigates how network structure correlates with systemic risk. Se-
lected contributions include Elsinger et al. [2006], Denbee et al. [2014], Battiston et al. [2012],
and Bonaldi et al. [2015], but none of them manages to identify the causal channel. One possible
exception is Iyer and Peydro [2011] who attempt to identify financial contagion due to interbank
linkages by exploiting a natural experiment caused by the failure of a large bank.
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through the network.

The comprehensive survey by Sunder [1995] gives an overview of the extensive

literature on experimental asset markets. Our paper is the first one to integrate

the standard double auction institution with a financial market where participants

are interconnected by borrowing and lending relationships. Starting with the seminal

contribution by Smith et al. [1988], a central focus of inquiry has been the emergence

of asset pricing anomalies. The so-called bubble and crash literature has exclusively

taken and modified the basic framework of Smith et al. [1988] and explored the extent

to which irrational bubbles can be formed (see Palan [2013] for a recent review). Our

market experiment differs substantially from this literature along various dimensions,

but we contribute to it by identifying network structure as a novel source of price

crashes in experimental asset markets.

Lastly, this paper also contributes to different strands of the large literature of

experimental work on networks (see Choi et al. [2016] for a recent survey). First, it

relates to papers that study the impact of network architecture on trading outcomes

with various trading institutions. A non-exhaustive list includes Charness et al. [2007]

and Gallo [2014] for bargaining, Judd and Kearns [2008] for bipartite exchange, Gale

and Kariv [2009] for simultaneous bid-ask trading, and Choi et al. [2017] for posted-

price trading. Second, a recent line of work examines how network architecture affects

behavior in incomplete information settings. Previous research includes Charness

et al. [2014] in the context of public goods, Gallo and Yan [2015] on cooperation,

and Grimm and Mengel [2014] on social learning. Our paper sheds light on how

incomplete information affects the role of network architecture in the context of

trading.

The rest of the paper is organized as follows. Section 2 presents the set-up of our

experiment and describes the experimental procedures. Section 3 formulates the main

hypotheses based on benchmark simulations and the theoretical literature. Section 4

presents the results on contagion and the factors affecting individual bankruptcy and

trading positions. Section 5 shows the evolution of prices and bidding behaviour, and

section 6 concludes. Further information is available in Online Appendices containing
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sample instructions of the experiment and further data analysis6.

2 Experimental Design and Procedures

2.1 Set-up

The financial market consists of 6 or 15 individuals each of whom is endowed with

(i) one indivisible unit of the (long-term) asset, (ii) a per-unit value of the asset, and

(iii) a relation of cross-holdings of short-term debt with the other participants. The

market lasts for three periods, t = 0, 1, 2. Prior to the opening of the market, a shock

of size s hits one and only one participant. At the initial period t = 0, individuals

take part in a continuous double auction market for trading the long-term asset.

After trading ends, at period t = 1 the computer clears all the debt claims, and any

participant who ends up with a negative cash balance goes bankrupt and loses any

units of the asset in their possession. Finally, at period t = 2 participants receive

their payoffs including the realization of the value of any asset(s) they hold.

Each participant is endowed with one unit of the long-term asset which yields a

return at period 2 that is specific to the participant. In markets with 15 participants,

the per-unit values of the asset are randomly assigned from the set of 15 evenly-spaced

values between 860 and 1140. In markets with 6 participants, they are randomly

assigned from the set of 6 evenly-spaced values between 850 and 1150. Each of these

values is assigned to one and only one participant. In our set-up the heterogeneity

of the asset return is one source of trading in the market. We assume the standard

liquidity and return trade-off in the literature (e.g., Diamond and Dybvig [1983]):

the asset is completely illiquid at period 1 and it yields a positive return at period

2. In particular, if the individual is unable to pay fully their own debt at period 1,

the individual goes bankrupt and loses all units of the asset that they hold.

Participants are also endowed with short-term debt claims on some other partic-

ipants in the market. Each claim is worth y, which is the same for all debt claims

6Online Appendices are available on the authors’ personal websites (the URLs are available on the
title page).
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in the market. We use a directed graph with N vertices to describe the relation of

cross-holdings of short-term debt among all participants. Each vertex corresponds to

an individual and a directed edge from vertex j to vertex i represents that individual

i is a creditor of individual j. That is, j owes y amount of cash via short-term debt

to i. The cross-debt claims among all participants form a financial network. We con-

sider the four network structures in Figure 1 that vary in structure and size: Circle

6 (CI6 ), Circle 15 (CI15 ), Core-Periphery 6 (CP6 ), and Core-Periphery 15 (CP15 ).

In circle networks each participant is the sole creditor of one participant and the sole

debtor of another participant. In core-periphery networks there are participants at

peripheral positions each of whom has a single creditor link to one core participant

and has a single debtor link to another core participant, and participants at core

positions who are connected with others at core positions, in addition to their links

to peripheral participants. For instance, each core position in the CP15 network

has four incoming edges, which represent a credit of y from each of them, and four

outgoing edges, representing a debit of y to each of them.

- Figure 1 here -

Prior to the opening of the market, one and only one participant is hit by a

shock of size s, which is randomly and uniformly determined. The size of the shock

can be small (s = 50), intermediate (s = 1200) or large (s = 3000 for the 6-node

networks and s = 5000 for the 15-node networks), and it is common knowledge to all

the participants and randomly determined. The recipient of the shock knows that

they are hit by the shock, and suffers a loss s that needs to be recovered by selling

their long-term asset in the market in order to prevent insolvency. We consider

two different information treatments. In the scenario of complete information, every

person in the network knows who received the shock. In contrast, in the scenario of

incomplete information each participant is unaware of who got a shock, unless they

are the recipient of a shock, and knows only that one participant is randomly hit

by a shock of size s. The two distinct structures of information, together with the

aforementioned four networks, generate 8 treatments in the experimental design.
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We use a computerized continuous double auction institution for the market of

the long-term asset. The market is open for 90 seconds during which participants

who want to buy (sell) can submit and revise their bid (ask) prices or accept an

available ask (bid) price. Participants can buy an asset by borrowing cash with zero

interest rate from an outside institution, which they have to return at period 2. Once

two participants agree to exchange one unit of the asset, they are no longer allowed

to make another trade during the rest of the market. Trading is anonymous so a

participant does not know the identity, and therefore the network position, of the

other participant involved in the trade. At any point during the market, participants

can see all available bid and ask offers, and the prices of completed trades7. At the

end of the market each participant holds zero, one or two units of the asset depending

on whether they sold the asset, made no trade or bought one asset respectively.

At period 1, after the market has closed, the computer clears all the debt claims,

taking into account the location and size of the shock and participants’ trading

outcomes, and computes the leftover cash balance for each participant8. The recipient

of the shock, who receives cash payments from their debtors and holds cash if they

sold their asset, must first use the cash amount to meet losses from the shock. Any

remaining cash amount can then be used for paying debt claims to their creditors on

a pari-passu basis. Consequently, these losses might spill over to other participants

via the financial network. If a participant ends up with negative cash balance after

the clearance of debt claims, they are declared bankrupt and loses any units of the

long-term asset that they hold9.

At period 2, participants receive the information about their payoffs. Participants

who were not bankrupt at period 1 receive the return from any units of the asset they

had at the end of trading as well as the cash leftover after debt clearing. Participants

who went bankrupt incur losses equal to their negative cash balance at the end of

period 1. In addition, participants pay back the external institution for the cash

they borrowed to purchase an asset.

7Please refer to Online Appendix 1 for screenshots of the trading interface.
8Eisenberg and Noe [2001] provide a computationally efficient algorithm that finds a unique payment
vector for clearing the financial system.

9We use the terms “bankrupt” and “insolvent” interchangeably throughout the paper.
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2.2 Procedures

The experiment was run at the experimental laboratory in the Economics depart-

ment at University College London in June 2015 and April 2016. Subjects were

recruited using the ORSEE recruitment system (Greiner [2004]) from the subject

pool of students across all disciplines at UCL and from other universities in London.

Each subject participated in only one of the experimental sessions. After subjects

read printed instructions including sample screenshots, the instructions were also

read aloud by the experimenter. Prior to the commencement of the experiment,

there was an on-screen quiz to ensure that subjects had a good understanding of

the experiment. The experiment was computerized and conducted using the exper-

imental software z-Tree developed by Fischbacher [2007]. Sample instructions are

reported in Online Appendix 1.

In each experimental session, subjects were matched into fixed groups and in-

teracted with the same subjects throughout the experiment. We ran 2 sessions

and collected the data of six groups for each of the four treatments with 6-person

networks, and ran 4 sessions with five groups for each of the four treatments with 15-

person networks. In total, 444 subjects participated in 24 sessions. Subjects earned

on average about £30 in CP6, £31 in CP15, £24 in CI6, and £21 in CI15 treat-

ments, including a £5 show-up fee. During the session, we ensured anonymity and

an effective isolation of subjects by separating their workstations using partitions.

The market experiment consists of 21 rounds of the continuous double auction

market in each of which trading lasts for 90 seconds. At the end of each market

subjects were informed of whether they went bankrupt or not and their final earnings.

The first three market rounds are practise rounds, and therefore they do not count

for payment. From the remaining 18 rounds, there are six rounds in which the group

experiences each size of shock in a random order. From each of the six rounds, one is

chosen at random for payment and subjects are paid their earnings in that round. To

ensure payments were likely to be positive despite the potential differential impact

of the large shock across treatments, subjects receive a cash injection of £20 for the

core-periphery treatments and £10 for the circle treatments. The exchange rate is

10



the same in all treatments so the relative incentives remain constant.10

At the end of the experiment, subjects answered an incentivized task to elicit

their comprehension of the trade-offs involved in buying and selling assets when a

shock hits a participant in the network. Subjects faced the same network as in

the experiment and were informed that a shock of large size hits a specific node in

the network. They were told that there is a computer player at each node who is

programmed to decide optimally whether to buy or sell one unit of the asset of fixed

value equal to 1200 at a fixed price equal to 600, knowing that the computer players

on the other nodes are deciding optimally to maximize their payoffs. Subjects made

guesses on whether the computer player on each node buys or sells the asset. Subjects

in the core-periphery network treatments make decisions both when the location hit

by the shock is a core and when it is a periphery. The fraction of correct answers gives

us a Network Comprehension Score (NCS) for each subject to measure the subject’s

level of comprehension of the network-driven risk. Following this comprehension

elicitation, subjects took a risk and loss aversion elicitation, which is a modified

version of Holt and Laury [2002] (HL).

3 Benchmarks and hypotheses

To put the experimental design in perspective and derive testable hypotheses, we

discuss several benchmark cases and figure out the basic workings of our experimental

markets. Notice that in the case when there is no shock, the clearance of short-term

debt claims is independent of the functioning of the long-term asset market because

the flows of debts among market participants match perfectly with no extra cash in

the clearance process. Hence, there should be no spillover effect of the network of

short-term debt claims on the long-term asset market.

We consider several benchmarks in the presence of a shock and conduct a simu-

lation exercise for each benchmark using the market conditions in the experimental

data. Benchmark cases are chosen to explore the impacts of network architecture on

10Subjects’ earnings during the experiment were calculated in terms of experimental tokens and
then exchanged at the end into pounds at the following rate: 600 tokens = £1.
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system-wide contagion with and without its effect on prices. We focus on the spillover

of a shock through bankruptcy and report the rate of contagion in each simulation.

Contagion with x% threshold is said to occur when at least x% of market partic-

ipants go bankrupt. In the simulation exercise and subsequent data analysis, we

report contagion rates with 60%, 80%, and 100% thresholds.

Benchmark I simulates the case where the price of the long-term asset is fixed at

the competitive equilibrium level as if there is no shock and the market participants

trade according to the realized values of assets. The objective is to examine the

role of network architecture on the market-wide spread of bankruptcy without any

endogenous response of prices. In this benchmark participants sell their assets if

their asset value is lower than the competitive equilibrium price, and buy one unit of

the asset from the market if it is higher than the equilibrium price. The competitive

equilibrium price without a shock is 1, 000 in the 15-person networks and lies in the

[970, 1030] interval in the 6-person networks.

The next two benchmarks explore the effects of network structure on contagion

by incorporating its influence on price formation. In Benchmark II the competi-

tive equilibrium price is determined assuming that the shocked participant always

sells their asset and the other participants decide their trading positions according

to whether their asset values are lower or higher than the equilibrium price. The

assumption that the shocked participant sells their asset makes the supply and the

demand curves shift to the left, and therefore the equilibrium price depends on the

asset value of the shocked participant. The equilibrium price for the 6-person net-

works is given by a price interval, whereas it is unique for the 15-person networks.

In Benchmark III the equilibrium price is determined assuming that the shocked

participant as well as the neighbors of the shocked participant always sell their assets,

while the remaining participants decide their trading positions according to whether

their asset values are lower or higher than the equilibrium price. Compared to

Benchmark II, this assumption makes the supply and the demand curves shift further

to the left, and therefore equilibrium price depends on the asset values of the shocked

participant and the neighbors. Again, the equilibrium price for the 6-person networks

is given by a price interval, whereas it is unique for the 15-person networks.
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Table 1 reports the simulated likelihood of contagion with different thresholds for

the aforementioned three benchmarks using the experimental data11. In the 6-person

networks, where competitive equilibrium prices are given by an interval, we report

the frequencies of contagion for the lower bound and the upper bound of those prices.

- Table 1 here -

The simulations show the critical role of network structure on market-wide con-

tagion. First of all, given the size of the network, we observe higher incidences of

contagion in core-periphery networks than in circle networks for all the three bench-

marks. For instance, focusing on the 60% threshold, the structure of the network

has a clear impact on contagion in the 15-person networks. The CI15 network yields

no incidence of contagion in any of the benchmarks, whereas the CP15 network

predicts strictly positive chances of contagion in all benchmarks: the rates of 60%

contagion are 9% in Benchmark I, 18% in Benchmark II, and 21% in Benchmark III.

A similar effect of network structure is present for the 6-person networks, although

the magnitude of the effect is smaller.

In addition to the substantial effects of network structure, the simulations also

suggest that the responsiveness of prices and trading behavior to a shock can ag-

gravate the spread of contagion in the market, and this effect is more prominent in

the core-periphery networks than in the circle networks. For instance, 60%-threshold

contagion rates in the CP15 network are at least two times higher in Benchmark II

and III, where prices and trading decisions are endogenous to exposure to a shock,

than in Benchmark I, where prices and trading decisions are independent of the

shock. An analogous pattern is present in the CP6 network. In contrast, there is no

variation across benchmarks in the CI15 network. In the CI6 network, we observe

no variation of contagion with 100% threshold across benchmarks because there is

no system-wide contagion. With either the 80% or 60% threshold, contagion rates

tend to be slightly higher in Benchmark II and III than in Benchmark I 12.

11We pool the experimental data of the complete and incomplete information treatments to conduct
the simulation. There is basically no change in the results when we only use the data of either of
the two information treatments.

12There are countervailing forces on contagion when contrasting between Benchmark I and the
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In line with these findings, the response of human subjects to a shock in a given

network structure is ultimately an empirical question. We conjecture that subjects

take a more cautionary action in the core-periphery networks than in the circle net-

works, which may result in the collapse of long-term asset prices. These observations

lead us to the following hypothesis on contagion and prices.

Hypothesis 1. Holding constant network size and information structure, the likeli-

hood of contagion is higher in a core-periphery network than in a circle network.

Hypothesis 2. Holding constant network size and information structure, the price

of the long-term asset falls more in a core-periphery network than in a circle

network.

In addition, the experiment tests the effect of information structure on contagion

and prices with treatments that differ depending on whether subjects have com-

plete or incomplete information on the location of the shock. Caballero and Simsek

[2013] motivate our experimental investigation of this information hypothesis by con-

structing a model where counterparty risk originated by network uncertainty on the

location of a shock compels traders to take excessively precautionary actions and

cause a market freeze. While offering novel insights on market freeze and contagion,

their model is based on the strong behavioral assumption that market traders are

extremely ambiguity/risk averse. Given the common findings in the empirical litera-

ture that people, on average, tend to be moderately ambiguity/risk averse and hold

heterogeneous preferences, it is an empirical question whether the channel of market

freeze and contagion identified by Caballero and Simsek [2013] is salient. We have

the following two information hypotheses on contagion and prices.

Hypothesis 3. Holding constant network structure and size, the likelihood of conta-

gion is higher under incomplete information than under complete information.

other two benchmarks. On the one hand, in Benchmark III more traders are forced to sell their
assets to raise liquidity against bankruptcy compared to Benchmark I. On the other hand, these
forced sales shift market supply and demand curves lowering equilibrium prices, which can reduce
the buffer against bankruptcy. Hence, contagion rates are not necessarily higher in Benchmark
III than in Benchmark I in 6-person networks.
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Hypothesis 4. Holding constant network structure and size, the price of the long-

term asset falls more under incomplete information than under complete infor-

mation.

4 Contagion and bankruptcy

In section 4.1 we begin the analysis of the experimental data by presenting network

and information treatment effects on contagion at the market level to test the afore-

mentioned hypotheses. Section 4.2 analyzes their effects on bankruptcy and trading

decisions at the individual subject level.

4.1 Financial contagion

Our first objective is to understand how network structure and information on shock

location determine system-wide contagion. Recall from Section 3 that contagion with

x% threshold is said to occur if at least x% of market participants go bankrupt. We

present results on contagion with 60% threshold, while those with different thresholds

are relegated to Online Appendix II 13. Figure 2 shows frequencies of occurrence of

contagion across network and information treatments. We complements the graphical

comparisons of Figure 2 with formal statistical tests for network effects and infor-

mation effects in Table 2. We use the Mann-Whitney (M-W) test for the equality

of average frequencies of contagion between two treatments to compare treatments

with data aggregated at the session level.

- Figure 2 and Table 2 here -

Firstly, the data shows the prevalence of contagion in the laboratory. In the

complete information treatments, contagion occurs in 58% of market rounds in CP6,

39% in CI6, 43% in CP15, and 4% in CI15. Likewise, in the incomplete information

13This means that at least 3 out of 6 subjects go bankrupt in the 6-node networks, and at least
10 out of 15 go bankrupt in the 15-node networks. Online Appendix II shows that the results in
this section remain overall robust to different thresholds, although the 100% threshold yields less
variations across treatments and thus less significant results.
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treatments it occurs in 60% of market rounds in CP6, 33% in CI6, 50% in CP15,

and 4% in CI15. Secondly, there are strong effects of network structure: contagion is

substantially more likely to occur in core-periphery than in circle networks. The dif-

ferences between the contagion frequencies of core-periphery and circle networks are

19% (complete information) and 27% (incomplete information) in 6-person networks,

and 39% (complete information) and 46% (incomplete information) in 15-person net-

works. The M-W test results of Table 2 show that these differences are all highly

significant (p-values are less than 0.01 in all the comparisons except for that between

CP6 and CI6 under complete information where the p-value is 0.028)14. In addition

to the network structure effects, we observe that network size also matters: the dif-

ference between the contagion rates of core-periphery and circle networks are about

twice as large in 15-person networks than in 6-person networks. Thirdly, there is a

negligible effect of information on shock location on contagion. It is evident in Figure

2 that there is little difference between the contagion rates of the two information

treatments for any given network, and the statistical analysis in Table 2 confirms

this.

Our findings on contagion raise the question of whether they are solely driven

by mechanical differences in clearing short-term debt claims between the network

structures we consider. We first note that contagion is much more prevalent in

the experimental data than in the simulated data of Benchmark I in Table 1. The

simulated frequencies of contagion in Benchmark I are between 15% (upper bound)

and 32% (lower bound) in CP6, between 5% and 22% in CI6, 9% in CP15, and

0% in CI15. A one-sided t-test on the equality of means using paired session-level

data confirms that contagion is significantly more prevalent in the experimental data

than in Benchmark I for both core-periphery (p < 0.01 in all treatments) and circle

(p < 0.05 in all treatments) networks. This shows that contagion in the experimental

asset market occurs beyond the scale of networks serving as a purely mechanical

14The network effects remain similar using different thresholds of contagion. Specifically, contagion
occurs significantly more frequently in core-periphery than in circle networks using the 80%
thresholds in all conditions except under full information in the 6-person networks. Similarly,
contagion is more frequent in core-periphery networks using the 100% thresholds, but it is only
significant for the 15-person networks.
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shock propagation as captured in the Benchmark I simulations that maintain the

asset price exogenously fixed.

Contagion rates observed in the laboratory are also significantly higher (t-test,

p < 0.05) than in the simulations for 15-person networks in Benchmark II and III,

which account for endogenous price effects. In 6-person networks contagion rates in

the experiment are significantly higher (p < 0.05) than all equilibria in the simula-

tions for both benchmarks with the exception of the CI6 network under complete

information in Benchmark II and the CP6 network treatments in Benchmark III.

The effect of network structure on contagion in 15-person networks is also stronger

in the laboratory than the simulation exercise predicts. Observed differences between

the contagion rates of CP15 and CI15 are 39% (complete information) and 46% (in-

complete information). These differences are predicted to be only 9% in Benchmark

I, 18% in Benchmark II, and 21% in Benchmark III. A similar feature emerges for

6-person networks despite the multiplicity of equilibria, although the magnitudes of

the effects are smaller. Observed differences between the contagion rates of CP6

and CI6 are 27% (complete information) and 19% (incomplete information). The

simulated differences for 6-person networks with the upper bound of equilibria are

11%, 13%, and 14% in Benchmarks I, II, and III respectively. Those with lower

bound are 11%, 13%, and 49% across the three benchmarks. Overall, comparing the

experimental rates of contagion with the simulated contagion rates from the bench-

marks suggests that systemic risk in financial systems shapes traders’ behavior and

affects the formation of asset prices differently across networks, which in turn amplify

financial distress beyond the scale of mechanical shock propagation.

In core-periphery networks, a potential factor in determining the extent of con-

tagion is whether the shock hits a core or a periphery node. A priori, it is not clear

which location is more susceptible to contagion. On the one hand, the financial

distress of a shock directly spreads to more participants when the shock hits a core

node. On the other hand, the amount of unpaid debts is equally divided among the

creditors and therefore the financial distress is diluted among the neighbors. Notice

that a periphery node has the same number of links in both CP6 and CP15 net-

works, but a core node has more links in the CP15 than in the CP6 network, and
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therefore any difference in contagion dependent on location should be amplified in

CP15 compared to CP6.

Figure 3 shows the frequency of contagion with 60% threshold depending on the

location of the shock for each core-periphery network and information treatment. In

the CP15 network, contagion is significantly more likely (M-W, p < 0.05) when a

core node is hit by the shock than when a periphery node is hit for both information

treatments. The same holds for the CP6 network, but the difference is only signifi-

cant for the incomplete information treatment (M-W, p < 0.05). A potential reason

for this difference is that it is more difficult for subjects to understand the ramifi-

cations of the shock when a core node gets hit by a shock because it has a higher

number of connections than a peripheral node, and, consequently, longer chains of

spillovers to keep track of. The Network Comprehension Score (NCS) supports this

hypothesis: subjects have a higher NCS when the shock hits a peripheral node than

when it hits a core node (M-W, p = 0.002).

- Figure 3 here -

The analysis conducted so far has aggregated the data at the session level, and

thus does not address the question of how contagion rates vary depending on the size

of the shock. Figure 4 and Table 3 present the same information as Figure 2 and

Table 2 disaggregated by shock size at the session level. As expected, Figure 4 shows

that there is a monotonic relation between contagion and shock size: the larger the

shock the more frequent the occurrence of system-wide contagion.

- Figure 4 and Table 3 here -

The disaggregated data shows that the finding that contagion is more frequent

in core-periphery than in circle networks is driven by the rounds when a large or

intermediate shock hits the system. As Table 3 shows, contagion with 60% threshold

is significantly higher (M-W, p < 0.05) in core-periphery than in circle networks for

both intermediate and large shocks, with the exception of the comparison between

CP6 and CI6 under complete information where the difference is only qualitative.

18



There is no statistically significant difference when a small shock hits the system, as

we would expect given that the participant hit by the shock can cushion it by selling

their asset. Lastly, even with the data disaggregated by the size of a shock, we find

no evidence that information on shock location plays a role in financial contagion.

We summarize the findings on contagion in our experiment as follows.

Result 1 (Contagion). (i) Contagion rates in the laboratory are higher than those

predicted by the purely mechanical process of shock propagation through net-

works. (ii) Core-periphery networks lead to a higher likelihood of contagion

than circle networks. (iii) In core-periphery networks, contagion occurs more

frequently when a core node is hit by a shock. (iv) There are negligible impacts

of information on shock location on contagion.

4.2 Bankruptcy and trading

In this section we delve deeper into the data by investigating how the bankruptcy

rates of market participants depend on their position in the network structure, envi-

ronmental, and behavioral factors. Starting from the role of position in the network,

Table 4-A shows the observed frequencies of bankruptcy across treatments over dis-

tance from the shock. As a comparison, Table 4-B displays the same information for

the benchmark simulations. Notice that we present the range of predicted bankruptcy

rates in 6-person networks because of the multiplicity of competitive equilibria.

- Table 4-A and 4-B here -

Firstly, the insolvency rates of shock recipients in the experimental data are quite

high. The participants directly hit by a shock in the experiment became insolvent in

around 72% – 87% of the markets across treatments. The rates for some treatments

are close to those predicted by Benchmark I, in which shock recipients ignore a

shock and make trading decisions solely on the basis of asset value. The rates in

all the treatments are overall higher than those simulated by Benchmark II and III,

which assume, respectively, that the shock recipient and the shock recipient plus the
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neighbors sell their asset in order to raise liquidity to cushion the shock. Secondly, as

expected, the bankruptcy rates in the data decrease in distance from the shock in each

of the treatments. Compared to the simulated rates, they tend to stay persistently

higher than those predicted by the three benchmarks on positions distant from the

shock. This is consistent with the finding in Section 4.1 that contagion rates in the

experimental data are higher than in the benchmark simulations.

Tables 5 and 6 show the results of a generalized linear random effects regression

analysis to understand how environmental and behavioral factors correlate with,

respectively, individual bankruptcy and trading behavior, i.e. buy or sell decisions.

Environmental factors include the size of a shock, distance from the shock, and

heterogeneity in asset value, as well as interaction terms between some of them and

the network and information treatments. Behavioral factors contain the measures of

risk preferences in the gain and loss domains and the Network Comprehension Score

(NCS). Each table presents the regression analyses with all the data and with the

subset of data for the circle or core-periphery networks only. Standard errors are

clustered by individual subject.

- Table 5 and Table 6 here -

First, the size of the shock is positively related to bankruptcy rates, but it does

not affect the likelihood of trading decisions. Bankruptcy rates when an intermediate

or large shock occurs are 32% and 46% higher than when a small shock hits the

system. These differences increase to 43% and 59% if we only consider core-periphery

networks. On the other hand, there is little variation in the frequency of trading

depending on shock size. For instance, the frequencies of buying an asset are 37%,

36% and 36% when a small, intermediate and large shock occur respectively.

Second, distance from the shock is inversely related to the likelihood of bankruptcy,

and it also affects trading behavior. The farther away an individual participant is

from a shock, the less likely they are to sell the long-term asset and the more likely

they are to buy the asset. This endogenous response of subjects’ behavior makes the

bankruptcy rate fall by about 10% in each increase of distance from the shock, which
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is a less drastic decrease than we find in the purely mechanical process of shock prop-

agation in the Benchmark I simulation. Network structure has an overall negligible

impact on the relation between distance from the shock and bankruptcy and trad-

ing decisions. Information structure has significant but minor effects on the relation

between distance from the shock and bankruptcy and trading activities: bankruptcy

drops by 1% in the incomplete information treatments of the circle networks, and buy

activities drop and sell activities go up by 2% in the incomplete information treat-

ments. These information effects become stronger in the core-periphery networks.

Nevertheless, these information effects do not appear to affect system-wide conta-

gion as shown in Section 4.1. Finally, shock location in the core-periphery networks

matters for bankruptcy and sell activities: when the shock recipient is located in a

peripheral position, bankruptcy decreases overall by 5% and sell activities increase

by 6%. There is little effect of shock location on buy activities.

Third, the higher the value of the long-term asset participants are endowed with,

the less likely they are to sell it, the more likely they are to buy another unit of the

asset, and, consequently, the more likely they are to go bankrupt. The association

between asset value and buy or sell behavior is weaker in the core-periphery than

in the circle networks, as the magnitude of the coefficient is reduced by half. The

association between asset value and trading behavior is a causal determinant of the

risk of bankruptcy in the experiment. Holding other factors constant, participants

who are endowed with a higher asset value are less likely to sell their asset and hold

cash as a liquidity cushion, which in turn increases the likelihood of insolvency, and

this channel is more substantial in core-periphery networks. Finally, information

structure has no impact on the relation between asset value and trading behavior as

well as the likelihood of bankruptcy.

Lastly, participants’ capabilities of comprehending the trade-offs involved in their

decision, as captured by the Network Comprehension Score (NCS ), has an explana-

tory power on sell decisions and the likelihood of bankruptcy in the core-periphery

networks. One standard deviation increase in the NCS increases the chance of sell-

ing the long-term asset by around 4% and decreases the likelihood of bankruptcy by
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about 2%.15 The complexity of the network structure appears to be a crucial fac-

tor in determining differences in understanding among participants because in circle

networks, which are less complex, there is a negligible association between the NCS

and trading behavior and/or bankruptcy. In other words, subjects who are better

able to grasp how the complexity of the networks affects the trade-offs involved in

the decision to buy or sell are more likely to decide to sell the long-term asset to

cushion themselves from a spillover of the shock and hence less likely to face the risk

of going bankrupt. Risk preferences in both gain and loss domains have a negligible

association with trading behavior and/or bankruptcy.

We summarize our findings on bankruptcy and trading behavior in our experiment

as follows.

Result 2 (Bankruptcy and trading). (i) Bankruptcy rates and the tendency to

sell the asset both decrease in the distance from the shock. (ii) Bankruptcy rates

are high in the vicinity of the shock and higher in positions distant from the

shock than those predicted by the benchmarks. (iii) The tendency to sell (buy)

the asset decreases (increases) in the value of the asset. (iv) Subjects with a

higher level of comprehension of the network-driven risk are more likely to sell

the asset and hence less likely to face the risk of going bankrupt.

5 Prices and bidding behavior

The double auction mechanism enables us to look closely into the formation of market

prices across treatments to enhance our understanding of how network structure

plays a substantial role in contagion. Tables 7-A and 7-B show the mean, standard

deviations and percentile values for market prices for all treatments for, respectively,

the data of all markets and the second half of each shock, i.e. the last three instances

of each shock.

- Table 7-A and 7-B here -

15The standard deviation of NCS in the core-periphery network treatments is 15.24.
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The descriptive data of market prices reveal a couple of noteworthy patterns.

First, the mean prices in the core-periphery networks appear substantially lower

than those of the circle networks. Focusing on Table 7-B, the differences between

the two 15-person networks are 302 in the complete information treatment and 399

in the incomplete information treatment. These differences become smaller in the 6-

person networks: 146 and 135 in the complete and incomplete information treatments

respectively. These differences are largely driven by prices in the core-periphery net-

works collapsing to very low values from time to time. For instance, the bottom

5th percentile of prices hover between 200 and 275 in the core-periphery networks,

whereas they are between 600 and 800 in the circle networks. Secondly, the informa-

tion structure on the location of the shock plays a negligible role in price formation.

Figure 5 disaggregates the data further by showing the evolution of prices in cu-

mulative seconds for each group from the first to the sixth market for a given shock

size for the 15-person networks.16 Similarly to the aggregated data, we observe a

visible impact of network structure, but no discernible effect of information. More

concretely, in Figures 5-B and 5-C for the intermediate and large shock sizes respec-

tively, market prices in the core-periphery networks fall drastically after the first two

or three markets in most of the groups. Given the complexity of debt settlement in

the core-periphery networks, subjects learn the risk of a spillover and resort to ‘flight-

to-quality’ trading which leads to a collapse in prices that amplifies the magnitude

of market contagion beyond the role of the mechanical process of shock propagation.

In contrast, market prices remain overall constant throughout the six markets in the

circle networks. Prices tend to be slightly below the equilibrium value in Benchmark

I, which seems to reflect the minor risk of a spillover from a shock.

- Figure 5-A, 5-B, and 5-C here -

The formal statistical analysis in Table 8 confirms that network structure has a

significant impact on prices, whereas the effect of information is negligible. Table

8 reports the p-values for the M-W test for the equality of the samples of prices

comparing each pair of network treatments after aggregating at the group level the

16See Online Appendix II for the equivalent plots for the 6-person networks.
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data for the second half of the market data for each shock17. In the 15-person

networks, prices are significantly lower in CP15 than in CI15 for all shock sizes

(p < 0.03 for all comparisons). In the 6-person networks, prices are qualitatively

lower in CP6 compared to CI6, and the difference is marginally significant for the

complete information case (p < 0.05 for the intermediate shock, p < 0.1 for the large

shock and all shocks combined).

- Table 8 here -

The continuous double auction set-up in the experiment allows the collection

of information about bid and ask activities beyond the actual trading price. This

permits the exploration of whether traders engage in panic selling to raise cash when

they anticipate a liquidity crisis due to the spillover from a shock. In order to

investigate this we look at the bid-ask volume ratio in the market, which we define

as the number of distinct price contracts submitted to buy an asset (bid) over the

number of distinct price contracts submitted to sell an asset (ask). If this ratio is

equal to one then both buy and sell sides of the market submit an exactly equal

number of contracts and thus put equal pressure on price formation. If it is below

1 then the sell side of the market submits more contracts than the buy side of the

market, which is an indication of panic selling that may trigger a collapse of market

prices.

Figure 6 displays the bid-ask volume ratios for the second half of the market data

for each shock divided by network and information treatments.18 We first note that

the ratio decreases in shock size independently of treatment: it is close to 1 for the

small shock, but it decreases substantially below 1 for both the intermediate and

large shock cases. It suggests that the medium/large shock put more pressure on

participants to sell in anticipation of a liquidity crisis. Secondly, the bid-ask volume

ratios in core-periphery networks are lower than for circle networks, especially in the

15-person networks. For instance, in the medium shock case, the volume ratios are

17The M-W test results for the impact of the information treatment on prices are all insignificant.
They are available from the authors upon request.

18Online Appendix II shows the equivalent figure for all the data, which displays the same qualitative
features described in the text.
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0.37 (CP15 ) versus 1.09 (CI15 ) and 0.32 (CP15 ) versus 0.80 (CI15 ) in the complete

and incomplete information treatments respectively. The effect of network structure

appears moderate in the 6-person networks. Lastly, there is a negligible effect of the

information treatment.

- Figure 6 here -

A formal statistical analysis confirms that network structure has a significant

impact on the bid-ask volume ratios, whereas the effect of information is negligible.

Table 9 reports the p-values for the M-W test for the equality of the samples of the

bid-ask volume ratios comparing each pair of network treatments after aggregating at

the group level for the second half of the market data for each shock19. In agreement

with the qualitative picture from Figure 6, the bid-ask volume ratio is significantly

lower in the CP15 than in the CI15 networks (p < 0.03) and the significance of

the effect is higher the larger the size of the shock. In the 6-person networks, the

difference is smaller and only significant if we limit the data to markets in which

a large shock occurs (p < 0.05). Overall, the evidence from the bid and ask data

suggests that the collapse in prices in the core-periphery networks shown in Figure

5 are driven by fire-sales of assets in which most market participants are trying to

sell their asset to raise liquidity, but they are only able to complete the trades at low

prices because very few participants are willing to buy.

- Table 9 here -

We summarize our findings on prices and bidding behaviour in our experiment

as follows.

Result 3 (Prices and bidding). (i) Prices tend to collapse in core-periphery net-

works due to widespread sales of assets and depressed demand for buying assets,

in particular in the medium and large shock cases; (ii) In the circle networks

prices remain high in all shock regimes and the market maintains a balanced

volume of bid and ask requests; (iii) There are negligible impacts of information

on shock location on prices and bidding behavior.
19Online Appendix II shows the same analysis for all the data, the results are unchanged.
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6 Conclusion

This paper reports the results of the first experimental investigation of how the struc-

ture of financial linkages and market participants’ uncertainty about the location of

a shock causally determine financial contagion in a context where prices are endoge-

nously determined through a trading process. The main results are that the network

structure of linkages is an important determinant of contagion and adverse market

outcomes, but uncertainty about the location of the shock has negligible effects. In

particular, core-periphery networks exhibit a higher frequency of contagion than the

benchmark simulations. The high contagion rates are driven by collapses in prices

generated by fire sales of assets as market participants are trying to raise liquidity.

In addition, participants who are better at understanding how the complex core-

periphery network structure relates to the optimality of decisions tend to sell more

frequently and therefore go bankrupt less often. In contrast, financial contagion is

minimal in circle networks and trading happens at stable prices with a balanced

number of bids and asks even in the presence of large shocks.

There are several avenues for future work to both extend and check the robust-

ness of these results. First, one can extend the experiment by testing other network

structures: a careful and systematic variation of the network would help to identify

the specific features of network structure that lead to contagion. Second, the litera-

ture on experimental asset markets has investigated a large number of variations of

the basic continuous double auction design and one can test the robustness of the

findings in this paper in richer trading environments that allow for, e.g., multi-unit

trading and arbitrage. Finally, financial networks in the real economy are not ex-

ogenously imposed but actively chosen by market participants so a future avenue of

investigation is to extend our set-up to allow for endogenous network formation.
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Figure 1. Financial Networks



Figure 2. Frequencies of  contagion: 60% threshold within a market

Figure 3. Frequencies of contagion in core-periphery networks
over the location of a shock: 60% threshold
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Figure 4. Frequencies of  contagion over shocks: 60% threshold within a market



Figure 5. Dynamics of prices within and across markets over groups in 15-person networks
A. Shock = 50

Notes. (i) Each market lasts for 90 seconds. The cumulative time computes the seconds accumulated over markets. (ii) A pair of color and shape denotes one fixed
group of subjects who repeated 6 markets in a session. We omit the first market which is the practice round.
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B. Shock = 1200

Notes. (i) Each market lasts for 90 seconds. The cumulative time computes the seconds accumulated over markets. (ii) A pair of color and shape denotes one fixed
group of subjects who repeated 6 markets in a session. We omit the first market which is the practice round.

Figure 5 continued
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C. Shock = 5000

Notes. (i) Each market lasts for 90 seconds. The cumulative time computes the seconds accumulated over markets. (ii) A pair of color and shape denotes one fixed
group of subjects who repeated 6 markets in a session. We omit the first market which is the practice round.

Figure 5 continued
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Networks CE prices 100% 80% 60% 100% 80% 60% 100% 80% 60%

lower bound 0.000 0.079 0.218 0.000 0.144 0.259 0.000 0.111 0.190

upper bound 0.000 0.000 0.046 0.000 0.065 0.176 0.000 0.083 0.157

lower bound 0.019 0.130 0.324 0.032 0.157 0.389 0.532 0.644 0.681

upper bound 0.000 0.019 0.153 0.014 0.069 0.310 0.176 0.273 0.301

Circle 15 unique 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CP 15 unique 0.000 0.006 0.089 0.000 0.017 0.178 0.000 0.100 0.211

Circle 6

CP 6

Note. x % column reports relative frequencies of contagion with x % threshold

Figure 6. Average bid-ask volume ratios over shocks: data of second-half markets for each shock

Table 1. Contagion rates in the benchmark simulations
Benchmark I Benchmark II Benchmark III
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CP 6 CP 15 Complete Incomplete

Complete CI 6 0.028 CP 6 Complete 0.622
info CI 15 0.007 CI 6 Incomplete 0.418

Incomplete CI 6 0.004 CP 15 Complete 0.525
info CI 15 0.008 CI 15 Incomplete 0.905

Network CP 6 CP 15 CP 6 CP 15 CP 6 CP 15

Complete CI 6 0.042 0.210 0.210
info CI 15 0.008 0.010 0.320

Incomplete CI 6 0.032 0.009 0.460
info CI 15 0.008 0.009 0.130

Large shock

Table 3. Nonparametric tests of contagion over shocks: 60% threshold within a market

Medium shock Small shock

Note. Each cell reports p-values of Mann-Whitney-Wilcoxon test for the equality of average frequencies of
contagion between two comparing treatments with data disaggregated by shock size at the session level.

Table 2. Nonparametric tests of contagion: 60% threshold within a market

(p -value)
A. Network effects B. Information effects

Note. Each cell reports p -values of Mann-Whitney-Wilcoxon test for the equality of average frequencies of
contagion between two comparing treatments with data aggregated at the session level.



Information Network 0 1 2 3 4 5 6 and above

0.83 0.68 0.51 0.33 0.24 0.14

(108) (108) (108) (108) (108) (108)

0.74 0.65 0.50 0.47 0.27

(108) (167) (216) (108) (49)

0.87 0.66 0.48 0.33 0.22 0.20 0.03

(90) (90) (90) (90) (90) (90) (810)

0.84 0.72 0.52 0.38 0.29

(90) (177) (418) (421) (244)

0.76 0.63 0.48 0.40 0.31 0.21

(108) (108) (108) (108) (108) (108)

0.79 0.63 0.51 0.43 0.37

(108) (164) (216) (108) (52)

0.79 0.57 0.32 0.18 0.12 0.09 0.02

(90) (90) (90) (90) (90) (90) (810)

0.72 0.67 0.46 0.36 0.23

(90) (159) (418) (427) (268)

Benchmark Network 0 1 2 3 4 5 6 and above

Circle6 0.85 [0.42, 0.71] [0.19, 0.44] [0.05, 0.22] [0, 0.08] 0.00

CP6 0.83 [0.41, 0.60] [0.22, 0.34] [0.07, 0.13] [0, 0.02]

Circle15 0.84 0.44 0.17 0.08 0.03 0.02 0.00

CP15 0.83 0.49 0.27 0.16 0.10

Circle6 0.67 [0.51, 0.56] [0.33, 0.40] [0.18, 0.26] [0.06, 0.14] 0.00

CP6 0.67 [0.46, 0.53] [0.30, 0.35] [0.14, 0.18] [0.03, 0.05]

Circle15 0.67 0.44 0.26 0.17 0.09 0.04 0.00

CP15 0.67 0.49 0.28 0.19 0.13

Circle6 0.67 [0.28, 0.33] [0.22, 0.26] [0.16, 0.19] [0.08, 0.11] 0.00

CP6 0.83 [0.31, 0.79] [0.26, 0.64] [0.27, 0.64] [0.17, 0.19]

Circle15 0.67 0.24 0.15 0.08 0.06 0.02 0.00

CP15 0.67 0.36 0.21 0.15 0.10

B. Frequencies of bankruptcy in the simulated data

I

II

III

Distance from the shock

Table 4. Frequencies of observed and simulated bankruptcy across treatments

A. Frequencies of bankruptcy in the experimental data

Distance from the shock

Incomplete

Circle6

CP6

Circle15

CP15

Complete

Circle6

CP6

Circle15

CP15

Note. The number in parenthesis is the number of observations. 



All networks Circle networks CP networks
(1) (2) (3)

Networks and shocks
shock size: medium 0.324*** 0.221*** 0.427***

(0.013) (0.017) (0.019)
shock size: large 0.463*** 0.339*** 0.588***

(0.013) (0.017) (0.018)
distance from the shock -0.109*** -0.109*** -0.108***

(0.003) (0.004) (0.006)
distance * CP networks -0.007

(0.006)
distance * Incomplete information -0.012*** -0.012*** -0.014

(0.002) (0.002) (0.010)
periphery shocked -0.048***

(0.015)
Asset value

ln (asset value) 0.224*** 0.200** 0.451***
(0.077) (0.087) (0.098)

ln (asset value) * CP networks 0.202**
(0.094)

ln(asset value) * Incomplete information 0.072 0.116 0.026
(0.094) (0.117) (0.149)

Behavioral characteristics
network comprehension test -0.057** -0.023 -0.151***

(0.024) (0.023) (0.057)
# of safe choices: gain -0.001 -0.004 0.002

(0.004) (0.004) (0.007)
# of safe choices: loss -0.001 0.002 -0.006

(0.003) (0.003) (0.006)
Constant -0.991* -0.744 -12.008***

(0.534) (0.608) (2.717)
Treatment & period dummies Yes Yes Yes
R squared 0.42 0.36 0.47
Observations 7,992 3,996 3,996
Number of subjects 444 222 222
Notes. Random-effects GLS model. Period effects are controlled by including period dummies. The
'distance' variable is truncated by 6. *,**, and *** represent significance at th 10%, 5%, 1% levels,
respectively.

Table 5. Regression analysis of individual bankruptcy



All networks Circle networks CP networks All networks Circle networks CP networks
(1) (2) (3) (1) (2) (3)

Networks and shocks
shock size: medium -0.012 -0.016 -0.010 -0.012 -0.016 -0.012

(0.013) (0.018) (0.019) (0.014) (0.019) (0.022)
shock size: large -0.019 -0.016 -0.018 -0.014 -0.016 -0.016

(0.013) (0.018) (0.020) (0.014) (0.019) (0.022)
distance from the shock -0.048*** -0.047*** -0.074*** 0.048*** 0.046*** 0.092***

(0.005) (0.006) (0.010) (0.005) (0.005) (0.011)
distance * CP networks -0.012 0.021**

(0.008) (0.008)
distance * Incomplete information 0.020*** 0.018*** 0.034*** -0.021*** -0.018*** -0.062***

(0.003) (0.003) (0.013) (0.003) (0.003) (0.014)
periphery shocked 0.061*** -0.019

(0.016) (0.017)
Asset value

ln (asset value) -1.930*** -1.919*** -0.977*** 1.869*** 1.836*** 0.991***
(0.118) (0.138) (0.123) (0.126) (0.149) (0.129)

ln (asset value) * CP networks 0.968*** -0.912***
(0.133) (0.136)

ln(asset value) * Incomplete information -0.009 -0.029 0.015 -0.054 0.006 -0.115
(0.133) (0.201) (0.173) (0.136) (0.199) (0.186)

Behavioral characteristics
network comprehension test 0.124*** 0.064 0.276*** -0.008 0.042 -0.134

(0.043) (0.052) (0.080) (0.047) (0.055) (0.089)
# of safe choices: gain 0.009 0.001 0.017 -0.008 -0.004 -0.012

(0.007) (0.009) (0.010) (0.006) (0.008) (0.010)
# of safe choices: loss 0.002 0.001 0.002 -0.008 -0.007 -0.008

(0.005) (0.007) (0.008) (0.005) (0.007) (0.009)
Constant 13.668*** 13.663*** 6.935*** -12.562*** -12.413*** -6.418***

(0.812) (0.950) (0.863) (0.863) (1.027) (0.899)
Treatment & period dummies Yes Yes Yes Yes Yes Yes
R squared 0.11 0.16 0.06 0.10 0.14 0.06
Observations 7,992 3,996 3,996 7,992 3,996 3,996
Number of subjects 444 222 222 444 222 222

Sell Buy

Notes. Random-effects GLS model. Period effects are controlled by including period dummies. The 'distance' variable is truncated by 6. *,**, and ***
represent significance at th 10%, 5%, 1% levels, respectively.

Table 6. Regression analysis of trading decisions



Circle 15 CP 15 Circle 15 CP 15 Circle 6 CP 6 Circle 6 CP 6

Mean 945.9 742.5 936.7 656.9 911.2 791.3 894 804.4

S. D. 94.4 248.1 97 254.4 242.8 252.9 113.9 266.3

95% 1010 990 1070 995 1090 1040 1050 1055.5

75% 990 945 1000 900 995 980 970 930

50% 953 830 950 700 945 850 900 850

25% 910 600 900 450 850 700 830 700

5% 800 200 750 220 600 250 611 275

517 497 505 523 233 226 238 240

Circle 15 CP 15 Circle 15 CP 15 Circle 6 CP 6 Circle 6 CP 6

Mean 948.4 646.2 941.5 542.8 904.7 758.5 882.9 747.9

S. D. 78.9 283.3 79.4 241.7 244.8 256.4 113.9 249.8

95% 1001 958 1050 950 1050 1000 1004.75 1000

75% 990 900 999 710 990 970 955.5 900

50% 960 702 950 500 918 820 899 800

25% 930 400 899 360 811 600 815 650

5% 850 100 800 200 600 300 670 150

265 251 250 269 122 111 120 118

Pe
rc

en
til

e

Observations

Table 7. Description of Prices

A. Data of all markets

B. Data of the second-half markets for each shock

Complete info Incomplete info Complete info Incomplete info

Incomplete info

Observations

Pe
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til

e

Complete info Incomplete info Complete info



Network CP 6 CP 15 CP 6 CP 15 CP 6 CP 15 CP 6 CP 15

Complete Circle 6 0.078 0.055 0.040 1.000

info Circle 15 0.028 0.028 0.016 0.030

Incomplete Circle 6 0.337 0.262 0.150 0.200

info Circle 15 0.009 0.028 0.009 0.009

Network CP 6 CP 15 CP 6 CP 15 CP 6 CP 15 CP 6 CP 15

Complete Circle 6 0.337 0.025 0.631 1.000

info Circle 15 0.028 0.047 0.076 0.465

Incomplete Circle 6 0.522 0.007 0.337 0.150

info Circle 15 0.009 0.009 0.009 0.047

Note: Each cell reports the p-value of Mann-Whitney-Wilcoxon test for the equality of two samples.

Note: Each cell reports the p-value of Mann-Whitney-Wilcoxon test for the equality of two samples at the group

Table 9. Nonparametric tests of bid-ask volume ratio: Data of the second-half markets for each shock

All shocks Large shock Medium shock Small shock

All shocks Large shock Medium shock Small shock

Table 8. Nonparametric tests of prices: Data of the second-half markets for each shock


