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Abstract

We provide an estimator of the lower regression function and provide large sample properties

for inference. We also propose a test of the hypothesis of positive expectation dependence and

derive its limiting distribution under the null hypothesis and provide consistent critical values.

We apply our methodology to several empirical questions.

1 Introduction

Suppose that Yt ∈ R, Xt ∈ Rd be a stationary mixing vector process. We suppose throughout that

E(|Yt|r) <∞ for some r > 1. Let F denote the c.d.f. of Xt. The lower regression function is defined

as follows

m<(x) = E (Yt |Xt ≤ x) =
E [Yt1(Xt ≤ x)]

E [1(Xt ≤ x)]
≡ R(x)

F (x)
, (1)
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for each x ∈ Rd. Note that as x→ (∞, . . . ,∞), m<(x)→ E(Yt), the unconditional expectation of Yt.

In the special case that Xt = Yt and x is the lower α quantile of Yt, then (1) is known as the expected

shortfall. The lower regression function contains the same information as the regression function,

as we discuss below, but is a more regular object from the point of view of statistical estimation

and inference. In particular, it is possible to estimate it without smoothing methods and one obtain

root-n consistency and asymptotic normality under weak conditions. The hypothesis of negative

(positive) expectation dependence of a random variable Yt ∈ R on a random variable Xt ∈ Rd is that

m<(x)− E (Yt) = E (Yt |Xt ≤ x)− E (Yt) ≥ (≤)0 (2)

for all scalar x, denoted NED(Y |X) (PED(Y |X)). If the inequality (2) is strict for a set of x with

positive probability, we say the expectation dependence is strict. This hypothesis is related to the

hypothesis of stochastic dominance, Linton, Maasoumi, and Whang (2005), but is generally weaker

than it.

In this paper we define estimators of m<(x) and tests of the hypothesis NED and related ones.

We obtain their limiting distribution under weak dependence conditions on the sample data, and

provide consistent inference tools under general conditions. We apply our procedures to several

applications and report a small simulation study. In the next section we define the lower regression

function and the expectation dominance hypothesis and give some examples of its use in economics.

In Section 3 we define estimators and test statistics whose properties are presented in Section 4.

In Section 5 we conduct a small simulation experiment and apply our procedures to two different

applications, Section 6 concludes.

2 The Lower Regression Function

In this section we provide more discussion about the lower regression function, its properties, and its

uses. If Yt, Xt possess a joint Lebesgue density fY,X , we can write m<(x) as

m<(x) =

∫∞
−∞

∫ x
−∞ yfY,X(y, x′)dydx′∫∞

−∞

∫ x
−∞ fY,X(y, x′)dydx′

=
R(x)

F (x)
.

Note that in this case, R(x) and F (x) are smooth functions, and the ordinary regression function

m(x) = E (Yt |Xt = x) satisfies

m(x) =
∇R(x)

∇F (x)
, ∇g(x) =

∂d

∂x1 · · · ∂xd
g(x). (3)
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In the scalar case m(x) = R′(x)/F ′(x) = R′(x)/f(x), where f is the marginal density of the covariate.

Likewise, we can write for all x,

m<(x) =

∫ x
−∞m(x′)f(x′)dx′∫ x
−∞ f(x′)dx′

.

The lower regression function {m<(x), x ∈ Rd} contains essentially the same information as the

regression function {m(x), x ∈ Rd}. Escanciano and Hualde (2009) consider the integrated regression

function (assume for simplicity that y is centered)

IRF (x) = E [Yt1(Xt ≤ x)] =

∫ x

−∞
m(x′)f(x′)dx′ = cov(Yt, 1(Xt ≤ x)),

which is also in one to one relation with the regression function. This has been exploited by Delgado

(1993) to provide a test of the equality of two regression functions. Note that IRF (x) does not have

the same regression interpretation as m<(x).

Finally, we can interpret m<(x) as the minimizer of the no intercept best linear fitting (prediction)

of Yt by the indicator function 1(Xt ≤ x), i.e.,

E
[
{Yt − β1(Xt ≤ x)}2]

with respect to β. This draws out its relation to the regression tree literature that uses multiple

indicator functions for regression and classification, Breiman, Friedman, Olshen, and Stone (1984).

2.1 Expectation Dominance and Related Hypotheses

In this section we discuss further the hypothesis (2) and its uses in economics and finance.

Wright (1987) consider the classical portfolio choice problem with two risky assets Xt, Yt and risk

averse preferences expressed through a utility function U . That is, maximize EU (λYt + (1− λ)Xt)

with respect to λ ∈ [0, 1]. In the case where EYt ≥ EXt, the sufficient condition that λ∗ > 0 is that

the random variable Y is relatively negative expectation dependent on X, denoted RNED(Y |X),

E(Yt −Xt|Xt ≤ x) ≥ E(Yt −Xt)

on a set x that occurs with probability one, which is equivalent to NED(Y − X|X), that is, Yt is

more negative expectation dependent on Xt than Xt is on itself, E(Yt|Xt ≤ x)− EYt ≥ E(Xt|Xt ≤
x)−E(Xt). In the case that E(Xt) = E(Yt) he shows (Theorem 4.2) that the necessary and sufficient
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conditions for the optimal λ∗ to lie strictly between zero and one (diversification) are that: E(Yt −
Xt|Xt ≤ x) ≥ 0 and E(Xt − Yt|Yt ≤ y) ≥ 0 for all x, y and with strict inequality on a set of (x, y)

that occurs with probability one. These conditions allow cov(Xt, Yt) > 0. In the appendix to his

paper he considers the case with d assets, lets say Y1t, . . . , Ydt. In this case, he says (p. 120) that a

sufficient condition for all assets with the same mean to be chosen with a positive weight is that

E
(
Yit − θ

ᵀ

i0Xit|θ
ᵀ

i0Xit ≤ u
)
≥ 0 (4)

for all i = 1, . . . , d, where Xit = {Yjt, j 6= i}, and all u ∈ R. Here, θi0 ∈ Rd−1 are the optimally chosen

non-negative portfolio weights on the other assets Xit. A sufficient condition for this to hold is the

multivariate dominance condition

E (Yit|Xit ≤ x) ≥ E(Yjt|Xit ≤ x) (5)

for all j 6= i and for all x ∈ Rd−1. Each such condition may be seen as a version of expectation

dominance except that the conditioning variable is multivariate.

Li (2011) considers the demand for a risky asset in the presence of a background risk, such as

health, and a risk free asset. He shows that the condition (2) determines whether there is a positive

demand for the risky asset, depending also on the cross partial of utility between terminal wealth

and the background risk. Zhu, Guo, Lin, and Zhu (2014) provide a test of this hypothesis, and of

the higher order dominances that were defined in Li (2011). They assumed iid sampling.

Levy and Paroush (1974) considers the bivariate choice problem where utility U is defined over

a pair of outcomes, lets say (y, x). They give necessary and sufficient conditions for dominance of

one bivariate outcome over another. In the case of “envy”, (LP, p141), i.e., ∂U(y, x)/∂y∂x ≥ 0, the

necessary and sufficient conditions (using our notation) for EU(Yit, Xit) ≥ EU(Yjt, Xjt) are that: (1)

Pr (Yit ≤ y) ≤ Pr (Yjt ≤ y) for all y and Pr (Xit ≤ x) ≤ Pr (Xjt ≤ x) for all x, and (2) for all x, y :

Pr (Yit ≤ y,Xit ≤ x)− Pr (Yit ≤ y) Pr (Xit ≤ x) ≥ Pr (Yjt ≤ y,Xjt ≤ x)− Pr (Yjt ≤ y) Pr (Xjt ≤ x) ,

(6)

that is, the pair (Yit, Xit) are more positively dependent according to the ”concordance” measure than

(Yjt, Xjt). If the utility function is separable, then the cross partial of U is zero, and only condition

(1) is needed for bivariate dominance; that is, just ordinary first order stochastic dominance. Note

that if the marginal distributions are identical, then this condition ∂U(y, x)/∂y∂x ≥ 0 is sufficient
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for bivariate dominance. The interpretation of the condition is called correlation aversion. Suppose

that we replace condition (6) by the conditional notion of dependence, whereby for all x, y :

Pr (Yit ≤ y,Xit ≤ x)

Pr (Xit ≤ x)
− Pr (Yit ≤ y) ≥ Pr (Yjt ≤ y,Xjt ≤ x)

Pr (Xjt ≤ x)
− Pr (Yjt ≤ y) . (7)

If Xit and Xjt have the same marginal distributions, then (6) and (7) are equivalent. We may write

the ratio of probabilities as a lower regression if we replace Yit by 1(Yit ≤ y) in (1). If also Yit and

Yjt have the same marginal distributions, then this is of the form (8) for the given y. If it holds for

all y, then the LP condition is satisfied, but if it only holds for a given y, then the weaker condition

of Chiu (2014) is satisfied. Chiu (2014) says that the bivariate distribution Pr (Yit ≤ y,Xit ≤ x) is a

weak correlation increase of Pr (Yjt ≤ y,Xjt ≤ x) if:

E (Yit |Xit ≤ x)− E (Yjt |Xjt ≤ x) ≤ 0 (8)

for all x ∈ X , (and EYit = EYjt and Pr (Xit ≤ x) = Pr (Xjt ≤ x) for all x). This is the condition of

more positive expectation.

3 Estimation

We consider explicitly the multisample scalar case, that is, Yjt ∈ R and Xjt ∈ R, where j = 1, . . . , J.

Let Fj denote the c.d.f. of Xjt, and let m<j(x) = E (Yjt | Xjt ≤ x) be the lower regression function

for each x ∈ R and each j = 1, . . . , J.

Suppose that we have a sample {(Yjt, Xjt) ∈ R×R : j = 1, . . . , J ; t = 1, . . . , T}. We consider the

following estimator:

m̂<j(x) =
1
T

∑T
t=1 Yjt1(Xjt ≤ x)

1
T

∑T
t=1 1(Xjt ≤ x)

=
R̂j(x)

F̂j(x)
(9)

for j = 1, . . . , J and x ∈ R. Note that there is no bandwidth, and that the function m̂<(x) is a step

function with jumps at the sample points. The estimator m̂<(x) is a ratio of unbiased estimators

but is itself biased. In the iid case E[Y:(i)] = E
[
E
(
Y |X = X(r)

)]
=
∫
m(x)dF(r)(x), where F(r) is

the c.d.f of the rth order statistic of X, Yang (1977), which allows an exact expression for Em̂<(x)

in that case.

Let Xj;(1) ≤ Xj;(2) ≤ . . . ≤ Xj;(T ) denote the order statistics of the covariate j and let Yj:(i),

i = 1, . . . , T denote the corresponding concomitants. Then it appears that (9) is apparently defined
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only for x ∈ [Xj;(1),∞). We rewrite m̂<j(x) in the following way and complete the 0/0 issue

m̂<j(x) =


Yj:(1) for x ≤ Xj;(1)

1
k

∑k
i=1 Yj:(i) for x ∈ (Xj;(k−1), Xj;(k)]

Y j for x ≥ Xj;(T ).

(10)

This shows that the estimator is well defined throughout the whole real line.

Define the smoothed versions of R̂j and F̂j as follows:

R̃j;h(x) = (R̂j ∗Kh)(x) =

∫
R̂j(x

′)Kh(x− x′)dx′

F̃j;h(x) = (F̂j ∗Kh)(x) =

∫
F̂j(x

′)Kh(x− x′)dx′,

where Kh(.) = K(./h)/hd and K is a kernel function and h a bandwidth, and let m̃<j(x) =

R̃j;h(x)/F̃j;h(x). Then we may show that the ordinary Nadaraya-Watson regression smoother is

m̂j;NW (x) =
∇R̃j;h(x)

∇F̃j;h(x)
.

Scaillet (2004, 2005) considers smoothed estimators of expected shortfall and conditional expected

shortfall.

3.1 Test Statistic

We consider the following general class of hypothesis, H0 : τ ≤ 0, where:

τ = min
i 6=j

sup
x∈X

dij(x), (11)

where dij(x) is a distance measure, for example: dij(x) = E (Yit |Xit ≤ x)−E (Yjt |Xjt ≤ x) , dij(x) =

E(Yt − Xt) − E(Yt − Xt|Xt ≤ x) (also called dRNED (x)), or dij(x) = E (Yt |Xt ≤ x) − E (Yt) (also

called dNED (x)).

Let d̂ij(x) be the empirical version of dij(x) for example d̂ij(x) = m̂i< (x)− m̂<j (x) . Then let

τ̂T = min
i 6=j

sup
x∈X

d̂ij(x). (12)
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4 Large Sample Properties

We first establish the limit distribution of m̂<(·) = (m̂<1(·), . . . , m̂<J(·))ᵀ. Let X be a compact subset

of the union of the supports of (Xjt)
J
j=1 such that infx∈X Fj(x) > 0 for each j. Define the empirical

process νT (x) = (ν1T (x), . . . , νJT (x))ᵀ for x ∈ X to be

vT (x) = ∆(x)ΛT (x),

where

∆(x) = (∆1(x)ᵀ, . . . ,∆J(x)ᵀ) , ΛT (x) = (λ1T (x), . . . , λJT (x))ᵀ,

∆j(x) =

[
1

Fj(x)
, − Rj(x)

Fj(x)2

]ᵀ
λjT (x) =

[√
T
(
R̂j(x)−Rj(x)

)
,
√
T
(
F̂j(x)− Fj(x)

)]ᵀ
.

Let Λ(x) = (λ1(x), . . . , λJ(x))ᵀ be a mean zero Gaussian process in x ∈ X with covariance

function given by

CΛ(x1, x2) = lim
T→∞

EΛT (x1)ΛT (x2)ᵀ.

We impose the following assumption:

Assumption A. (i) {(Yjt, Xjt) : t ≥ 1} for j = 1, . . . , J is a strictly stationary and β-mixing

sequence of random variables whose mixing coefficient is of order O(n−b) for some b > r/(r − 1),

where r > 1. (ii) E |Yjt|2(r+δ) <∞ for some δ > 0 for j = 1, . . . , J. (iii) The distribution of Xjt has

bounded density with respect to Lebesgue measure for j = 1, . . . , J.

We require at least second moments for our analysis. Linton and Xiao (2013) develop alternative

asymptotics for expected shortfall when only weaker moment conditions are adopted. The large

sample properties of m̃<j(x) are similar to those of m̂<j(x) and are not repeated here.

Theorem 1. Suppose that Assumption B holds. Then,

√
T (m̂<(·)−m<(·)) =⇒ v(·).

where v(x) = (ν1(x), . . . , νJ(x))ᵀ is a mean zero Gaussian process in x ∈ X with covariance function

given by

C(x1, x2) = ∆(x1)CΛ(x1, x2)∆(x2)ᵀ.
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We discuss the asymptotic variance in the case J = 1. Let

ut(x) = (Yt −m<(x)1(Xt ≤ x)) 1(Xt ≤ x)

V (x) =
lrvar(ut(x))

F (x)2
,

where lrvar is the long run variance. In the iid case we have

V (x) =
(

1
F (x)

−R1(x)
F (x)2

)( R2(x)−R2
1(x) R1(x)(1− F (x))

R1(x)(1− F (x)) F (x)(1− F (x))

)(
1

F (x)

−R1(x)
F (x)2

)

=
1

F (x)

(
R2(x)

F (x)
− R2

1(x)

F (x)2

)
=
R2(x)F (x)−R2

1(x)

F (x)3
.

We now turn to the testing issue. Let τ̂T be defined in (12).

Corollary 1. Suppose that the null hypothesis H0 holds. Then, we have

τ̂T ⇒

{
min(i,j)∈I supx∈Bij [νi(x)− νj(x)] if τ = 0

−∞ if τ < 0,

where I = {(i, j)|i 6= j, supx∈X (νi(x)− νj(x)) = 0} and

Bij = {x ∈ X : νi(x) = νj(x)}. (13)

The proof uses arguments of Linton, Maasoumi, and Whang (2005, Theorem 1).

Remark. We cannot obtain a FCLT over the whole support of Xt, because the variance V (x)→
∞ as x→ −∞, in fact

V (x) ≤ E(Yt)

F (x)
→∞

and
√
T -consistency breaks down as x → −∞. We may be able to obtain consistency of m̂<(xT )

with rates for some sequences xT → −∞, but this will not hold for all sequences. Specifically, for the

extreme values we may adopt a different approximation based on point process theory, in our case

this is about the ”concomitant” order statistics. Suppose that Yt = m(Xt) + εt with ε independent

of X and mean zero. In the case where X has compact support with lower bound xL and m smooth,

the asymptotic behaviour of Y:(1) is determined by the distribution of ε, specifically

Pr
(
Y:(1) ≤ y

)
−→ Fε(y −m(xL)),

so that Y:(1) converges to a random limit centred at m(xL) = m<(xL). The estimator in that case

is asymptotically unbiased but inconsistent. Essentially, we need at least k → ∞ in (10) to obtain

consistency to a point value.

8



4.1 Critical Values and Consistency of Test Statistic

We first define the subsampling procedure. Write τ̂T = τT (W1, . . . ,WT ) as a function of the data

{Wt : t = 1, . . . , T}. Let

GT (·) = Pr
(√

TτT (W1, . . . ,WT ) ≤ ·
)

(14)

denote the distribution function of
√
T τ̂T . Let τ̂T,b,t be equal to the statistic evaluated at the subsample

{Wt, . . . ,Wt+b−1} of size b, i.e.,

τ̂T,b,t = τ(Wt,Wt+1, . . . ,Wt+b−1) for t = 1, . . . , T − b+ 1.

We note that each subsample of size b (taken without replacement from the original data) is indeed a

sample of size b from the true sampling distribution of the original data. Hence, it is clear that one can

approximate the sampling distribution of
√
T τ̂T using the distribution of the values of τT,b,t computed

over T −b+1 different subsamples of size b. That is, we approximate the sampling distribution GT of
√
T τ̂T by

ĜT,b(·) =
1

T − b+ 1

T−b+1∑
t=1

1
(√

b(τT,b,t − τ̂T ) ≤ ·
)
.

Let gT,b(1− α) denote the (1− α)-th sample quantile of ĜT,b(·), i.e.,

gT,b(1− α) = inf{w : ĜT,b(w) ≥ 1− α}.

We call it the subsample critical value of significance level α. Thus, we reject the null hypothesis at

the significance level α if
√
T τ̂T > gT,b(1−α). The computation of this critical value is not particularly

onerous, although it depends on how big b is. The subsampling method has been proposed in Politis

and Romano (1994) and is thoroughly reviewed in Politis, Romano, and Wolf (1999). It works in

many cases where the standard bootstrap fails: in heavy tailed distributions, in unit root cases, in

cases where the parameter is on the boundary of its space, etc.

We now show that our subsampling procedure works under a very weak condition on b. In many

practical situations, the choice of b will be data-dependent, see Linton, Maasoumi, and Whang (2005,

Section 5.2) for some methodology for choosing b. To accommodate such possibilities, we assume

that b = b̂T is a data-dependent sequence satisfying

Assumption B. Pr[lT ≤ b̂T ≤ uT ] → 1 where lT and uT are integers satisfying 1 ≤ lT ≤ uT ≤
T, lT →∞ and uT/T → 0 as T →∞.
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The following theorem shows that our test based on the subsample critical value has asymptoti-

cally correct size.

Theorem 2. Suppose that Assumptions A and B hold. Then, under the null hypothesis H0,

lim
T→∞

Pr
(√

T τ̂T > gT,b̂T (1− α)
)
≤ α,

with equality holding if ∪i,jBij 6= ∅, where Bij is defined in (13).

Theorem 2 shows that our test based on the subsampling critical values has asymptotically valid

size under the null hypothesis and has asymptotically exact size on the boundary of the null hypoth-

esis. Under additional regularity conditions, we can extend this pointwise result to establish that

our test has asymptotically correct size uniformly over the distributions under the null hypothesis,

using the arguments of Andrews and Shi (2013) and Linton, Song, and Whang (2010). For brevity,

we do not discuss the details of this issue in this paper.

We next establish that the test ST based on the subsampling critical values is consistent against

the fixed alternative H1.

Theorem 3. Suppose that Assumptions A and B hold. Then, under the alternative hypothesis

H1,

lim
T→∞

Pr
(√

T τ̂T > gT,b̂T (1− α)
)

= 1.

5 Numerical Evidence

In this section we show some empirical results on testing the hypothesis whether a random variable

Y is relatively negative expectation dependent on the other random variable X (RNED (Y |X)).

Wright (1987) shows that RNED(Y |X) if and only if cov (Y −X, f (X)) ≤ 0 for every increasing

function f for which the covariance is defined. We construct the sample test statistic by using the

sample analogue of dRNED (x) = E(Yt − Xt) − E(Yt − Xt|Xt ≤ x). The null hypothesis is that

RNED(Y |X) holds: H0 : dRNED (x) ≤ 0 for all x. Similarly, we construct the sample statistic

for testing whether Y is negative expectation dependent on X based on dNED(x). The theoretical

properties of these tests follow from Theorems 1,2, and 3.

To compute the statistics (here called ŜRNEDT and ŜNEDT ), we use a brute-force method: Choose

a grid of 500 points x through the empirical quantiles of Xt and find the maximum value of d̂NEDT (.)

and d̂NEDT (.) given those x. We use the subsampling scheme introduced in Section 8.1 to construct
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the empirical distribution of the sample test statistic, and reject the null if the empirical p-value of

the sample test statistic is larger than a specified significant level α.

Simulations

We next examine performances of the proposed test statistic by simulations. We focus on testing

whether RNED (Y |X) holds. We generate samples from a multivariate normal MV (0,Σ) and a

multivariate t distributions tv(0,Σ). The data generating processes for the simulations are as follows:

• DGP 1: Xt = Z2t, Yt = Xt + Z1t and (Z1t, Z2t) ∼ i.i.d. MV (0,Σ).

• DGP 3: Xt = Z2t, Yt = Xt + Z1t and (Z1t, Z2t) ∼ i.i.d. tv(0,Σ) and degrees of freedom v = 3.

• DGP 2: lnXt = Z2t, Yt = Xt + Z1t and (Z1t, Z2t) ∼ i.i.d. MV (0,Σ).

• DGP 4: lnXt = Z2t, Yt = Xt+Z1t and (Z1t, Z2t) ∼ i.i.d. tv(0,Σ) and degrees of freedom v = 3.

For the data generating process, we set

Σ =

(
1 σxy

σxy 1

)
,

where σxy = −0.8, -0.3, 0, 03, 0, 0.8. Notice that under the multivariate t distribution, cov(Z1t, Z2t) =

v/(v − 2)× Σ. Finally, σxy ≤ 0 corresponds to the null and σxy > 0 corresponds to the alternative.

We set sample sizes T = 250, 500 and 1000 and corresponding subsample sizes b = 50, 100 and 200.

Each scenario is simulated 1,000 times. Figure 1 shows some examples of empirical distributions of

the subsampling test statistics from simulations. We report simulation results in Table 1. Overall, the

proposed test statistic performs better under the multivariate normal than under the multivariate

t. When the samples are generated from the multivariate normal distribution, the proposed test

statistic has a less probability to get wrong rejections when the null is true and a higher probability

to get correct rejections when the null is false. Under the multivariate normal distribution, when

σxy = −0.8 and -0.3, whether Xt is with log transformation or not has a negligible effect on the

performance of the proposed test statistic. But when σxy ≥ 0, the test statistic tends to obtain less

rejections with lnXt than with Xt. Similar phenomenon also occurs in the case of the multivariate t.

The results suggest that log transformation of Xt may damage power of the test statistic but have
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almost no effect on size distortion when the null becomes strong. Finally, increasing sample size

in general seems to have little effect on improving the performance and this might be due to i.i.d.

samples.

Applications with Real Data

Optimal Portfolio Choices

We consider two applications with real data. The first application is to test whether an asset

should be included in a risk averse investor’s portfolio. Wright (1987) provides a sufficient condition

associated with the relative negative expectation dependence for justifying this. The condition has

been mentioned in previous section. Here we restate it again. Consider a risk averse investor’s

portfolio optimization with N assets:

max
θ

E
[
U
(
θ

ᵀ
R
)]

subject to θ
ᵀ
1 = 1 and θ � 0,

where U ′ ≥ 0 and U ′′ < 0. R = (R1, . . . , RN)
ᵀ

is a column vector for asset returns and θ =

(θ1, . . . , θN)
ᵀ

is a column vector for portfolio weights. θ � 0 means θi ≥ 0 for all i = 1, . . . , N .

Suppose an asset k has the largest expected return among all assets, i.e., E (Rk) ≥ E (Ri) for all i,

k 6= i. Wright (1987) shows that the asset k should be included in the risk averse investor’s portfolio

(θk > 0) if strictly RNED(Rk|Ri) holds for all i, i 6= k.

We use two data sets: 10 portfolios formed on size and 10 portfolios formed on stock’s Beta. The

constituents of these portfolios are U.S. stocks. For the two data sets, the sampling frequency is

monthly and sampling period is from July-1963 to June-2015. Both data sets can be downloaded

from Kenneth French’s website. Table 2 shows summary statistics of returns (in percentage) of these

portfolios. For portfolios formed on size, indices 1 to 10 in the first column of the table denote the

portfolio of the smallest companies’ stocks to the portfolio of the largest companies’ stocks. It is the

same for portfolios formed on stocks’ Beta: Indices 1 to 10 denote the portfolio of the lowest Beta

stocks to the portfolio of the highest Beta stocks. From the table, it can be seen that (time series)

average returns of portfolios formed on size do not monotonically decreasing with the size, although

the portfolios with small companies’ stocks often have higher average returns than portfolios with

large companies’ stocks. It is also similar for average returns of portfolios formed on stocks’ Beta:

The High Beta portfolios often have higher average returns than does the low Beta portfolios.
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For each data sets, we conduct the relative expectation dependence test pairwisely on the portfolio

returns and report results in Table 3 (portfolios formed on size) and 4 (portfolio formed on stocks’

Beta). In each table we show values of the sample statistic and corresponding empirical p-values

obtained from using the subsampling scheme. Notice that for i 6= j, strictly RNED(Ri|Rj) does not

guarantee strictly RNED(Rj|Ri) and thus the tables are not symmetric. For portfolios formed on

size, it can be seen that the hypothesis of RNED(Ri|Rj) is rejected for most i < j but is not rejected

for most i > j at the conventional significant level. But for portfolios formed on stocks’ Beta, the

results are reversed: The hypothesis of RNED(Ri|Rj) is rejected for most i > j but is not rejected

for most i < j at the conventional significant level. Notice that portfolios of small size (high Beta)

stocks in general have higher average returns than do portfolios of large size (low Beta) stocks. Thus

if a risk averse investor considers to form a portfolio from the 10 size (stocks’ Beta) portfolios, the

test results suggest that assigning positive weights on portfolios of small size (high Beta) stocks may

not be optimal.

The test result for portfolios formed on stocks’ Beta is consistent with a trading strategy called

Betting against Beta (BAB): Buying a low Beta portfolio and selling a high Beta portfolio with

appropriate amounts. Such a strategy on average generates a low systematic risk but a high risk-

adjusted return. The BAB strategy is based on a historical observation that average returns of

portfolios with different Betas do not behave as what the CAPM implies. We discuss the relation

of the test result and the strategy as follows. Suppose return of a well diversified portfolio Ri has a

form of the CAPM: Ri = Rf + βi (Rm −Rf ) + εi, where Rf is the risk-free rate, βi is the portfolio’s

Beta and Rm is the market portfolio return. Since the portfolio is well diversified, its idiosyncratic

risk εi ≈ 0 and its expectation is E (Ri) ≈ Rf + βi (E (Rm −Rf )). In Finance, a line depicts the

relation between βi and E (Ri) is called the security market line (SML). If the CAPM holds, the

SML should have a slope of E (Rm −Rf ) and an intercept term of Rf .

In Figure 2 we plot the average monthly return (in percentage) against Beta for the 10 portfolios

formed on stocks’ Beta. The dash line is the hypothetical SML implied by the CAPM (with monthly

average Rf about 0.4% and monthly average Rm about 0.9%). The solid line is the actual SML,

which is a fitted line of the average returns and Betas of the portfolios. It can be seen that the actual

SML deviates substantially from the hypothetical SML.

The deviation indicates that during a very long time (more than 50 years), the low (high) Beta

portfolio has a higher (lower) average return than what the CAPM implies and investors put too

13



much (less) money on the high (low) Beta stocks1. The long-term deviation suggests that it is safe

for an investor to implement the BAB strategy. Notice that the derivation of the BAB strategy is

based on the observation that the arbitrage opportunity exists in a very long time. Our test result,

however, is based on the framework of the risk averse investor’s portfolio optimization. Both our test

result and the BAB strategy suggest that it may not optimal for a rational, risk-averse investor to

put money on the high Beta stocks.

Growth and Public Debt

The second application is to test whether there is a negative relation between real GDP growth and

debt to GDP ratio. Reinhart and Rogoff (2010) shows that in 20 advanced countries, from 1946

to 2009, the relation between real GDP growth and public debt seems relatively insignificant when

the countries’ debt to GDP ratios are below 90 percent, but median growth rates for the countries

with public debt to GDP ratios over 90 percent are about one percent lower than otherwise; average

(mean) growth rates are several percent lower. However, Herndon, Ash and Pollin (2013) points out

several research flaws in Reinhart and Rogoff (2010). Among them, the most serious one is that in

the period from 1946 to 2009, the strong negative relation between real growth and public debt of

the 20 advanced countries when their debt to GDP ratios are over 90 percent, is no longer hold.

We use the proposed test of negative expectation dependence (NED) to examine whether there

is a negative relation between growth and public debt in the 20 advanced countries in the post-war

period. The data we use are compiled by Herndon, Ash and Pollin (2013). Figure 3 is a reproduction

of Figure 3 in Herndon, Ash and Pollin (2013) with their R codes. It shows real GDP growth against

public debt/GDP for all country-years and an estimated locally smoothed regression function of the

two variables. The estimated locally smoothed regression function suggests that real GDP growth is

overall a nonincreasing function of public debt/GDP.

We categorize all country-year observations by their public debt to GDP ratios and report sum-

mary statistics and test results in Table 5. Column 7-10 of Table 5 show values of the sample test

statistic and the corresponding empirical p-values. To calculate the test statistic, standardized data

are used. The empirical p-values are obtained by using the bootstrap method since the data are of

country-year type. Results in column 7 and 8 indicate that we cannot reject that null that the real

1There are several financial theories for explaining this deviation, for example, investors is facing leverage constraints

or afraid of risk from using leverage (see, pp. 161 in Pedersen (2015)).
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GDP growth is negative expectation dependent on the debt to GDP ratio. Results in column 9 and

10 show that the reverse also seems to be true: The null that the debt to GDP ratio is negative

expectation dependent on the real GDP growth cannot be rejected. Comparing the test results with

the sample correlation coefficients shown in the last column, we find they are only inconsistent in

the case when the debt to GDP ratio is 30-60%, in which the sample correlation coefficient is 0.0009.

For the other four cases, they are consistent with each other.

6 Conclusions

The lower regression function is simple to compute and to analyze from a statistical point of view. The

theory is related to the theory for stochastic dominance, Whang (2019). We applied our techniques

to two applications in finance and macroeconomic growth theory.

7 Appendix

The proofs of Theorems 2 and 3 are similar to those of Theorems 2 and 3, respectively, of Linton,

Maasoumi, and Whang (2005). Below we shall prove Theorem 1.

Proof of Theorem 1: For j = 1, . . . , J, write

√
T [m̂<j(x)−m<j(x)] =

1

Fj(x)

√
T
[
R̂j(x)−Rj(x)

]
− R̂j(x)

F̂j(x)Fj(x)

√
T
[
F̂j(x)− Fj(x)

]
. (15)

Define the following empirical processes indexed by x ∈ X :

α
jT (x) =

1√
T

T∑
t=1

[Yjt1(Xjt ≤ x)− EYjt1(Xjt ≤ x)]

β
jT (x) =

1√
T

T∑
t=1

[1(Xjt ≤ x)− E1(Xjt ≤ x)] .

We first establish stochastic equicontinuity of {αjT (·) : T ≥ 1} using the result of Doukhan, Massart,

and Rio (1995, Theorem 1). The class of functions M = {Yjt1(Xjt ≤ x) : x ∈ X} is a type IV class
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(see Andrews (1994)) that satisfies the L2-continuity condition, because: ∀x ∈ X

E sup
x1∈X :|x1−x|<δ

|Yjt1(Xjt ≤ x)− Yjt1(Xjt ≤ x1)|2

= E |Yjt|2 1(Xjt ∈ (x− δ, x+ δ))

≤ C1 Pr(Xjt ∈ (x− δ, x+ δ))

≤ C2δ,

for each δ > 0, where the first and second inequalities hold by Assumptions B(ii) and B(iii), re-

spectively. This implies that the bracketing covering number satisfies NB
2 (ε,M) ≤ C(1/ε)2, which

in turn satisfies the entropy condition of Doukhan, Massart, and Rio (1995, equation (2.15)). This

establishes the stochastic equicontinuity of {αjT (·) : T ≥ 1} and hence {βjT (·) : T ≥ 1} by taking

Yjt = 1. The finite dimensional (fidi) convergence holds by the CLT of Herrndorf (1984, Theorem 1)

using Assumptions B(i) and (ii) and Cramer-Wold device. Therefore, by Pollard (1990, Sec. 10), we

have

ΛT (·) = (λ1T (·), . . . , λJT (·))ᵀ ⇒ Λ(·) (16)

where

λjT (·) =
(
α

jT (·), β
jT (·)

)ᵀ
and Λ(·) is a mean zero Gaussian process on X with covariance function CΛ. Finally, the weak

convergence results imply that : for all j = 1, . . . , J,

sup
x∈X

∣∣∣F̂j(x)− Fj(x)
∣∣∣ p→ 0 (17)

sup
x∈X

∣∣∣R̂j(x)−Rj(x)
∣∣∣ p→ 0. (18)

The results (15)-(18) and the assumption infx∈X Fj(x) > 0 for all j establish the desired result. �
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Table 1: The table shows the rejection frequencies of the expectation dependence test when critical

values are constructed by using the subsampling scheme. We report rejection frequencies at three

different levels of α. The samples are generated from a multivariate normal MV (µ,Σ) and a multi-

variate t distributions tv(δ,Σ). We set µ = δ = (0.5, 0), Σ =

(
1 ρ

ρ 1

)
, where ρ = 0, 0.3 0.8. Notice

that ρ =0 corresponds to the least favorable configuration and ρ > 0 corresponds to the alternative.

We set sample size T = 250, 500 and 1000 and the corresponding subsample sizes b = 125, 250 and

500. Each scenario is simulated 1,000 times.

DGP 1

T = 250, b = 125 T = 500, b = 250 T = 1000, b = 500

α α α

σxy 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

0 0.030 0.068 0.111 0.037 0.063 0.097 0.039 0.060 0.102

0.3 0.635 0.745 0.807 0.890 0.951 0.965 0.983 0.991 0.998

0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DGP 2

0 0.030 0.063 0.111 0.031 0.064 0.108 0.038 0.064 0.104

0.3 0.478 0.577 0.656 0.693 0.790 0.862 0.922 0.948 0.963

0.8 0.998 0.998 0.998 0.998 0.998 1.000 1.000 1.000 1.000

DGP 3

0 0.029 0.068 0.113 0.030 0.066 0.111 0.037 0.060 0.102

0.3 0.431 0.531 0.618 0.890 0.951 0.965 0.983 0.991 0.998

0.8 0.971 0.980 0.989 1.000 1.000 1.000 1.000 1.000 1.000

DGP 4

0 0.244 0.280 0.317 0.140 0.190 0.230 0.033 0.065 0.108

0.3 0.937 0.946 0.958 0.904 0.929 0.945 0.702 0.788 0.838

0.8 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000
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Table 2: The table shows summary statistics of returns (in percentage) of 10 portfolios formed on

size and 10 portfolios formed on stock’s Beta.

Portfolios Formed on Size

Min. Mean Max. Std. Skew. Kurt. ACF1

1 -28.90 1.171 29.60 6.334 -0.154 2.452 0.238

2 -30.48 1.123 28.41 6.325 -0.253 2.283 0.146

3 -28.97 1.202 25.74 6.025 -0.444 2.03 0.129

4 -29.46 1.130 24.33 5.788 -0.503 2.138 0.133

5 -28.12 1.172 24.80 5.590 -0.519 2.206 0.119

6 -26.15 1.109 20.90 5.256 -0.531 2.012 0.123

7 -26.23 1.101 22.41 5.158 -0.486 2.471 0.120

8 -24.32 1.063 19.11 5.020 -0.462 1.884 0.087

9 -22.27 0.988 18.14 4.600 -0.443 2.077 0.096

10 -19.72 0.846 18.12 4.215 -0.343 1.775 0.015

Portfolios Formed on Stock’s Beta

Min. Mean Max. Std. Skew. Kurt. ACF1

1 -13.05 0.929 18.66 3.468 -0.277 1.952 0.014

2 -15.12 0.914 18.71 3.811 -0.239 2.186 0.029

3 -20.32 0.956 15.46 4.061 -0.410 2.139 0.046

4 -23.99 1.044 18.79 4.600 -0.293 2.018 0.016

5 -24.36 0.935 18.24 4.757 -0.350 2.048 0.051

6 -24.77 1.018 20.08 5.076 -0.311 2.060 0.046

7 -27.16 0.933 18.26 5.408 -0.572 2.292 0.126

8 -26.26 1.037 26.65 6.010 -0.314 1.563 0.105

9 -29.69 1.022 31.83 6.651 -0.302 1.760 0.120

10 -33.13 1.040 33.60 7.889 -0.221 1.175 0.120
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Table 3: The table shows results of results of the relative expectation dependence test for the data

of 10 portfolios formed on size. The test is conducted parwisely on the portfolio returns. In each

cell we show values of the sample statistic and the corresponding empirical p-values (in parentheses)

obtained from using the subsampling. The subsample size is 300.

1 2 3 4 5 6 7 8 9 10

1 - 0.00 0.01 0.01 0.01 0.03 0.04 0.04 0.05 0.04

E. p-value - (0.96 ) (0.48 ) (0.19 ) (0.34 ) (0.07 ) (0.00 ) (0.06 ) (0.10) (0.12)

2 0.00 - 0.01 0.03 0.04 0.06 0.07 0.06 0.09 0.07

E. p-value (0.78 ) - (0.52 ) (0.08 ) (0.00 ) (0.00 ) (0.00 ) (0.00 ) (0.00 ) (0.04)

3 0.00 0.00 - 0.01 0.03 0.05 0.06 0.06 0.09 0.07

E. p-value (0.61 ) (1.00 ) - (0.01 ) (0.14 ) (0.00 ) (0.00 ) (0.00 ) (0.00 ) (0.11)

4 0.00 0.00 0.00 - 0.01 0.04 0.05 0.05 0.07 0.06

E. p-value (0.93 ) (1.00 ) (0.93 ) - (0.38 ) (0.00 ) (0.00 ) (0.00 ) (0.00 ) (0.17)

5 0.00 0.00 0.00 0.00 - 0.02 0.03 0.04 0.07 0.06

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) - (0.42 ) (0.18 ) (0.00 ) (0.00 ) (0.06)

6 0.00 0.00 0.00 0.00 0.00 - 0.01 0.02 0.05 0.04

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) - (0.03 ) (0.18 ) (0.00 ) (0.20)

7 0.00 0.00 0.00 0.00 0.00 0.00 - 0.01 0.04 0.04

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) - (0.37 ) (0.00 ) (0.26)

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.03 0.04

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) - (0.00 ) (0.27)

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.01

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) - (0.37)

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -

E. p-value (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00 ) (1.00) -
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Table 4: The table shows results of results of the relative expectation dependence test for the data

of 10 portfolios formed on stock’s Beta. The test is conducted parwisely on the portfolio returns.

In each cell we show values of the sample statistic and the corresponding empirical p-values (in

parentheses) obtained from using the subsampling. The subsample size is 300.

1 2 3 4 5 6 7 8 9 10

1 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E. p-value - (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

2 0.01 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E. p-value (0.02) - (0.43) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

3 0.01 0.00 - 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E. p-value (0.40) (0.60) - (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

4 0.01 0.02 0.01 - 0.00 0.00 0.00 0.00 0.00 0.00

E. p-value (0.64) (0.40) (0.58) - (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

5 0.01 0.03 0.02 0.00 - 0.00 0.00 0.00 0.00 0.00

E. p-value (0.43) (0.38) (0.38) (0.41) - (1.00) (1.00) (1.00) (1.00) (1.00)

6 0.02 0.04 0.04 0.01 0.01 - 0.00 0.00 0.00 0.00

E. p-value (0.44) (0.36) (0.12) (0.40) (0.72) - (1.00) (1.00) (1.00) (1.00)

7 0.03 0.05 0.06 0.03 0.03 0.01 - 0.00 0.00 0.00

E. p-value (0.29) (0.28) (0.01) (0.27) (0.19) (0.58) - (0.26) (1.00) (1.00)

8 0.04 0.08 0.09 0.08 0.08 0.06 0.03 - 0.00 0.00

E. p-value (0.24) (0.27) (0.00) (0.00) (0.04) (0.00) (0.07) - (1.00) (1.00)

9 0.07 0.11 0.13 0.11 0.12 0.11 0.09 0.04 - 0.00

E. p-value (0.18) (0.21) (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) - (1.00)

10 0.10 0.16 0.19 0.19 0.20 0.20 0.19 0.15 0.10 -

E. p-value (0.02) (0.20) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) -
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Table 5: The table shows summary statistics and results of the expectation dependence test for

growths of real GDP and public debt to GDP ratios of 20 advanced countries from 1946 to 2009.

The data are from Herndon, Ash and Pollin (2013).
Growth of RGDP to D/G Ratio to

Growth of RGDP (%) D/G Ratio (%) D/G Ratio Growth of RGDP

D/G Ratio No. of obs. Mean Std. Mean Std. Stat. E. p-value Stat. E. p-value Corr.

0-30% 426 4.174 2.859 17.557 7.148 7.148 0.109 0.970 0.317 -0.124

30-60% 436 3.116 2.884 44.678 8.459 8.459 0.787 0.310 0.531 0.009

60-90% 199 3.222 2.755 71.108 8.258 8.258 0.513 0.500 0.941 -0.001

Above 90% 110 2.168 3.506 118.980 31.013 31.013 0.106 0.925 0.828 -0.130

Full sample 1171 3.430 2.981 46.283 32.395 32.395 0.113 0.935 0.147 -0.199
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Figure 1: The figure shows examples of
√
T d̂1,T (x) (upper panel) and empirical distributions gener-

ated by using the subsampling scheme (bottom panel) from simulations. The data generating process

used is DGP1. We set T = 1000, bootstrap sample size = 200 and subsample size = 500. The plots

from left to right correspond to the cases of ρ = 0, 0.3 and 0.8. The dash line in each plot denotes

the value of the full sample test statistic ŜRNEDT .
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Figure 2: The figure shows average monthly returns (in percentage) against Betas for 10 portfolios

formed on stocks’ Beta. The sampling period is from July-1963 to June-2015. The dash line is the

hypothetical security market line (SML) implied by the CAPM. The solid line is the actual security

market line, which is a fitted line of average returns and Betas of the portfolios.
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Figure 3: The figure is a reproduction of Figure 3 in Herndon, Ash and Pollin (2013) with their

R codes. It shows real GDP growth against debt/GDP for all country-years. The solid line is a

locally smoothed regression function estimated with the generalized additive model with integrated

smoothness estimation using the mgcv package in R. The smoothing parameter is selected with the

default cross-validation method. The shaded region indicating the 95 percent confidence interval for

mean real GDP growth.
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