Arbitrage Comes Hand in Hand with the Risk of Market Crash

Dong-Hyun Ahn

Soohun Kim

Kyoungwon Seo

Seoul National

Georgia Tech

Seoul National

March 2019

Our paper

- We propose a model that shows
 - hedge funds can initiate a sequence of arbitrage and a potential market crash even without any exogenous shock, and
 - an arbitrage opportunity comes with a chance of market crash
- The mechanism is coordination failure at the market level (endogenous price)
 - Coordination failure: multiple (two) equilibria
 - in one, everyone invests and asset is fair-valued
 - in the other, hedge funds do not make enough investments and asset is mispriced
 - Main cause of coordination failure: redemption risk
 - hedge fund industry features are also relevant: high leverage, information asymmetry between investors and hedge fund managers and a fee structure of hedge funds

- Implications
 - on hedge fund regulations (Volcker rule): Hedge funds reduce mispricing but may generate a crisis
 - on hedge fund behavior: hedge fund leverage decreases prior to the start of the financial crisis in mid-2007 (Ang, Gorovyy and Van Inwegen (2011)) and this is consistent with our model

- Investors (of hedge funds): those who purchase hedge funds and do not have knowledge on the assets
- (Hedge fund) managers: those who trade assets on behalf of investors and specialize in the assets

Redemption risk

- Investors request redemption if the fund performance is poor
 - Investors do not know the hedge fund's strategy or the asset market
 - Observing fund performance, investors may update their belief on the skill level of managers
- The managers sell the asset to fulfill the redemption request
 - This may push down the asset price
- Empirical observations:
 - Buraschi, Kosowski and Sritrakul (2014): hedge funds experience sudden large outflows after experiencing 20% loss on average
 - Ben-David, Franzoni and Moussawi (2012): during the 2008-2009 financial crisis, the redemption of hedge funds was three times more intense than that of mutual funds

- Manager's action
 - Anticipating investors' redemption at the time of a financial crisis, managers make leverage decisions before a potential crisis
 - If every manager go aggressive, there is no crisis
 - A manager go defensive because others go defensive and there will be a crisis: coordination failure

Arbitrage Comes Hand in Hand with the Risk of

Market Crash

- Successful coordination
 - Hedge fund investment is enough to support the fair price
 - No mispricing at all
- Coordination failure
 - For fear of redemption risk, some hedge funds go defensive
 - The asset price goes below the fair value: arbitrage opportunity
 - Later, asset price may recover its fair value or drops even more: crash risk
 - These results are endogenously derived in equilibrium: Arbitrage comes with the crash risk!

Implications of this paper

- Implication 1: the hedge fund capital is more effective in alleviating the mispricing than other types of capital (e.g., pension fund)
 - In our model, if \$1 is transferred into hedge funds from other types of capital before a crisis, the mispricing during the crisis is alleviated
 - This supports Stulz (2007): hedge funds can reduce mispricing more effectively than other funds
 - Kokkonen and Suominen (2015) empirically demonstrate that the aggregate size of hedge funds is more important than that of mutual funds in reducing the misvaluation of U.S. individual stocks
 - Volcker rule limits bank investments in hedge funds: a crisis may be more severe
- However,
 - our main argument is that hedge funds may generate a crisis without any exogenous shock

- Implication 2: A model prediction is consistent with empirical observation
 - Prediction: If coordination fails among hedge funds, hedge fund leverage is lower
 - Observation: Hedge fund leverages decrease prior to the start of the financial crisis in mid-2007 (e.g., Ang, Gorovyy and van Inwegen, 2011)

Relevant features of hedge fund industry:

Leverages

- Prime brokers make loans to hedge funds
 - Mostly short-term, 1 to 90 days
 - Prime brokers will not lend money any more if the hedge fund seems to be in trouble
- LTCM lost half of its AUM in August 1998
 - Extremely high leverage (at a ratio of 28 to 1 in 1995)
 - Risk management of customers/financiers \Rightarrow forced liquidation of assets
 - The effect is larger when leverage is higher

Relevant features of hedge fund industry: Fee

structure

- Hedge funds charge fees
 - Management fee: a fraction of AUM, typically, 2%
 - Incentive fee: a fraction of profits, typically, 20%
 - When losses occur, only management fee is charged
- Fund managers are not responsible for the loss of the funds
 - After a severe loss, hedge fund managers often shut down the fund and open a new fund
 - Reputation cost or cost of starting a new fund

Relevant features of hedge fund industry:

heterogeneous strategies

- There are more than 10,000 hedge funds as of 2016
- 1,040 new fund launches and 864 liquidations in 2014 (Hedge Fund Research)
 - This is related to the incentive structure of hedge fund's managers
 - Losses are not shared by hedge funds
 - When opening a new fund, reputation may matter
- Some funds go aggressive and others wait for (or even bet on) a crisis
 - Steve Eisman, who was portrayed the movie "Big Short", is an example
 - He bet on the collapse of the subprime mortgage market (short on CDO and CDS) while others go the other way around
- Our equilibrium is consistent with the above

- Our paper: No exogenous shock is assumed
- Bernanke and Gertler (1989), Kiyotaki and Moore (1997): financial leverage amplifies a shock to generate a business cycle
- Global games: shocks on fundamental is essential

- Bank run literature: Diamond and Dybvig (1983), Allen and Gale (1998)
 - contractual linkages such as deposit contracts
- Our paper: through endogenous price

Contribution to the literature

- Liu and Mello (2011): model of redemption among investors at a particular hedge fund as a global game
 - Our paper: market-level interaction among hedge funds
- Brunnermeier and Pedersen (2008): margin requirements
 - (shock⇒lower price⇒sell to keep leverage⇒lower price)
 - Every fund's margin requirement is binding
 - Our paper: going defensive is voluntary
- Shleifer and Vishny (1997): performance-based fund flow
 - exogenous shock, insufficient funding
 - Our paper: no exogenous shock, sufficient funding

Outline

- There are one (possibly risky) asset and cash in the market
 - The asset supply is 1
- There are 3 periods, t = 0, 1, 2
 - Each unit of the asset pays off 1 (cash value) at its maturity at t = 2
 - No interim cash flow
 - p_t : price at time t = 0, 1, 2. To be determined endogenously

• $p_2 = 1$

• If $p_0 < 1$ or $p_1 < 1$, there is an arbitrage opportunity

Participants

- There are 3 types of market participants: (hedge fund) managers, investors, and long-term holders
- Managers
 - know the market and $p_2 = 1$ at t = 0, 1
 - (other participants know $p_2 = 1$ at t = 2 only)
 - may invest in the asset and cash at t = 0, 1
 - funding from investors (capital) and financiers (debt)
 - if the loss of the portfolio at t = 1 is too large, it may collapse at t = 1 (detail later)
- Long-term holders
 - abstraction of pension funds, insurance companies, banks, and maybe mutual funds
 - for simplicity, their demand (in quantity) is assumed to be exogenously given

- At t = 0, long-term holders' total demand is exogenously given X < 1
- At t=1, there are two states, $\omega=g \ ({\rm good})$ and $\omega=b \ ({\rm bad})$
 - In state g (with prob 1-q), long-term holders' demand stays the same, X
 - In state b (with prob q), long-term holders' demand is $X\left(1-\varepsilon\right)$ with $0\leq \varepsilon\leq 1$
- ε is a constant and allowed to be 0
 - If $\varepsilon = 0$, the two states are essentially identical (no fundamental shock)

- Continuum of risk-neutral managers of mass 1, indexed by $i \in [0, 1]$
 - No heterogeneity across managers but equilibrium behaviors may differ (to be seen later)
- $W_{i,t}$: asset under management (AUM) of fund $i \in [0,1]$ at time t = 0, 1, 2
 - Initial AUM, $W_{i,0} = W_0$, in cash supplied by investors
 - $\int_0^1 W_0 di = W_0$ is the total asset value in the market at t = 0

- Compensation structure for fund managers
 - management fees: $\beta W_{i,2}$ with $\beta > 0$
 - incentive fees: $\alpha \max (W_{i,2} W_0, 0)$ with $\alpha > 0$
 - fund managers do not share the loss with investors but:
 - If customers withdraw their money, the fund closes and it costs the manager $C\geq 0$
 - C: liquidation cost (including cost of setting up a new fund and bad reputation)
 - fund i maximizes

 $U = \Pr(\mathsf{survive}) \left(\alpha \max(W_{i,2b} - W_0, 0) + \beta W_{i,2b} \right) - \Pr(\mathsf{not survive}) C$

Fund managers at t = 0

- Fund managers can invest in the asset or hold cash
- Can also borrow
 - Short-term borrowing: Has to pay back at t = 1
 - (May borrow again at t = 1, to be seen later)
 - Borrowing interest rate is normalized to 0
- Let $l_{i,0}$ be the leverage ratio of manager i at t = 0
 - $l_{i,0} = \frac{(\text{amount of borrowing})}{(\text{wealth at } t=0, W_0)}$
 - Invest $W_0 (1 + l_{i,0})$ in the asset
 - For example, $l_{i,0} = -1$: investing in cash only
- Borrowing limit at t = 0: $l_{i,0} \leq \overline{l}_0$
- No short-sales of the asset: $l_{i,0} \ge -1$

• Wealth of manager i at the beginning of period t=1 in state $\omega=g,b$

$$W_{i,1} = W_0 \left((1 + l_{i,0}) \frac{p_{1\omega}}{p_0} - l_{i,0} \right)$$

- if $p_1 > p_0$, leverage gives profit
- if $p_1 < p_0$, leverage gives loss
- Risk management rule or liquidation condition
 - if $W_{i,1} < W_0 (1-s)$, arbitrage fund *i* is liquidated
 - s is exogenously given
 - s = 0 means no loss is allowed

Motivation of liquidation condition

- s is exogenous
 - so that we can focus on managers' behaviors and the endogenous prices
- Non-transparency: Arbitrage markets are highly specialized, customers/financiers do not understand the market or the manager's strategy
 - It is common that a hedge fund manager does not reveal his strategy (to prevent competitors from copying the strategies)
- Motivation
 - Investors request redemption based on the past performance, possibly by updating beliefs on the manager's ability

- Arbitrage fund *i* is liquidated if $W_{i,1} < W_0 (1-s)$
 - If a manager used high leverage at t = 0, it may cause redemption in the bad state at t = 1
 - Then, the manager's payoff is assumed to be -C
- If manager i survives at t = 1, she trades the asset
 - Borrowing interest rate: 0
 - Borrowing limit at t = 1: $l_{i,1} \leq \overline{l}_1$
- At t = 2, one unit of the asset pays 1 and managers receive the fees

Market clearing

- The asset supply is 1
- At time 0,

(demand of long-term investors and arbitragers) = 1

• In each state at time 1,

(demand of long-term investors and fund managers who have survived) = 1

- To be determined endogenously:
 - p_0 , p_{1g} , p_{1b} ($p_2 = 1$ is assumed)
 - $l_{i,0}$, $l_{i,1b}$, $l_{i,1g}$: leverages

Outline

Lemma 1. In any equilibrium, $p_{1g} \leq 1$, $p_{1b} \leq 1$ and $p_0 \leq 1$.

- Intuition:
 - If $p_{1g} > 1$, no manager will buy because $p_2 = 1$ for sure.

demand =
$$X (1 - \varepsilon) \le X < 1$$
 and supply = 1

- Same for p_{1b}
- If $p_0 > 1$, demand of managers is 0 because the price will drop for sure: $p_{1b} \leq p_{1g} = p_2 = 1$

Assumption 1

Assumption (1). There are enough funds in the market:

$$X + W_0 \left(1 + \overline{l}_0\right) \ge 1$$
, and $X \left(1 - \varepsilon\right) + W_0 \left(1 + \overline{l}_1\right) \ge 1.$

- Will make this assumption throughout
- $X + W_0 (1 + \overline{l}_0) \ge 1$: Sufficient funds in the market at t = 0
 - $p_0 = 1$ (the fair price) can be supported because (the maximum possible demand)= $X + \frac{W_0(1+\bar{t}_0)}{p_0} \ge 1$ =(asset supply)
- $X(1-\varepsilon) + W_0(1+\overline{l}_1) \ge 1$: Enough funds in the market in state b (as well as state g) at t = 1
 - If $p_0 = p_{1b} = p_{1g} = 1$, then $W_{i,1} = W_0$ for any leverage level, $l_{i,0}$
 - (the maximum possible demand)= $X(1-\varepsilon) + \frac{W_0(1+\overline{l}_1)}{p_0} \ge 1=$ (asset supply)

Equilibria

Theorem 1. Under Assumption 1, if q and s are sufficiently small, the followings hold:

(i) there is no liquidation if and only if $p_0 = p_{1g} = p_{1b} = 1$, and (ii) there are some liquidations if and only if $p_{1b} < p_0 < p_{1q} = 1$.

- We call the equilibrium with $(p_0, p_{1g}, p_{1b}) = (1, 1, 1)$ a calm equilibrium
 - No mispricing, no crisis
- The equilibrium with $p_{1b} < p_0 < p_{1g} = 1$ is called a crisis equilibrium
 - Some funds are liquidated
 - Investors request redemption
 - Viewed as a crisis
- Arbitrage opportunity $(p_0 < 1)$ comes hand in hand with the risk of market crash $(p_{1b} < p_0)$

Lemma 2. Under Assumption 1, if q and s are sufficiently small, it holds that $p_{1g} \ge p_{1b}$.

- When $\varepsilon = 0$, states g and b are essentially the same
- According to the lemma, we consider $p_{1b} < p_0 < p_{1g} = 1$ only, not $p_{1g} < p_0 < p_{1b} = 1$

Theorem 2. A calm equilibrium exists if Assumption 1 holds.

- Existence of a calm equilibrium is straightforward
- A more importance question is if a crisis equilibrium exists as well
 - Will show existence of a crisis equilibrium, in particular when $\varepsilon = 0$
 - That is, is it possible that $p_{1b} < p_0 < p_{1g}$ in equilibrium?

• If manager *i* survives, the final wealth will be

$$W_{i,2} = W_{i,1\omega} \left(\frac{1}{p_{1\omega}} \left(1 + l_{i,1} \right) - l_{i,1} \right)$$

at each state $\omega = g, b$

- Recall that fees are increasing in W_{i,2}
- A manager tries to maximize $W_{i,2}$, once he survives

- In good state (g), $p_{1g} = 1$ in a crisis equilibrium
 - $p_0 < p_{1g}$. Thus, positive profit and no liquidation
- Bad state (b)
 - $p_0 > p_{1b}$. Some funds may have been liquidated
 - $p_{1b} < 1$. If a fund survives, the maximum leverage $(l_{i,1} = \bar{l}_1)$ will be optimal at t = 1
 - Demand= $X(1-\varepsilon) + \int_0^1 W_{i,1b} (1+\bar{l}_1) \cdot \mathbf{1} (W_{i,1b} \ge W_0 (1-s)) di/p_{1b}$
 - Supply=1

- $l_{i,0}$ will determine $W_{i,1b}$, which determines
 - whether the fund is liquidated in state b,
 - p_{1b} (by the market clearing in b)
 - the final wealth and the fee
- $U_0(l_{i,0}) =$

 $\Pr(\text{survive})(\alpha \max(W_{i,2b} - W_0, 0) + \beta W_{i,2b}) - \Pr(\text{not survive})C$

• The expected payoff as a function of $l_{i,0}$

- $p_0 < 1$ opens up the possibility of an arbitrage opportunity
- The textbook argument on arbitrage implies
 - $l_{i,0}$ should be as large as possible, and
 - the equilibrium price should be $p_0 = 1$
- But we have frictions
 - $l_{i,0}$ has an upper limit
 - at t = 1, the mispricing may get larger and the investors may request redemption
 - So, arbitrage opportunity at t = 0 is not perfectly riskless to the manager

- Let l^* be the maximum leverage level that makes a manager survive in b
 - -1 or l*: defensive strategy. Betting on b. If g realizes, small profits obtain.
 If b realizes, large profits obtain.
 - \bar{l}_0 : aggressive strategy. Betting on g. If g realizes, large profits obtain. If b realizes, liquidated

Candidate for equilibrium strategy

- A manager takes $l_{i,0} = -1$, l^* or \overline{l}_0
 - Different from the textbook argument because of the frictions
 - There is a chance that the arbitrage fund is liquidated when $l_{i,0} = \overline{l}_0$

Definition 1. The bang-bang strategy profile refers to a strategy profile in which $h \in (0,1)$ proportion of managers take $l_{i,0} = \overline{l}_0 > l^*$ and the other managers take $(l_{j,0}, l_{j,1b}) = (-1, \overline{l}_1)$ or $(l_{j,0}, l_{j,1b}) = (l^*, \overline{l}_1)$

- *h* proportion of managers go aggressive and bet on *g*. They will be liquidated in state *b*
- 1-h proportion of managers go defensive and bet on b (wait for a crisis)
- Consistent with actual hedge fund behaviors

Leverage decision at t = 0

- (In this presentation, we will focus on l_{j,0} = l* and ignore l_{j,0} = -1 for simplicity of notations. Both cases are taken care of in the paper.)
- $U_0\left(l^*\right) > U_0\left(\bar{l}_0\right)$: Everyone goes defensive (h=0)
 - Everyone survives in b, funds are enough in b and thus $p_{1b} = 1$
 - Then, no reason to be defensive
- $U_0(l^*) < U_0(\overline{l}_0)$: Everyone goes aggressive (h = 1)
 - All funds in the market are invested in the asset at t = 0
 - $p_0 = 1$ because of sufficient funds
 - No reason to be aggressive because there is no gain from $p_0 = 1$ to $p_2 \leq 1$
- So, in equilibrium, $U_{0}\left(l^{*}
 ight)=U_{0}\left(ar{l}_{0}
 ight)$

Equilibrium characterization

- Collect all the equilibrium conditions so far:
 - (p_0, p_{1g}, p_{1b}, h) satisfies

$$X + \frac{W_0 \left(1 + h\bar{l}_0 + (1 - h) l^*\right)}{p_0} = 1$$
$$p_{1g} = 1$$
$$X \left(1 - \varepsilon\right) + \frac{(1 - h) W_0 \left(1 - s\right) \left(1 + \bar{l}_1\right)}{p_{1b}} = 1$$
$$U_0 \left(l^*\right) = U_0 \left(\bar{l}_0\right)$$

- Does (p_0, p_{1g}, p_{1b}, h) exist such that $p_{1b} < p_0 < p_{1g} = 1$ and $h \in (0, 1)$?
- Some go aggressive and others wait for a crisis
 - Homogeneous managers generate heterogeneous behaviors

Theorem 3. Suppose Assumptions 1 and $\varepsilon \ge 0$. If q, s and W_0 are sufficiently small, a crisis equilibrium exists.

- ε ≥ 0: demand shock, q: prob of bad state, s: tolerable loss rate by risk management, W₀: initial wealth of hedge funds
 - small q: a crisis is less likely to happen
 - small s: investors do not tolerate small losses
- A crisis can arise without any exogenous shock ($\varepsilon = 0$ is allowed)

- Coordination failure
 - There is enough funding liquidity in the market (a calm equilibrium is possible)
 - Managers are selling only because others are selling
 - No one has to sell if no one else sells
 - Failure to coordinate leads to a crisis equilibrium
 - Coordination failure like in Diamond and Dybvig (1983), but ours is at the market level
 - Endogenous price

Theorem 4. Under Assumption 1, only a calm equilibrium exists if q is sufficiently large.

- One potential explanation of why some arbitrage trading strategies appear to 'pick up nickels in front of steamrollers.'
 - The aggressive strategy in the crisis equilibrium is characterized by a high probability of small arbitrage gains coupled with a low probability of huge losses.

Implication 1

Theorem 5. Under Assumption 1, if q, s and W_0 are sufficiently small, it holds that $\frac{dp_0}{dW_0} > \frac{dp_0}{dX} > 0$ and $\frac{dp_{1b}}{dW_0} > \frac{dp_{1b}}{dX} > 0$ in a crisis equilibrium.

- With enough size of hedge funds, the coordination works better
 - Less profitable to go aggressive
- Hedge funds are more effective at reducing mispricing than long-term funds
 - Stultz (2007): hedge funds can reduce mispricing more effectively than other funds.
 - Kokkonen and Suominen (2015): empirically demonstrate that the aggregate size of hedge funds is more important than that of mutual funds in reducing the misvaluation of U.S. individual stocks
 - Volcker Rule may lead to more severe crisis by limiting bank investments in hedge funds

- But hedge funds can generate a crisis by an earlier theorem
 - The previous theorem assumes a crisis equilibrium
 - Brunnermeier and Nagel (2004) and Griffin et al (2011): hedge funds might accentuate mispricing of technology stocks in the tech bubble/burst from 1997 to 2002

Theorem 6. Under Assumption 1, if q, s and W_0 are sufficiently small, it holds that $\frac{dh}{dC} < 0$, $\frac{dp_0}{dC} < 0$ and $\frac{dp_{1b}}{dC} > 0$ in a crisis equilibrium.

- C: liquidation cost
 - If liquidation is costlier, a crisis is less severe but the pre-crisis mispricing is more severe
- After the 2008 crisis, bankers/traders did not suffer much but receive bonuses from bailout money
 - A crisis will be more severe

Corollary 1. The aggregate leverage of hedge funds at time 0, $\int l_{i,0} di$, is lower in a crisis equilibrium than in a calm equilibrium.

- · Low leverage of hedge funds prior to a financial crisis
- Ang et al. (2011): Leverage in the hedge fund industry decreases prior to the start of the financial crisis in mid-2007
- In our model, lower leverage may indicate an immediate crisis

Outline

2 Equilibrium

- We show that a financial crisis can occur even when
 - there is enough funding liquidity in the market, and
 - there is no exogenous shock
- because of
 - manager's coordination failure at the market level
- the latter is caused by
 - redemption risk