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Abstract

We provide the general results about the question of what effects the change of an

agent’s preferences over income and effort has on a risk-neutral principal’s incentive

cost. We argue that there are two factors affecting the principal’s incentive cost. One

is the agent’s risk aversion and the other is his incentive sensitivity. We show that the

increase in the agent’s risk aversion or the decrease in his incentive sensitivity leads to

the increase in the principal’s incentive cost. And, we show that it is possible that the

principal prefers the more risk averse agent.

1 Introduction

In the principal-agent problem, if an agent is risk-neutral, the risk-neutral principal under

full information (i.e., when she can observe the agent’s action choice) could pay to the agent

as much as the expected compensation cost under asymmetric information (i.e., when she

cannot observe it). However, if the agent is risk-averse, the expected compensation cost under
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asymmetric information is greater than that under full information. These mean that if the

agent is risk-neutral, the principal’s incentive cost (i.e., the difference of the compensation

costs between the asymmetric information case and the full information case) is zero, while it

is positive if the agent is risk-averse. From this observation, one has believed that the increase

in the agent’s degree of risk aversion may cause the increase in the principal’s incentive cost.

Grossman and Hart (1983) initially showed the relationship between the agent’s risk

aversion and the principal’s incentive cost in a somewhat restrictive agency problem.1 Es-

pecially, in the case that the agent has a multiplicatively separable CARA utility function

(i.e., U(s, a) = −e−k(s−a)), his reservation utility level is U = −e−kα, and there are only two

possible outcomes, they verified that, as the agent becomes more risk-averse (i.e., when the

degree of absolute risk aversion, k, increases), the principal’s incentive cost increases.2 Later,

Chade and Serio (2002) generalized the result of Grossman and Hart (1983) by extending

the number of outcomes to n.

However, Chade and Serio (2002) merely double check the fact that the agent’s risk

aversion and the principal’s incentive cost have a positive relationship only when his utility is

CARA. Moreover, like Grossman and Hart (1983), they did not give any logical explanation

about why the principal’s incentive cost increases as the agent becomes more risk-averse.

Thus, even the relationship between the agent’s risk aversion and the principal’s incentive

cost has not yet been proved completely.

The purpose of this paper is to provide the more general results on what effects the

change of the agent’s preferences over income and effort has on the principal’s incentive cost.

To this end, we consider the standard principal-agent model where a risk-neutral principal

1See the Proposition 17 in Grossman and Hart (1983).
2They showed that the increase of k causes the increase in the principal’s expected compensation cost

under asymmetric information. However, in their model, since the principal’s compensation cost under full

information is equal to α + a which is independent of k, what they actually showed is that as k increases,

the principal’s incentive cost increases.
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employs one of two agents with heterogeneous preferences.

We argue that two factors with respect to the agent’s preferences over income and effort

affect the principal’s incentive cost: one is his risk-aversion, and the other is his incentive

sensitivity. More precisely, the agent’s risk aversion is represented by his degree of absolute

risk aversion around his fixed wage level and his incentive sensitivity is represented by his

marginal rate of substitution between income and effort, which is equal to his marginal utility

of income divided by his marginal cost of effort in the case that the agent has an additively

separable utility function. We show not only that the agent’s incentive sensitivity negatively

affects the principal’s incentive cost, but also that the agent’s risk aversion positively affects

the principal’s incentive cost.

The positive relationship between the agent’s risk aversion and the principal’s incentive

cost shares the common intuition with the well-known Pratt’s result about the relationship

between a consumer’s risk aversion and his risk premium in the asset market. This intuition

is well revealed only when one understands the fact that the incentive cost on the principal’s

side is regarded as the risk premium on the agent’s side. Note that the risk averse agent

is compensated from the risk-neutral principal with a risk-free wage (i.e., a fixed wage)

when his action is observable, but with a risky wage (i.e., an incentive wage) when his

action is unobservable. When compensated with the risky wage, the risk-averse agent will

claim higher expected wage level than the risk-free wage level. This difference between the

expected risky wage level and the risk-free wage level is interpreted by the risk premium that

the agent demands, and thus becomes the incentive cost on the principal’s side. Thus, the

relationship between the agent’s risk aversion and the principal’s incentive cost is identical

to the relationship between his risk aversion and risk premium. As a result, as the agent

becomes more risk averse, the principal’s incentive cost increases, because he will claim the

higher risk premium.

We also argue that the agent’s incentive sensitivity and the principal’s incentive cost
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have a negative relationship. Note that the agent’s incentive sensitivity is represented by

the marginal rate of substitution between income and effort. Then, an improvement of the

agent’s incentive sensitivity means that his response to an incentive wage which was previ-

ously provided by the principal becomes more sensitive. Thus, when the agent’s incentive

sensitivity is improved, he will work harder under the given incentive wage contract. At this

time, the principal who wants to induce the same effort level can design the cheaper wage

contract for the agent, which implies that the principal’s incentive cost decreases.

In fact, Chade and Serio (2002) failed to figure out the effect of the agent’s incentive

sensitivity on the principal’s incentive cost. It comes from special characteristics of the

agent’s utility function and reservation utility that they considered in their model. We need

to notice that, in the case that the agent with reservation utility U = −e−kα has utility

function U(s, a) = −e−k(s−a), his marginal rate of substitution between income and effort

is always the one even if the value of k changes. This means that the agent’s incentive

sensitivity is independent of the value of k. Thus, their model has the limitation that the

change of k brings about the change of the agent’s risk aversion, but never changes his

incentive sensitivity. As a result, it is an example to show the relationship between the

agent’s risk aversion and the principal’s incentive cost only when his incentive sensitivity is

unchanged.

Note that, since the agent’s incentive sensitivity is represented by the ratio of his marginal

utility of income and marginal cost of effort, it is positively affected by his marginal utility,

but negatively by his marginal cost. Now, suppose that the marginal cost is unchanged.

Then, the agent’s incentive sensitivity is directly linked to the magnitude of his marginal

utility. In this case, the increase in the agent’s marginal utility implying the improvement

of his incentive sensitivity will reduce the principal’s incentive cost. This indicates that not

only the agent’s risk aversion but also the agents’ marginal utility is an important factor for

the principal.
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Our argument about the negative relationship between the agent’s marginal utility and

the principals’ incentive cost is beyond the existing common knowledge in the expected

utility theory. Note that an individual’s marginal utility itself is not important at all in

the financial decision theory.3 However, our argument that the agent’s marginal utility

negatively affects the principal’s incentive cost is natural to the principal who should give

the agent an incentive to work as hard as ever.

The similarities and differences between our results in the agency problem and the existing

Pratt’s result in the consumer problem come from the fact that the decision maker (principal)

in the agency problem has to consider one more issue than a decision maker (consumer) in

the consumer problem. In the consumer’s problem, only the issue of consumer’s market

participation is considered, whereas, in the agency problem, not only the issue of the agent’s

contract participation but also the issue of his incentive provision must be considered. Then,

the participation issue which is commonly considered in both problems makes the same result

that the increase of the degree of risk aversion causes the higher risk premium or incentive

cost. However, the incentive provision issue which is considered only in the agency problem

makes the difference that the agent’s marginal utility itself is also important in the agency

problem.

The paper is organized as follows: In Section 2, we formulate the basic principal-agent

framework. In section 3, our results on the effects of the agent’s incentive sensitivity and

his risk aversion on the principal’s incentive cost are provided and discussed. Concluding

remarks are offered in Section 4, and all the formal proofs are relegated to Appendix.

3This is the reason to be said that an individual’s utility function is unique up to any affine transformation.
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2 The basic model

We consider a one-period standard principal-agent model in which risk-averse agent i =

1, 2 works for a risk-neutral principal. In the beginning of the period, each agent inputs his

action (or effort) a ∈ A ≡ [0, a] into a stochastic production technology, and then in the end

of the period, commonly observable output x ∈ X ⊆ R is realized.

Since output x is stochastically correlated with each agent’s action a, a cumulative distri-

bution function of x conditional on a is denoted by F (x|a) and the corresponding probability

density(mass) function is denoted by f(x|a) where F (x|a) and f(x|a) are at least twice dif-

ferentiable with respect to a. We assume that density function f(x|a) satisfies the MLRP

(monotone likelihood ratio property) and its likelihood ratio fa(x|a)
f(x|a) is lower bounded.4 Also,

we assume that the support X is independent of a.5 Finally, we assume that f(x|a) satisfies

the CDFCL (Convexity of the Distribution Function Condition for the Likelihood-ratio) for

the validity of the first-order approach.6

Agent i’s utility function is given by an additively separable form: Ui(s, a) = ui(s)−ci(a).

ui(s) denotes agent i’s utility from monetary payoff s with u′i > 0 and u′′i < 0, and so he is

risk-averse. u1(s) and u2(s) are defined on the same domain (d, d) where lims↓d u
′
i(s) = ∞

and lims↑d u
′
i(s) = 0 for all i = 1, 2. ci(a) denotes agent i’s disutility from action with

4If the likelihood ratio fa(x|a)
f(x|a) may go to −∞ on the support X, the existence of the optimal contracts is

not guaranteed, which is called as the Mirrlees’ unpleasant case.
5In the agency problem, the case that the support X is dependent on a gives the trivial result that the

second best optimal contract is same with first best optimal contract, which is called as the moving support

problem. For a detailed explanation, see Gjesdal (1982).
6The first-order approach is the method of replacing the original argmax incentive compatibility constraint

with the first order condition of the agent’s expected utility function with respect to a. The most generalized

results for justifying the first-order approach when the principal is risk-neutral are Jung and Kim’s two sets

of conditions: the CDFCL, and a set of two conditions of Proposition 7 in Jung and Kim (2015). In this

paper, we assume the CDFCL for f(x|a) for a general analysis. For a detailed explanation, see Jung and

Kim (2015).
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c′i(a) > 0 and c′′i (a) ≥ 0, and so he is work-averse. U i denotes agent i’s reservation utility.

In order to eliminate trivial cases, it is assumed that ui(d) ≤ ci(0) + U i for all i = 1, 2.

Fix a > 0. As is well known, the risk-neutral principal should compensate risk-averse

agent i with fixed salary sfi ≡ u−1i (ci(a)+U i) under full information where she can observe his

effort a. On the other hand, under asymmetric information where his effort a is unobservable

to her, the principal should design other wage contract depending on x for him, which is

denoted by wi(x) + sfi . Then, in order to induce agent i to voluntarily choose a given action

a > 0 at minimum cost, the principal should solve the following cost minimization problem:

min
wi(x)

∫
wi(x)f(x|a)dx

s.t. i)

∫
ui(wi(x) + sfi )f(x|a)dx− ci(a) ≥ U i,

ii)

∫
ui(wi(x) + sfi )fa(x|a)dx ≥ c′i(a),

where the first and the second constraints are called the participation and the (doubly

relaxed) incentive compatibility constraints for agent i, respectively.

Let wai (x) be the optimal incentive contract for agent i. Then, wai (x) should satisfy

1

u′i(w
a
i (x) + sfi )

= λi + µi
fa(x|a)

f(x|a)
, (1)

for almost every x ∈ X, where λi and µi are the Lagrangian multipliers of the participation

and the incentive compatibility constraints, respectively.7 Since the signs of λi and µi are

positive by Lemma 1 in Jewitt (1988), both the participation and the incentive constraints

should be binding at the optimum.8

7For the existence of the optimal contract wa
i (x), it must be required that λi + µi

fa(x|a)
f(x|a) > 0 for almost

every x ∈ X. Moroni and Swinkels (2014) showed that some extra conditions for the agent’s utility or cost

function should be needed in order to satisfy that inequality for all x. For a detailed explanation, see Moroni

and Swinkels (2014).
8The Lemma 1 in Jewitt (1988) is actually proved in the case that the relaxed incentive compatibility con-

straint is considered. However, even in the case that the “doubly relaxed” incentive constraint is considered,

his proof works well.
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For analytic simplicity, we let ûi(s) ≡ 1
c′i(a)

[ui(s+ sfi )− ui(s
f
i )], for all i = 1, 2. Note that

ûi(s) is an affine transformation of ui(s + sfi ) which is obtained by parallel shifting ui(s) in

the direction of x-axis by −sfi .9 Note that ûi(s) goes through the origin at which û1(s) and

û2(s) always crosses. Then, we have

E[ûi(w
a
i (x))] ≡

∫
ûi(w

a
i (x))f(x|a)dx

=
1

c′i(a)

[ ∫
ui(w

a
i (x) + sfi )f(x|a)dx− ui(sfi )

]
= 0, (2)

and ∫
ûi(w

a
i (x))fa(x|a)dx =

1

c′i(a)

∫
[ui(w

a
i (x) + sfi )− ui(s

f
i )]fa(x|a)dx

=
1

c′i(a)

∫
ui(w

a
i (x) + sfi )fa(x|a)dx = 1, (3)

where the second equality holds by definition and by the fact that
∫
fa(x|a)dx = 0.

In the paper, E[wai (x)] ≡
∫
wai (x)f(x|a)dx is interpreted as the principal’s incentive cost

from agent i. Note that E[wai (x)] + sfi is the principal’s expected compensation cost in the

asymmetric information case. On the other hands, as explained earlier, sfi is the principal’s

compensation cost in the full information case. Then, E[wai (x)] is the principal’s net cost

that she should additionally pay to agent i for incentive provision at a minimum.10

For any given a > 0, E[wai (x)] ≥ 0 for any distribution f(x|a). Note that, from the

definition of ûi(s),

ûi(0) = 0, (4)

for all i = 1, 2. Then, by combining (2) and (4) we have E[ûi(w
a
i (x))] = ûi(0), to which

applying Jensen’s inequality gives ûi(E[wai (x)]) ≥ ûi(0), or E[wai (x)] ≥ 0. From this, one can

see that the incentive cost from agent i is zero (i.e., E[wai (x)] = 0) when he is risk-neutral

9We allow the case that sf1 6= sf2 .
10In fact, the incentive cost means the principal’s loss from being unable to observe his action choice,

which is used in Grossman and Hart (1983) and in Chade and Serio (2003).
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(i.e., u′′i (s) = 0), while his incentive cost is positive (i.e., E[wai (x)] > 0) when he is risk-averse

(i.e., u′′i (s) < 0). These observations have raised the question: As an agent’s degree of risk

aversion increases, will his incentive cost increase? This is one part of the main questions

of the paper. The purpose of this paper is to show what effects the change of an agent’s

preferences over income and effort has on the principal’s incentive cost.

3 An Agent’s Preferences and his Incentive Cost

The question about the relationship between an agent’s risk-aversion and the principal’s

incentive cost has been initially raised by Grossman and Hart (1983). Grossman and Hart

showed that they have a positive relationship in a somewhat restrictive model where the

agent has multiplicatively separable CARA utility, i.e., U(s, a) = −e−k(s−a), his reservation

utility is U = −e−kα, the action set A is finite, and the number of outcomes of output is

equal to two.11 Later, Chade and Serio (2002) generalized the Grossman and Hart’s (1983)

result by extending the number of outcomes to n. They showed that, as the agent becomes

more risk-averse in the sense of constant absolute risk aversion (i.e., as k increases), the

principal’s incentive cost also increases.

However, Chade and Serio (2002) gave just one example to reveal a positive relationship

between the agent’s risk aversion and the principal’s incentive cost.12 Furthermore, they did

not provide any intuitive explanation about why the increase in the agent’s degree of risk

aversion brings about the increase in the principal’s incentive cost. Thus, the question about

that relationship has still been left veiled.

We argue that there are two factors with respect to the agent’s preferences, which affects

the principal’s incentive cost: One is the agent’s risk aversion which is measured as the

11See Proposition 16 in Grossman and Hart (1983).
12Actually, they do not give any answer about that relationship when an agent has a general utility

function, not CARA.
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degree of absolute risk aversion around his fixed salary (i.e., −u′′i (s+s
f
i )

u′i(s+s
f
i )

), and the other is his

incentive sensitivity which is measured as the marginal utility of income over the marginal

disutility of effort (i.e.,
u′i(s

f
i )

c′i(a)
). Note that the agent’s incentive sensitivity means his marginal

rate of substitution between income and effort i.e., da
ds

∣∣
U i(s,a)=U i

=
u′i(s

f
i )

c′i(a)
. Thus, the agent’s

incentive sensitivity indicates how harder he will work when his wage increases by 1 unit at

sfi .

Our argument will be discussed through the three steps. The first step is to analyze

the relationship between the agent’s incentive sensitivity and the principal’s incentive cost,

keeping his degree of risk aversion fixed. Later, we will analyze the relationship between

the agent’s degree of risk aversion and the principal’s incentive cost, keeping his incentive

sensitivity fixed. Finally, the combined effect of the agent’s risk aversion and incentive

sensitivity on the principal’s incentive cost will be analyzed.

We start with the following lemma.

Lemma 1: If i) û′1(s) ≥ û′2(s) for all s and ii) E[û1(w
a
2(x))] ≥ 0, then E[wa1(x)] ≤ E[wa2(x)].

Suppose that agent i has the parallel-shifted utility function ûi(s) = 1
c′i(a)

[ui(s + sfi ) −

ui(s
f
i )]. Lemma 1 says that, if the marginal utility of agent 1 is not less than that of agent

2, then agent 1 has not greater incentive cost than agent 2, as long as the participation

constraint for agent 1 is satisfied when the optimal incentive wage for agent 2, wa2(x), is

offered to him. As seen in the proof of Lemma 1, the reason is that, since wa2(x) satisfies the

participation constraint for agent 1 by condition ii) in Lemma 1, and since wa2(x) satisfies the

doubly relaxed incentive constraint for agent 1 by condition i) in Lemma 1, wa2(x) belongs

to the principal’s opportunity set for w1(x) satisfying the participation and the incentive

constraints for agent 1. This means that the principal can design the cheaper incentive wage

contract for agent 1 than wa2(x) in order to induce the same action level a.

By using Lemma 1, we analyze the pure effect of the agent’s marginal utility on the
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principal’s incentive cost.

Proposition 1: If i)
u′1(s

f
1 )

c′1(a)
≥ u′2(s

f
2 )

c′2(a)
, and ii) −u′′1 (s+s

f
1 )

u′1(s+s
f
1 )

= −u′′2 (s+s
f
2 )

u′2(s+s
f
2 )

for all s, then E[wa1(x)] ≤

E[wa2(x)].

Note that applying the definition of ûi(s) to conditions i) and ii) in the above proposition

gives û′1(0) ≥ û′2(0) and − û′′1 (s)

û′1(s)
= − û′′2 (s)

û′2(s)
for all s, respectively. Again, suppose that agent

i has the parallel-shifted utility ûi(s). Then, this proposition shows that, if the two agents

have the same degree of absolute risk aversion, agent 1 with the greater marginal utility at

0 has the lower incentive cost than agent 2 with the less marginal utility at 0.

As shown in the proof of Proposition 1, note that, when agents 1 and 2 have the same

degree of absolute risk aversion, the parallel-shifted utility function for agent 1, û1(s), is

represented by a linear transformation of that of agent 2, û2(s), such as û1(s) = αû2(s)

where α =
û′1(0)

û′2(0)
. Then, if agent 1’s marginal utility at 0 is not less than agent 2’s marginal

utility at 0, α is not less than 1, which implies that the marginal utility of agent 1 is not

less than that of agent 2 for all s (i.e., û′1(s) ≥ û′2(s) for all s). Furthermore, when wa2(x) is

offered to agent 1, his expected utility is E[û1(w
a
2(x))] = αE[û2(w

a
2(x))] = 0, which means

that wa2(x) satisfies the participation constraint for agent 1. Thus, by using Lemma 1, we

have that the principal’s incentive cost from agent 1 is not greater than that from agent 2.

As explained earlier, term
u′i(s

f
i )

c′i(a)
in condition i) of Proposition 1 means agent i’s incentive

sensitivity. Then, condition i) in Proposition 1 indicates that agent 1 has the more sensitive

response to an incentive wage commonly provided by the principal than agent 2. Thus, what

Proposition 1 actually shows is that the agent’s incentive sensitivity has a negative effect on

the principal’s incentive cost. As seen in Proposition 1, when agents 1 and 2 have the same

degree of absolute risk aversion around their own fixed salaries (i.e., −u′′1 (s+s
f
1 )

u′1(s+s
f
1 )

= −u′′2 (s+s
f
2 )

u′2(s+s
f
2 )

for all s), if agent 1’s incentive sensitivity is not lower than agent 2’s (i.e.,
u′1(s

f
1 )

c′1(a)
≥ u′2(s

f
2 )

c′2(a)
),

then the principal’s incentive cost from agent 1 is not greater than that from agent 2.
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Therefore, when the agent’s incentive sensitivity increases with his risk aversion unchanged,

the principal’s incentive cost decreases.

The reason why the agent’s incentive sensitivity negatively affects the principal’s incentive

cost is that it is related with his response to an incentive wage which is provided around his

fixed salary sfi . Note that the optimal incentive wage for agent i, wai (x), always goes through

zero (i.e., x-axis) from the fact that E[ui(w
a
i (x) + sfi )] = ui(s

f
i ). Let us consider an arbitrary

incentive wage w(x) which is provided around 0. And, suppose that, when w(x) + sfi is

offered to agent i for all i, and when the two agents make a choice of the same action a, their

expected utility levels are equal.13 At this time, if agent 1’s incentive sensitivity is greater

than agent 2’s, agent 1 will work harder than agent 2, because agent 1 has the more sensitive

response to the given incentive wage w(x) than agent 2. Thus, the principal who wants to

induce the same action a can design the cheaper incentive wage contract for agent 1 than

that for agent 2. As a result, since an agent’s incentive sensitivity indicates his response to

an incentive wage provided around his fixed salary, it has a negative effect on the principal’s

incentive cost.

Now, we analyze the pure effect of the agent’s risk aversion on the principal’s incentive

cost. It is possible by keeping his incentive sensitivity fixed.

Proposition 2: If i)
u′1(s

f
1 )

c′1(a)
=

u′2(s
f
2 )

c′2(a)
, and ii) −u′′1 (s+s

f
1 )

u′1(s+s
f
1 )
≤ −u′′2 (s+s

f
2 )

u′2(s+s
f
2 )

for all s, then E[wa1(x)] ≤

E[wa2(x)].

The above proposition shows a positive relationship between the agent’s risk aversion

and the principal’s incentive cost. When we consider agent i with parallel-shifted utility

ûi(s), Proposition 2 says that, if agent 2 is more risk-averse than agent 1 under the degree

of absolute risk aversion (i.e., − û′′1 (s)

û′1(s)
≤ − û′′2 (s)

û′2(s)
for all s), then the principal’s incentive cost

13As seen in the proof of Proposition 1, an example of such an incentive wage is the optimal incentive

wage for agent 2, wa
2(x).
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from agent 2 is higher than that of agent 1, as long as their marginal utilities at 0 are equal

(i.e., û′1(0) = û′2(0)). Thus, this proposition shows that the more risk averse agent causes

the higher incentive cost only when his incentive sensitivity is kept unchanged.

In order to understand the result of Proposition 2 more precisely, let us consider the

two-outcome case where x ∈ {x1, x2}. Let pj = f(xj|a) and qj =
fa(xj |a)
f(xj |a) for all j = 1, 2.

Note that
∑

j f(xj|a) = p1 + p2 = 1 and
∑

j fa(xj|a) = q1p1 + q2p2 = 0. And, note

that q1 < 0 < q2 by the MLRP for f(x|a). For agent i = 1, 2, since the participation

and incentive constraints are binding at the optimum, equations (2) and (3) are equal to

ûi(w
a
i (x1))p1 + ûi(w

a
i (x2))p2 = 0 and ûi(w

a
i (x1))q1p1 + ûi(w

a
i (x2))q2p2 = 1, respectively. By

solving those two equations, we have ûi(w
a
i (x1)) = − 1

q2
and ûi(w

a
i (x2)) = − 1

q1
, from which

one can see that û1(w
a
1(xj)) = û2(w

a
2(xj)) for all j = 1, 2. Note that, as shown in the

proof of Proposition 2, the two conditions that û′1(0) = û′2(0) and that − û′′1 (s)

û′1(s)
≤ − û′′2 (s)

û′2(s)

for all s imply that û1(s) ≥ û2(s) for all s. This inequality, combined with the fact that

û1(w
a
1(xj)) = û2(w

a
2(xj)) for all j = 1, 2, makes û1(w

a
2(xj)) ≥ û2(w

a
2(xj)) = û1(w

a
1(xj)) for

all j, from which we have wa1(xj) ≤ wa2(xj) for all j. Therefore, one can easily see that

E[wa1(x)] ≤ E[wa2(x)].

The Pratt’s intuition in asset market that the more risk averse consumer claims the

higher risk premium helps us to understand the result of Proposition 2 intuitively. Note that

agent i is compensated with “risk-free” wage sfi in the full information case where there is

no need for incentive provision, whereas he is compensated with “risky” wage wai (x) + sfi

in the asymmetric information case where there exists the moral hazard problem. However,

note that the principal should guarantee to him the same utility level in both cases (i.e.,

E[ui(w
a
i (x) + sfi )] = ui(s

f
i )) in order to make him participate. At this time, when risk-averse

agent i is compensated with risky wage wai (x)+sfi , he will demand the risk premium as much

as E[wai (x)]. This risk premium becomes the incentive cost on the principal’s side. Thus,

the more risk averse the agent is, the higher is the principal’s incentive cost. However, it is

13



worth noticing that this intuition holds only when the agent’s incentive sensitivity is fixed.

By combining Propositions 1 and 2, we obtain the following proposition.

Proposition 3: If i)
u′1(s

f
1 )

c′1(a)
≥ u′2(s

f
2 )

c′2(a)
, and ii) −u′′1 (s+s

f
1 )

u′1(s+s
f
2 )
≤ −u′′2 (s+s

f
2 )

u′2(s+s
f
2 )

for all s, then E[wa1(x)] ≤

E[wa2(x)].

This proposition shows that the increase in an agent’s incentive sensitivity and the de-

crease in his degree of absolute risk aversion around his fixed salary reduce the principal’s

incentive cost.

Proposition 3 can be easily verified by introducing an arbitrary agent k with utility

ûk(s) = αû2(s), where α =
û′1(0)

û′2(0)
. Note that, by definition, agent k’s marginal utility at

0 is equal to agent 1’s (i.e., û′k(0) = û′1(0)). Let wak(x) denote his optimal incentive wage

contract. Since ûk(s) is a linear transformation of û2(s), agent k’s degree of absolute risk

aversion is identical to agent 2’s (i.e., − û′′k(s)

û′k(s)
= − û′′2 (s)

û′2(s)
for all s), and by condition i) in

Proposition 3, agent k’s marginal utility is not less than agent 2’s (i.e., û′k(0) ≥ û′2(0)).

Thus, by Proposition 1, we have E[wak(x)] ≤ E[wa2(x)]. Furthermore, agent k’s marginal

utility at 0 is equal to agent 1’s (i.e., û′k(0) = û′1(0)) and agent k’s degree of absolute risk

aversion is not less than agent 2’s (i.e, − û′′1 (s)

û′k(s)
= − û′′k(s)

û′k(s)
for all s). Thus, by Proposition 2,

we have E[wa1(x)] ≤ E[wak(x)]. Therefore, we obtain E[wa1(x)] ≤ E[wa2(x)].

It is important to compare our result in the principal-agent problem with the well-known

Pratt’s result in the asset market in order to understand ours intuitively. As explained

earlier, note that the Pratt’s result is that, as an consumer becomes more risk averse under

the degree of absolute risk aversion, he will demand the higher risk premium. It is worth

noticing that consumer’s marginal utility itself does not affect his risk premium at all. On

the other hand, assuming that two agents have a homogeneous cost function (i.e., c1(a) =

c2(a)), our result is that, not only as the agent becomes more risk averse under the degree

of absolute risk aversion, but also as the magnitude of his marginal utility decreases, his
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incentive cost increases. The critical difference between our result and the Pratt’s result is

that the participator’s marginal utility itself is an important factor in our result, but not at all

in the Pratt’s result. This is because there is the only issue of consumer’s market participation

in the asset market, while, in the principal-agent problem, there are the two issues: the

agent’s contract participation issue and incentive provision issue. From this reason, one

can see that the effect of the participator’s risk aversion comes from an participation issue

but the effect of his marginal utility comes from an incentive provision issue. Therefore, in

the agency problem that the principal must consider the agent’s participation and incentive

constraints, not only the agent’s risk aversion but also his marginal utility itself is important.

We have showed through Propositions 1 to 3 that the decrease in the agent’s incentive

sensitivity or the increase in his risk aversion around his fixed salary leads to the increase in

the principal’s incentive cost. This result means that, if the two agents have the same fixed

salaries (i.e., sf1 = sf2), the principal prefers the agent who is the less risk averse and/or has

the higher incentive sensitivity. However, there is an interesting question: Is it possible that

the principal prefers the more risk averse agent? The following proposition shows that it is

possible if the more risk averse agent has the higher incentive sensitivity and the effect of

incentive sensitivity dominates that of risk aversion.

Proposition 4: Consider the two-outcome case with x ∈ {x1, x2} where qj =
fa(xj |a)
f(xj |a) for

j = 1, 2. Suppose that |q1| and |q2| are sufficiently large. Although −u′′1 (s+s
f
1 )

u′1(s+s
f
1 )
≥ −u′′1 (s+s

f
2 )

u′1(s+s
f
2 )

for

all s, if −u′′1 (s
f
1 )[c

′
1(a)]

2

[u′1(s
f
1 )]

3
< −u′′2 (s

f
2 )[c

′
2(a)]

2

[u′2(s
f
2 )]

3
, then it is possible that E[wa1(x)] ≤ E[wa2(x)].

Return to the example of two-outcome case suggested for Proposition 2. Note that, since

ûi(w
a
i (x1)) = − 1

q2
and ûi(w

a
i (x2)) = − 1

q1
for all i, the difference |ûi(wai (x1))− ûi(wai (x2))| is

equal to the difference | 1
q1
− 1

q2
|. Then, if both |q1| and |q2| are sufficiently large, the difference

|ûi(wai (x1))− ûi(wai (x2))| is sufficiently small, and so the difference |wai (x1)−wai (x2)| is also

sufficiently small. In other words, when |q1| and |q2| are sufficiently large, it is possible that,
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for all i, incentive wages wai (x1) and wai (x2) are optimally designed near zero. In this case,

what Proposition 4 indicates is that, although agent 1 is more risk averse than agent 2 around

their own fixed salaries (i.e., −u′′1 (s+s
f
1 )

u′1(s+s
f
1 )
≥ −u′′1 (s+s

f
2 )

u′1(s+s
f
2 )

for all s), if, compared with incentive

sensitivity of agent 2, that of agent 1 is larger enough to satisfy −u′′1 (s
f
1 )[c

′
1(a)]

2

[u′1(s
f
1 )]

3
< −u′′2 (s

f
2 )[c

′
2(a)]

2

[u′2(s
f
2 )]

3
,

it is possible that agent 1 has the lower incentive cost than agent 2.

Proposition 4 has an implication that, when the principal can make sufficiently precise

inference about the agent’s action choice, it is possible that the principal prefer the agent

with the higher incentive sensitivity regardless of his risk aversion. Note that, since fa(x|a)
f(x|a) ≈

f(x|a)−f(x|a′)
f(x|a)(a−a′) where a′ is in the neighbourhood of a, the condition that |qj| = |fa(xj |a)f(xj |a) |, j = 1, 2,

are sufficiently large means that, when agent’s action changes from a to a′, the variation of

probability |f(x|a) − f(x|a′)| is sufficiently large, and so the principal can infer the agent’s

action choice very well. So, the principal can design the incentive wage contract with low

power, that is, |wai (x2)−wai (x1)| very small. In this case, what Proposition 4 implies is that

what is more important to the principal may be the agent’s incentive sensitivity rather than

his risk aversion.

4 Conclusion

We have analyzed not only the relationship between the agent’s incentive sensitivity and

the principal’s incentive cost but also the relationship between his degree of risk aversion and

her incentive cost. We first showed that, when one agent’s incentive sensitivity measured as

the marginal rate of substitution between income and effort is higher than the other agent’s,

the incentive cost from the former agent is less than that from the latter agent, only when they

have the same degree of absolute risk aversion around their own fixed salaries. This means

that the agent’s incentive sensitivity negatively affects the principal’s incentive cost. Thus,

in order to analyze the pure effect of the agent’s risk aversion on the principal’s incentive
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cost, it is needed that his incentive sensitivity should be fixed. Under such condition, we

showed that, when the agent becomes more risk-averse under the degree of absolute risk

aversion around his fixed salary, the principal’s incentive cost increases. Furthermore, we

have showed that, when the agent becomes more risk-averse and at the same time when

his incentive sensitivity become lowered, the principal’s incentive cost increases. Finally, we

provided an example that the effect of the agent’s incentive sensitivity on the principal’s

incentive cost dominates that of his risk aversion.

The effects of the agent’s incentive sensitivity and his risk aversion will depend on the

characteristics of output’s distribution. However, we believe that it is possible to compare

both effects mathematically when some specific distributions are given. Our guess is that,

as the principal makes more precise inference about the agent’s action choice, the effect of

incentive sensitivity would grow greater but the effect of risk aversion would grow lower, and

in the end, the former would dominate the latter, as in Proposition 4.
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5 Appendix

Proof of Lemma 1. Recall that ûi(s) ≡ 1
c′i(a)

[ui(s+sfi )−ui(s
f
i )] for all i. Using this utility

function, the participation and the doubly relaxed incentive constraints for agent i become∫
ûi(wi(x))f(x|a)dx ≥ 0, (A.1)

and ∫
ûi(wi(x))fa(x|a)dx ≥ 1. (A.2)

Note that, for all i, (A.1) and (A.2) should be binding at the optimum.

We introduce an arbitrary contract r(x) such that û1(r(x)) ≡ û1(w
a
2(x))−E[û1(w

a
2(x))].

Since E[û1(w
a
2(x))] ≥ 0 by condition ii), it is true that r(x) ≤ wa2(x) for all x ∈ X, which

implies that

E[r(x)] ≤ E[wa2(x)]. (A.3)

We will prove that E[wa1(x)] ≤ E[r(x)] by showing that r(x) belongs to the principal’s op-

portunity set for w1(x) satisfying the participation and (doubly relaxed) incentive constraints

for agent 1, which, together with (A.3), implies that E[wa1(x)] ≤ E[wa2(x)].

When r(x) is offered to agent 1 with parallel-shifted utility function û1(s), since

E[û1(r(x))] = E[û1(w
a
2(x))]− E[û1(w

a
2(x))] = 0, (A.4)

r(x) satisfies the participation constraint (A.1) for agent 1. And, combining (2) and (A.4)

yields

E[û1(r(x))] = E[û2(w
a
2(x))],

which implies that û1(r(x)) ≡ û1(w
a
2(x))− E[û1(w

a
2(x))] must cross û2(w

a
2(x)) at once from

below, since û′1(s) ≥ û′2(s), ∀s, by condition i) and since wa2(x) is an increasing function by
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the MLRP for f(x|a).14 Then, since, by Lemma 1 in Innes (1990),∫
û1(r(x))fa(x|a)dx =

∫
{û1(wa2(x))− E[û1(w

a
2(x))]}fa(x|a)dx

≥
∫
û2(w

a
2(x))fa(x|a)dx = 1,

where the last equality holds by (3), r(x) satisfies the doubly relaxed incentive constraint

(A.2) for agent 1. Thus, since r(x) satisfies the participation and incentive constraints for

agent 1, that is, r(x) belongs to the principal’s opportunity set for w1(x), and since wa1(x) is

the optimal solution of cost minimization problem for agent 1, we have

E[wa1(x)] ≤ E[r(x)]. (A.5)

Therefore, combing (A.3) and (A.5) gives E[wa1(x)] ≤ E[wa2(x)]. �

Proof of Proposition 1. Since ûi(s) ≡ 1
c′i(a)

[ui(s+ sfi )− ui(s
f
i )], for all i = 1, 2, conditions

i) and ii) in Proposition 1 are rewritten by

û′1(0) ≥ û′2(0), (A.6)

and

− û
′′
1(s)

û′1(s)
= − û

′′
2(s)

û′2(s)
, ∀s, (A.7)

respectively.

Taking an integral on both sides of (A.7) gives

ln û′1(s)− ln û′1(0) = ln û′2(s)− ln û′2(0) ⇔ û′1(s)

û′2(s)
=
û′1(0)

û′2(0)
≡ α,

where α ≥ 1 by (A.6), which is equal to

û′1(s) = αû′2(s), ∀s,
14As seen in (1), the MLRP that fa(x|a)

f(x|a) should be increasing in x for all a implies that wa
i (x) is increasing

in x.
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of which integrating both sides gives

û1(s)− û1(0) = α[û2(s)− û2(0)].

Then, since ûi(0) = 1
c′i(a)

[ui(s
f
i )− ui(s

f
i )] = 0 for all i = 1, 2, we have

û1(s) = αû2(s).

Note that E[û1(w
a
2(x))] = αE[û2(w

a
2(x))] = 0, where the second equality holds by (2),

and that, since α ≡ û′1(0)

û′2(0)
≥ 1, û′(s) ≥ û′2(s) for all s. Therefore, by Lemma 1, we have

E[wa1(x)] ≤ E[wa2(x)]. �

Proof of Proposition 2. Note that, by using ûi(s) ≡ 1
c′i(a)

[ui(s + sfi )− ui(s
f
i )], conditions

i) and ii) in Proposition 2 are rewritten by

û′1(0) = û′2(0), (A8)

and

− û
′′
1(s)

û′1(s)
≤ − û

′′
2(s)

û′2(s)
, ∀s, (A9)

respectively.

Firstly, we will show that (A8) and (A9) implies that û1(s) ≥ û2(s) for all s. For any

s < 0, integrating both sides of (A9) from s to 0 gives

ln
û′1(s)

û′1(0)
≤ ln

û′2(s)

û′2(0)
⇔ û′1(s) ≤ û′2(s), ∀s < 0, (A10)

where the equivalence holds by (A8). And, integrating both sides of (A10) from s to 0 gives

û1(0)− û1(s) ≤ û2(0)− û2(s),

which, together with the fact that û1(0) = û2(0) = 0, implies that

û1(s) ≥ û2(s), ∀s < 0, (A11)
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Similarly, for any s ≥ 0, integrating both sides of (A9) from 0 to s gives

ln
û′1(0)

û′1(s)
≤ ln

û′2(0)

û′2(s)
⇔ û′1(s) ≥ û′2(s), ∀s ≥ 0, (A12)

where the equivalence holds by (A8). Again, integrating both sides of (A12) from 0 to s

gives

û1(s)− û1(0) ≥ û2(s)− û2(0),

which, by (A8), implies that

û1(s) ≥ û2(s), ∀s ≥ 0. (A13)

Thus, by (A11) and (A13), we have

û1(s) ≥ û2(s), ∀s. (A14)

Define νi(z) ≡ argmaxss − zûi(s) and ψi(z) ≡ νi(z) − zûi(νi(z)) for any given z > 0.

Note that applying Lemma 4 of Jewitt, Kadan and Swinkels (2008) to the cost minimization

problem for agent i with parallel-shifted utility ûi(s) gives

E[wai (x)] = max
λ,µ≥0

min
s

∫ {
s−

(
λ+ µ

fa(x|a)

f(x|a)

)
× ûi(s)

}
f(x|a)dx+ µ

= max
λ,µ≥0

Li(λ, µ; a) ≡
∫
ψi

(
λ+ µ

fa(x|a)

f(x|a)

)
f(x|a)dx+ µ

= Li(λ̂i, µ̂i; a),

where the second equality comes from the definition of ψ(z). Since L2(λ̂2, µ̂2; a) = maxλ,µ≥0L2(λ, µ; a),

we have

L2(λ̂2, µ̂2; a) ≥ L2(λ̂1, µ̂1; a).

Then,

E[wa2(x)]− E[wa1(x)] = L2(λ̂2, µ̂2; a)− L1(λ̂1, µ̂1; a)

≥ L2(λ̂1, µ̂1; a)− L1(λ̂1, µ̂1; a)

=

∫ [
ψ2

(
λ̂1 + µ̂1

fa(x|a)

f(x|a)

)
− ψ1

(
λ̂1 + µ̂1

fa(x|a)

f(x|a)

)]
f(x|a)dx. (A15)
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For any z > 0, since ν1(z) = argmaxss− zû1(s) and ψ1(z) ≡ ν1(z)− zû1(ν1(z)), we have

ψ1(z) = ν1(z)− zû1(ν1(z)) ≤ ν2(z)− zû1(ν2(z)).

Thus,

ψ2(z)− ψ1(z) = ν2(z)− zû2(ν2(z))− [ν1(z)− zû1(ν1(z))]

≥ ν2(z)− zû2(ν2(z))− [ν2(z)− zû1(ν2(z))]

= z[û1(ν2(z))− û2(ν2(z))] ≥ 0, ∀z > 0, (A16)

where the last inequality holds from the facts that z > 0 and that û1(s) ≥ û2(s) for all s

from (A14).

Since λ̂1 + µ̂1
fa(x|a)
f(x|a) > 0 for almost every x from the existence of the optimal contract

wa1(x), applying (A16) to (A15) gives E[wa2(x)]− E[wa1(x)] ≥ 0. �

Proof of Proposition 3. We introduce a new agent k with utility function ûk(s) = αû2(s),

where α ≡ û′1(0)

û′2(0)
=

u′1(s
f
1 )c

′
2(a)

u′2(s
f
2 )c

′
1(a)
≥ 1 by condition i) in Proposition 3. Note that ûk(0) = û2(0) =

0 by (4).

Since û′k(0) = αû′2(0) ≥ û′2(0) from the fact that α ≥ 1, and since

− û
′′
k(s)

û′k(s)
= − û

′′
2(s)

û′2(s)
, ∀s, (A.17)

by Proposition 2, we have

E[wak(x)] ≤ E[wa2(x)], (A.18)

where wak(x) denotes the optimal contract derived solving cost minimization problem for

agent k. On the other hand, since combining (A.17) and condition ii) in Proposition 3 yields

− û
′′
1(s)

û′1(s)
≤ − û

′′
k(s)

û′k(s)
,

and since û′k(0) = αû′2(0) = û′1(0), by Proposition 2 we have

E[wa1(x)] ≤ E[wak(x)]. (A.19)

Therefore, by (A.18) and (A.19) we have E[wa1(x)] ≤ E[wa2(x)]. �
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Proof of Proposition 4. Consider a distribution f(x|a) with outcome x ∈ X = {x1, x2}.

For j = 1, 2, let pj = f(xj|a) and qj =
fa(xj |a)
f(xj |a) . Note that p1 + p2 = 1 since

∑
j f(xj|a) = 1

and note that q1p1 + q2p2 = 0 since
∑

j
fa(xj |a)
f(xj |a) f(xj|a) =

∑
j fa(xj|a) = 0

For every agent i = 1, 2, since his participation constraint and incentive constraint should

be binding at the optimum, we have

ui(w
a
i (x1) + sfi )p1 + ui(w

a
i (x2) + sfi )p2 = ui(s

f
i ), (A.26)

and

ui(w
a
i (x1) + sfi )q1p1 + ui(w

a
i (x2) + sfi )q2p2 = c′i(a), (A.27)

respectively. Solving (A.26) and (A.27) gives

ui(w
a
i (x1) + sfi ) = ui(s

f
i )−

c′i(a)

q2

⇔ wai (x1) = u−1i

(
ui(s

f
i )−

c′i(a)

q2

)
− sfi , (A.28)

and

ui(w
a
i (x2) + sfi ) = ui(s

f
i )−

c′i(a)

q1

⇔ wai (x2) = u−1i

(
ui(s

f
i )−

c′i(a)

q1

)
− sfi . (A.29)

Let ηi(x) = u−1i (ui(s
f
i ) + x) for i = 1, 2. Note that ηi(0) = u−1i (ui(s

f
i )) = sfi , η

′
i(0) = 1

u′i(s
f
i )

,

and η′′i (0) = − u′′i (s
f
i )

[u′i(s
f
i )]

3
. Since, if |x| is sufficiently small, ηi(x) is approximated by ηi(x) =

ηi(0) + η′i(0)x+
η′′i (0)

2
x2, that is,

u−1i (ui(s
f
i ) + x) ≈ sfi +

1

u′i(s
f
i )
x− u′′i (s

f
i )

2[u′i(s
f
i )]

3
x2,

(A.28) and (A.29) are transformed into

wai (x1) = ηi

(c′i(a)

q2

)
− sfi ≈

1

u′i(s
f
i )
× c′i(a)

q2
− u′′i (s

f
i )

2[u′i(s
f
i )]

3
× [c′i(a)]2

q22
,
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and

wai (x2) = ηi

(c′i(a)

q1

)
− sfi ≈

1

u′i(s
f
i )
× c′i(a)

q1
− u′′i (s

f
i )

2[u′i(s
f
i )]

3
× [c′i(a)]2

q21
.

Then, we have

E[wai (x)] ≈ −u
′′
i (s

f
i )[c

′
i(a)]2

[u′i(s
f
i )]

3
× 1

2

(p1
q22

+
p2
q21

)
(5)

Thus, when |q1| and |q2| are sufficiently large, if −u′′1 (s
f
1 )[c

′
1(a)]

2

[u′1(s
f
1 )]

3
< −u′′2 (s

f
2 )[c

′
2(a)]

2

[u′2(s
f
2 )]

3
, it is possible

that E[wa1(x)] ≤ E[wa2(x)]. �
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