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Abstract

This paper studies the limit theory of the quantilogram and cross-quantilogram under long

memory. We establish the sub-root-n central limit theorems for quantilograms that depend on

nuisance parameters. We propose a moving block bootstrap (MBB) procedure for inference and

we establish its consistency thereby enabling a consistent confidence interval construction for the

quantilograms. The newly developed uniform reduction principles (URPs) for the quantilograms

serve as the main technical devices used to derive the asymptotics and establish the validity of

MBB. We report some simulation evidence that our methods work satisfactorily. We apply our

method to quantile predictive relations between financial returns and long-memory predictors.

Keywords: Long Memory, Moving Block Bootstrap, Nonlinear Dependence, Quantilogram and

Cross-Quantilgoram, Uniform Reduction Principle.

JEL classification: C22

1 Introduction

Quantile dependence measures have attracted growing attention in economics, statistics and finance.

Unlike the traditional linear dependence measure, quantile dependence measures can capture non-

linear dependence structures at different quantiles. Moreover, the estimation and testing procedures

are robust to outliers/heavy tails, which make the measures well suited to financial applications.

In the time domain, Linton and Whang (2007) introduced a measure called the quantilogram. This

measure, which is a correlation between the quantile-hit processes, has been recently extended to a

multivariate version called the cross-quantilogram (Han et al., 2016). Hagemann (2011), Li (2008,

2012), and Dette et al. (2015) suggested various frequency domain versions of the quantilogram.

See Koenker (2017, Section 4) for a recent review.

Under some weak dependence assumptions such as ergodicity (Linton and Whang, 2007) or

strong mixing (Han et al., 2016), limit theories of the quantilogram and cross-quantilogram were
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developed. Because of the nuisance parameters in the limit, the statistical inference is typically

performed by resampling methods (See Han et al., 2016). The results of frequency domain analysis

also relied on the weak dependence assumption, except for a very recent paper by Birr et al. (2017).

The last paper considers locally stationary time series.

None of the existing papers study quantile dependence under the presence of a stronger form of

dependence such as long-memory. However, in economic and financial applications, we frequently

observe series with slowly decaying memory. For example, the squared returns or the (logarithm

of) financial volatility series typically show a non-negligible autocorrelation function even with

a very long lag. There is thus a large literature on long memory modeling in economics and

finance; to name a few, Granger (1980), Baillie (1996) and Doukhan et al. (2002). Considering

the importance of the risk-return trade-off in economics and the commonly observed long-memory

behavior of financial volatility series, there is ample motivation to study the quantile dependence

structure of these long-memory sequences.

This paper develops large sample approximations for the quantilogram and the cross-quantilogram

when the data processes show long-memory behaviors. We employ a prototypical linear stationary

long-memory process and develop the quantilogram limit theory under this framework. The results

show that the asymptotic distributions of the quantilogram and cross-quantilogram under long

memory are strikingly different from the weakly dependent cases. The convergence rate is affected

by the strong memory property, and it is slower than the usual
√
n-rate. More interestingly, a

well-established result from probability theory, the uniform reduction principle (URP, henceforth)

plays a central role in the limit theory development. See Ho and Hsing (1996, 1997) and Koul and

Surgailis (2002) for the URP for long-memory processes. The limit theories of the sample quantile,

the quantilogram and the cross-quantilogram are shown to follow interesting new versions of URP.

As a result, they become asymptotically equivalent to a scaled sample mean. Some nonstandard

nuisance parameters also appear in these asymptotic distributions. From these surprising results,

we conclude that ignoring the presence of strong dependence will lead to a severely misleading

statistical inference for the quantile-based dependence measures.

We also provide a valid inferential method for quantilograms using the moving block bootstrap

(MBB, henceforth). There are so far no MBB consistency results for this type of nonlinear test

statistic with long memory data. We prove MBB consistency by deriving the MBB versions of URP

for the sample quantile and quantilograms, which we call MBB-URPs. These results are also new

and of independent interest. The orders of magnitude of all these MBB sample statistics are smaller

than those of the original test statistics. This is because the dependence structure is weakened from

the blockwise-iid MBB sampling. Nonetheless, MBB consistency is still achieved with a corrected

rate of convergence, together with the confirmed asymptotic normality in this paper. This result is

in line with the existing results for the long-memory mean case (Lahiri, 2003; Kim and Nordman,

2011; see also Tewes (2016) for a related result for the empirical processes). This result validates

the use of the MBB percentile method (Efron, 1979) for statistical inference.

The paper is organized as follows. Section 2 introduces the model and assumptions. A brief
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review of the main probabilistic technique is also provided in this Section. Section 3 develops the

asymptotic theory of the quantilogram and cross-quantilogram under long memory by deriving the

new URP results. Section 4 proposes the MBB inferential methods, whose validities are established

through MBB-URPs. Some Monte Carlo simulation evidence is provided in Section 5, substantiat-

ing the theories and the inferential methods developed in this paper. In the last Section 6, we apply

the MBB procedure to examine the quantile-to-quantile predictive relations between the financial

return premia and a few commonly used long-memory lagged predictors. Most of the technical

proofs are relegated to the Appendix.

2 Model and Review of Main Technical Devices

In this section we introduce the model and the assumptions. We also review the main technical

tools adopted from probability theory literature. These tools are particularly useful to study the

limit theory of quantilograms under long memory.

2.1 Model framework

We consider the following stationary linear long memory m by 1 vector process yt :

yt = µy +
∞∑
j=0

ajεt−j , (2.1)

where m = 1 for Section (3.1; quantilogram) and m = 2 for Section (3.2; cross-quantilogram). For

exposition, we do not distinguish notation between the two cases but it should be straightfoward

to see which case is under consideration. When m = 2, the memory parameters are allowed to be

different with each other, see Section 3.2.

We assume that the marginal quantile of ξτ , which satisfies Pr (yt ≤ ξτ ) = F (ξτ ) = τ , is well

defined. We denote by F and F (i) (Fε and F
(i)
ε ) the distribution function of yt (εt) and its i-th

derivatives, respectively. We assume that µy = 0 for simplicity, otherwise letting yµt = yt − µy will
cover all the following theory.

Assumptions

A1. Let a0 = 1 and aj = j−β`(j), j ≥ 1, for β = 1 − d ∈
(

1
2 , 1
)
with a slowly varying function

` (·).

A2. εi ∼ iid (0, σ2
ε) with E

(
ε4
i

)
<∞, and supx

[
F

(1)
ε (x) +

∣∣∣F (2)
ε (x)

∣∣∣] <∞.
Assumption A2 implies that supx

[
F (1) (x) + |F (2) (x) |

]
< ∞. Assumption 1 is a commonly

used condition to model time series long memory. It corresponds to a popular class, the fractionally

integrated process (1− L)d yt = εt with the same d = 1 − β = H − 1/2 (with H being the Hurst

index). We treat these two specifications equivalently. Hence (2.1) with d will be denoted as
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yt ∼ I(d) oftentimes. For d ∈ (0, 1/2), the process yt is strictly stationary. The case d = 0 is

covered by existing work.

Following Linton and Whang (2007), we define the quantilogram for a stationary process yt

ρτk =
E [ψτ (yt − ξτ )ψτ (yt−k − ξτ )]

E
[
ψ2
τ (yt − ξτ )

] , where ψτ (·) = τ − 1 (· < 0) . (2.2)

Given a stationary bivariate time series process (y1t, y2t), the cross-quantilogram is defined as

in Han et al. (2016)

ρτk = ρ(τ1,τ2),k =
E
[
ψτ1

(
y1,t − ξτ1

)
ψτ2

(
y2,t−k − ξτ2

)]√
E
[
ψ2
τ1

(
y1,t − ξτ1

)]√
E
[
ψ2
τ2

(
y2,t−k − ξτ2

)] . (2.3)

The estimation of, the limit theory of, and the statistical inference about (2.2) and (2.3) with (2.1)

under Assumptions A1 and A2 are the main contributions of this paper.

Remark 2.1 Our regularity conditions are suffi cient and may not be necessary. It is known that,
with the α-stable laws of ε’s, we need α (1− d) > 2 to have Gaussian limit theory of the sum of

indicator functionals of long-memory series, see Honda (2009) for a concise summary. To focus

on the regular cases with the sub-root-n central limit theorem we assume higher moments of the

series εi than is common in the short memory literature. This is needed for our proof technique,

but seems not needed in practice.

2.2 Review: expansion of indicator functionals under long memory

We review the results from Ho and Hsing (1996) on the expansion of the indicator functionals of

long-memory sequences.

Let y(0)
t = 1, and for p = 1, 2, ...

y
(p)
t =

∑
sp<...<s1≤t

at−s1 ...at−spεs1 ...εsp .

Then y(1)
t = yt, and y

(p)
t , for p = 2, 3, .., will appear in the expansion (2.4) below. Ho and Hsing

(1996) established the following results on the orthogonal processes obtained from (2.1) under

Assumptions A1 and A2:

E1. y(p)
t converges in mean squares when

∑
a2
i <∞ and E

[
ε2

0

]
<∞,

E2. E
[
y

(p)
t y

(q)
s

]
= 0 for p 6= q, t 6= s (orthogonal),

E3.
∣∣∣E [y(p)

t y
(p)
t−k

]∣∣∣ ≤ 1
p! (
∑∞

i=0 |at+iai|)
p = O

(
k−p(1−2d)

)
,
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E4. y(p)
t is long-memory up to p (1− 2d) < 1 and short-memory after p (1− 2d) > 1:

E

( n∑
t=1

y
(p)
t

)2
 =

{
O
(
n2−p(1−2d)

)
, p (1− 2d) < 1,

O (n) , p (1− 2d) > 1.

Let p∗ be the greatest number such that y(p∗)
t is long-memory, i.e., p∗ = b1/(1− 2d)c ≥ 1. We

have the following expansion of the indicator functional of (2.1), 1 (yt < x) up to p∗-order:

1 (yt < x) = F (x)− F (1)(x)y
(1)
t + F (2)(x)y

(2)
t + ...+ (−1)p

∗
F (p∗)(x)y

(p∗)
t +Rt (p∗) . (2.4)

Let us interpret the orders of magnitudes here as the L2-norm of the squared sums as given in

E4 above. For example, E
[(∑n

t=1 y
(2)
t

)2
]
has a smaller order than E

[(∑n
t=1 y

(1)
t

)2
]
from E4,

so we say that y(2)
t is smaller than y(1)

t and so on, and Rt (p∗) is the smallest remainder (for the

detailed expression, see Ho and Hsing (1996)). Since all our proofs will involve either summation

or expectation, we can ignore the smaller terms when considering the first order asymptotics. In

fact, the major limit theory of our quantilogram asymptotics will follow from the first two terms,

F (x)− F (1)(x)y
(1)
t in (2.4).

As an illustrative application of (2.4), we show that the decay rate of the quantilogram is the

same as that of the correlogram of (2.1). The proof involves simply applying (2.4) to the cross-

product of indicator functionals, taking expectations and finding the dominating terms for the

decay rate using E4.

Lemma 2.1 Suppose that yt follows the long-memory process (2.1) under Assumptions 1 and 2.
Then the quantilogram ρτk in (2.2) for each τ ∈ (0, 1) decays as the same rate of the correlogram

ρk as k →∞ :

ρτk = O
(
k−1+2d

)
.

In the following sections, (2.4) will play an important role when studying the limit theories of

the sample quantiles, quantilogram, cross-quantilogram and the bootstrap versions of them.

2.3 Review: uniform reduction principle (URP) for sample quantile

We now review the available results for the sample quantile limit theory under long memory. The

sample quantile is estimated by

ξ̂τ = arg min
ξ∈R

n∑
t=1

ρτ (yt − ξ) , (2.5)

where ρτ (x) = x [τ − 1 (x < 0)] is the quantile loss function.
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The magnitude of the long-run variance is well known for this case, E
[
(
∑n

t=1 yt)
2
]
∼ n3−2β =

n1+2d, so let

σn = n1−(β−1/2)`(n) = n1/2+d`(n).

In the sequel, we drop the slowly varying function `(n) and use the normalizer n1/2+d ∼ σn

indicating the asymptotic equivalence. The function `(n) may appear in the form of c2
d below.

However, we propose a bootstrap-based inference, so that ignoring it does not cause any difference

in the theoretical development.

We use the following classical central limit theorem for linear processes (e.g., Ibragimov and

Linnik, 1971; Theorem 18.6.5).

Theorem 2.1 (CLT for long-memory linear process) Suppose that yt follows the long memory

process (2.1) under Assumptions 1 and 2. Then, as n→∞

1

n
1
2

+d

n∑
t=1

yt →d Zd ≡ N
(
0, c2

d

)
, where c2

d = lim
n

var

(∑n
t=1 yt

n
1
2

+d

)
.

Here, c2
d is the long-run variance that depends on d.

From Ho and Hsing (1996. See also Beutner et al., 2012; Theorem 2.1), we have the following

sample quantile asymptotic normality. Although this result is already established in the literature,

we provide a proof using (2.4), Knight (1998)’s identity and the Convexity Lemma (Pollard, 1991)

in Appendix. A similar proof will also carry over to URPs and MBB-URPs for quantilograms in

Section 3 and Section 4 so this paper is theoretically self-contained.

Theorem 2.2 (CLT for sample quantile under long memory) Suppose that yt follows the long-

memory process (2.1) under Assumptions 1 and 2. Then, the solution of (2.5) has the following

limit theory as n→∞

n
1
2
−d
(
ξ̂τ − ξτ

)
=

1

n
1
2

+d

n∑
t=1

yt + op(1)→d Zd ≡ N
(
0, c2

d

)
,

where cd is given in Theorem 2.1.

Remark 2.2 In the long-memory case, the limit theory of the sample quantile is the same as that
of the sample mean. This is known from the literature, and is one example of the so-called Uniform

Reduction Principle (URP) for the M-estimation under long memory (Dehling and Taqqu, 1989).

See Giraitis et al. (2012; Section 10) for the textbook treatment. Therefore we will refer to Theorem

2.2 as the URP for sample quantile.

3 Limit Theory

In this section, we develop limit theories for the sample analogues of the quantilogram and the

cross-quantilogram. A similar technique of the proof of Theorem 2.2 delivers the quantilogram
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limit theory under long memory. The analogous URP results for both quantilograms are obtained.

3.1 URP for quantilogram and limit theory

We first define the unscaled sample and the population quantilogram, respectively, as

γ̃τk (ξ) =
1

n

n∑
t=k+1

ψτ (yt − ξ)ψτ (yt−k − ξ) and γτk (ξ) = E [ψτ (yt − ξ)ψτ (yt−k − ξ)] .

Then the normalized sample quantilogram is defined as:

ρ̂τk =

1
n

∑n
t=k+1 ψτ

(
yt − ξ̂τ

)
ψτ

(
yt−k − ξ̂τ

)
√

1
n

∑n
t=k+1 ψ

2
τ

(
yt − ξ̂τ

)√
1
n

∑n
t=k+1 ψ

2
τ

(
yt−k − ξ̂τ

) (3.1)

=
γ̃τk

(
ξ̂τ

)
√

1
n

∑n
t=k+1 ψ

2
τ

(
yt − ξ̂τ

)√
1
n

∑n
t=k+1 ψ

2
τ

(
yt−k − ξ̂τ

) ,
where ξ̂τ is the estimated sample quantile from (2.5). It is straightforward to show (see Lemma 8.1 in

Appendix) the law of large number for the denominators: 1
n

∑n
t=k+1 ψ

2
τ

(
yt − ξ̂τ

)
= τ (1− τ)+op(1)

and 1
n

∑n
t=k+1 ψ

2
τ

(
yt−k − ξ̂τ

)
= τ (1− τ) + op(1). Hence, the limit theory of ρ̂τk mainly follows

from that of γ̃τk
(
ξ̂τ

)
.

To study the asymptotic null distribution of γ̃τk
(
ξ̂τ

)
, let γτk (ξτ ) = E [ψτ (yt − ξ)ψτ (yt−k − ξ)]

be a value imposed by a given null hypothesis H0. For example, H0 : γτk (ξτ ) = 0 would be an

interesting hypothesis for testing directional predictability at quantiles.

For any given τ ∈ (0, 1) , with a mean value ξ̄ between ξ̂τ and ξτ ,(
γ̃τk

(
ξ̂τ

)
− γτk (ξτ )

)
=
(
γ̃τk

(
ξ̂τ

)
− γτk

(
ξ̂τ

))
+
(
γτk

(
ξ̂τ

)
− γτk (ξ)

)
(3.2)

=
(
γ̃τk

(
ξ̂τ

)
− γτk

(
ξ̂τ

))
+

(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξ̄

)(
ξ̂τ − ξτ

)
,

:= A+ B. (3.3)

It is also not hard to show (see the proof of 3.4 in Appendix) that

n
1
2
−d

n∑
t=k+1

{ψτ (yt − ξτ )ψτ (yt−k − ξτ )− E [ψτ (yt − ξτ )ψτ (yt−k − ξτ )]}

=
{
F (1) (ξτ )

}2
∑n

t=k+1 (ytyt−k − E (ytyt−k))

n
1
2

+d
+ op(1) = op(1), (3.4)

so the term A from (3.3) is degenerate. Hence the limit theory of B =

(
∂γτk(ξ)
∂ξ

∣∣∣
ξ=ξ̄

)
n
1
2
−d
(
ξ̂τ − ξτ

)
7



dominates among (3.2).

Note that γτk (ξ) = E [ψτ (yt − ξ)ψτ (yt−k − ξ)] = Pr (yt < ξ, yt−k < ξ) − 2τF (ξ) + τ2 is con-

tinuously differentiable in ξ under Assumption A2. By the continuous mapping theorem,(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξ̄

)
=

(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξτ

)
+ op(1).

Let us define this quantity as:

∇Gτk :=
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξτ

. (3.5)

Together with Theorem 2.2, we now have the following URP for the quantilogram.

Theorem 3.1 (URP for quantilogram) Suppose that yt follows the long-memory process (2.1) un-
der Assumptions 1 and 2. Then,

n
1
2
−d
(
γ̃τk

(
ξ̂τ

)
− γτk (ξτ )

)
= (∇Gτk)n

1
2
−d
(
ξ̂τ − ξτ

)
+ op(1) = (∇Gτk)

1

n
1
2

+d

n∑
t=1

yt + op(1)

Remark 3.1 In the weak dependent cases, the first term A in (3.2) has the same order of mag-

nitude as the second term B, so both the terms jointly determine the limit theory of the quantilo-
gram. However, in the long-memory case, it has a smaller order so is degenerate after a proper

normalization. As a result, the joint distribution information between yt and yt−k only appears

in
(
∂γτk(ξ)
∂ξ

∣∣∣
ξ=ξ̄

)
and the quantilogram limit theory follows from the limit theory of the sample

quantile. For comparison, as given in Theorem 2.2, if we look at the sample quantile under long

memory,

n
1
2
−d
(
ξ̂τ − ξτ

)
∼
(
F (1)(ξτ )

F (1)(ξτ )

)
︸ ︷︷ ︸×

(∑n
t=1 yt

n
1
2

+d

)
︸ ︷︷ ︸ =

∑n
t=1 yt

n
1
2+d

quantile info mean info

so the marginal quantile information is completely lost due to the strong dependence, and each sam-

ple quantile is asymptotically equivalent to the mean (URP). Likewise, if we look at the quantilogram
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under long memory

n

n
1
2+d

(
γ̃τk

(
ξ̂τ

)
− γτk (ξτ )

)
∼
{
F (1) (ξτ )

}2∑n
t=k+1 (ytyt−k − E (ytyt−k))

n
1
2

+d︸ ︷︷ ︸+

(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξ̄

)
︸ ︷︷ ︸× n

1
2
−d
(
ξ̂τ − ξτ

)
︸ ︷︷ ︸

joint info I joint info II marginal info

∼
(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξ̄

)
︸ ︷︷ ︸×

(
F (1)(ξτ )

F (1)(ξτ )

)
︸ ︷︷ ︸×

(∑n
t=1 yt

n
1
2

+d

)
︸ ︷︷ ︸

joint info II quantile info mean info

∼
(
∂γτk (ξ)

∂ξ

∣∣∣∣
ξ=ξ̄

)
︸ ︷︷ ︸×

(∑n
t=1 yt

n
1
2

+d

)
︸ ︷︷ ︸

joint info II mean info

so the joint quantile information is also substantially lost due to the strong dependence. We

may naturally label this result as URP for quantilograms in this sense. The first term (joint info I)

is essentially the covariance between yt and yt−k, so this information, in stark contrast to the weak

dependence cases, is asymptotically negligible under the strong dependence. The difference between

the correlogram and quantilogram is therefore even more prominent under long memory.

Collecting the results from Theorem 2.1, Theorem 3.1 and Lemma 8.1, we have the following

URP:

n
1
2
−d (ρ̂τk − ρτk) =

(
∂γτk(ξ)
∂ξ

∣∣∣
ξ=ξτ

)
τ (1− τ)

Zd + op(1),

directly giving us the CLT below.

Theorem 3.2 (CLT for quantilogram under long memory) Suppose that yt follows the long-memory
process (2.1) under Assumptions 1 and 2. Then, as n→∞

n
1
2
−d (ρ̂τk − ρτk)→d N

(
0,
c2
d (∇Gτk)2

τ2 (1− τ)2

)
,

where ∇Gτk = ∂γτk(ξ)
∂ξ

∣∣∣
ξ=ξτ

and cd is given in Theorem 2.1.

Remark 3.2 The rate of convergence is slower than
√
n as expected. The test statistics is non-

pivotal due to the presence of d, c2
d and the following density-like nuisance parameter

∇Gτk =
∂ Pr (yt < ξ, yt−k < ξ)

∂ξ

∣∣∣∣
ξ=ξτ

− 2τF (1) (ξτ ) .

In principle, all the nuisance parameters are estimable. However, we propose a bootstrap infer-

ence method in Section 4 that obviates the need for direct estimation of these diffi cult-to-estimate
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quantities.

3.2 Cross-quantilogram limit theory

We next provide the limit theory for the cross-quantilogram. To motivate from an empirically

relevant scenario, let y1t be the geometric (log) returns with its memory parameter d1 = 0 in the

sense that E
[(

1√
n

∑n
t=1 yt

)2
]

= O(1), which we will denote as y1t ∼ I(0). Let y2t be the (log)

volatility with d2 ∈ (0, 1/2). The risk-return relation is commonly estimated by the predictive

regression model

y1,t+1 = α+ βy2t + ut,

although the evidence from this “raw" mean regression is very weak, see Bollerslev et al. (2013),

for example. Some possible reasons include: (i) the unbalanced nature of the regression, and (ii)

the weak mean-to-mean linear relation. The cross-quantilogram can capture a nonlinear predictive

relation by providing a complete dependence structure across the quantile-to-quantile relations. For

many predictors, there is ample empirical evidence that y2t ∼ I(d2) with d2 ∈ (0, 1/2), but stock

returns y1t are generally assumed to be I(0). Let d2 = d for simplicity.

We revisit the cross-quantilogram limit theory under this scenario. Define

γ̃(τ1,τ2),k (ξ1, ξ2) =
1

n

n∑
t=k+1

ψτ1 (y1,t − ξ1)ψτ2 (y2,t−k − ξ2) ,

γ(τ1,τ2),k (ξ1, ξ2) = E
[
ψτ1 (y1,t − ξ1)ψτ2 (y2,t−k − ξ2)

]
.

Note that γ(τ1,τ2),k (ξ1, ξ2) now has two arguments - ξ1 (evaluated at a marginal τ1-quantile of y1)

and ξ2 (evaluated at a marginal τ2-quantile of y2). From a similar decomposition as in (3.2),

γ̃(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ1,τ1 , ξ2,τ2

)
(3.6)

=γ̃(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
+ γ(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ1,τ1 , ξ2,τ2

)
=γ̃(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
+

(
∂γ(τ1,τ2),k (ξ1, ξ2)

∂ (ξ1, ξ2)

∣∣∣∣
(ξ1,ξ2)=ξ̄

)[
ξ̂1,τ1 − ξ1,τ1

ξ̂2,τ2 − ξ2,τ2

]
,

where(
∂γ(τ1,τ2),k (ξ1, ξ2)

∂ (ξ1, ξ2)

∣∣∣∣
(ξ1,ξ2)=ξ̄

)
=

(
∂γ(τ1,τ2),k (ξ1, ξ2)

∂ξ1

∣∣∣∣
ξ1=ξ̄1

,
∂γ(τ1,τ2),k (ξ1, ξ2)

∂ξ2

∣∣∣∣
ξ2=ξ̄2

)
(3.7)

:= (∇Gτk,1,∇Gτk,2)

following notation from Section 3.1.

Using Theorem 2.2,

n
1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
10



=
1

F
(1)
2

(
ξ2,τ2

) 1

n
1
2

+d

n∑
t=1

(
τ2 − 1

(
y2t < ξ2,τ2

))
+ op(1)

→dcdZ ≡ N
(
0, c2

d

)
.

Since y1 is a short-memory I(0) variable, from the conventional root-n CLT we have

n
1
2

(
ξ̂1,τ1 − ξ1,τ1

)
=

1

F
(1)
1

(
ξ1,τ1

) 1

n
1
2

n∑
t=1

(
τ1 − 1

(
y1t < ξ1,τ1

))
+ op(1)

→dcZ ≡ N
(
0, c2

)
,

where c2 = F
(1)
1

(
ξ1,τ1

)−2 {
τ1(1− τ1) + 2

∑∞
k=1Cov

(
1
(
y10 < ξ1,τ1

)
,1
(
y1k < ξ1,τ1

))}
. From this

analysis, we can conclude that the long-memory time series will determine the first order asymptotic

theory (with a slower convergence rate). To see this,

∇Gτk,1n
1
2
−d
(
ξ̂1,τ1 − ξ1,τ1

)
+∇Gτk,2n

1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
=∇Gτk,2n

1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
+Op

(
n−d

)
=∇Gτk,2n

1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
+ op(1).

Hence, the longer-memory term n
1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
dominates. Similarly to Section 3.1, we can

show the first term in (3.6) is negligible (See proof of 3.8 in Appendix),

n

n
1
2

+d

(
γ̃(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

))
= op(1). (3.8)

Therefore, we have the following URP for the cross-quantilogram:

n

n
1
2

+d

(
γ̃(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γ(τ1,τ2),k

(
ξ̂1,τ1 , ξ̂2,τ2

))
= ∇Gτk,2n

1
2
−d
(
ξ̂2,τ2 − ξ2,τ2

)
+ op(1).

Collecting these results, we have the CLT for the cross-quantilogram.

Theorem 3.3 (CLT for cross-quantilogram under long memory) Suppose that y1t ∼ I(0) and

y2t ∼ I(d) and that Assumptions 1 and 2 hold. Then,

n
1
2
−d
(
ρ̂(τ1,τ2),k − ρ(τ1,τ2),k

)
→d N

(
0,

c2
d (∇Gτk,2)2√

τ1 (1− τ1) τ2 (1− τ2)

)
,

where ∇Gτk,2 is defined in (3.7) , and cd is given in Theorem 2.1 with yt = y2t.

Remark 3.3 In a similar fashion, between yt ∼ I(dy) and xt ∼ I(dx), the process with a stronger

memory will dominate the limit theory. As in Han et al. (2016), we could also consider the cross-
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quantilogram based on estimated residuals. If we let utτ = yt−Xtβ̂τ with yt ∼ I(dy) and Xt ∼ I(dx),

we may expect a fractional cointegration, such as du < min (dy, dx). When du = 0 (short memory

of the estimated residuals), the results of Han et al. (2016) will serve the purpose since it is now

the cross-quantilogram between short-memory time series. When du ∈ (0, 1/2), the result of this

paper directly applies.

Remark 3.4 The current theoretical development is for a single k. To use the variance ratio/Box-
Pierce type statistics, we can extend our theory for multiple k’s. The theoretical extension should be

straightforward, given that URPs for the quantilogram and the cross-quantilogram provide the limit

theories of (cross-) quantilograms as essentially the asymptotics of the scaled means. The scales

∇Gτk and ∇Gτk,2 will only differ across the multiple k’s, so the join limit theory with multiple k’s
easily follows.

4 Statistical Inference

There are several inferential methods with potential validity for the quantilograms under long

memory. For example, we may directly estimate the nuisance parameters and use the first order

asymptotic normal distributions. Alternatively we can use resampling methods, such as the block

bootstrap. In this paper, we consider the block bootstrap methods in view of their wide usage

and flexibility. Moreover, as mentioned in Remark 2.2, the presence of the density-like nuisance

parameter makes the direct estimation method less attractive, in view of the scarce data information

at tails.

The moving block bootstrap (Kunsch, 1989; Liu and Singh, 1992) is a resampling method that

can accommodate time series data with unknown dependence structure. The main development,

however, has been mostly focused on weakly dependent data. In this section, we adopt a version

of moving block bootstrap theory into our framework and prove its validity under long memory.

4.1 Block Bootstrap for Quantilogram: MBB-URP

We study the moving block bootstrap (MBB) inference method for the quantilogram under long

memory. Kim and Nordman (2011) studied the validity of MBB inference for the sample mean of a

long memory process similar to (2.1). Their main idea concerns properly normalizing the bootstrap

variance estimator using an inflation factor that is due to long memory, following Lahiri (2003).

In spite of the nonlinearity of our quantilogram statistics, a similar strategy can be employed in

our framework using the bootstrap version of the URP (MBB-URP) for quantilograms. Through

this MBB-URP for the quantile transformation of long-memory process, the MBB quantilogram

statistics are essentially the same as those of a scaled version of the MBB mean, so adjusting the

variance inflation factor becomes possible.

We now explain the MBB procedure, following standard notation in the literature (e.g., Kreiss

and Paparoditis, 2011). Let ` < n be an integer block length, and let B(t) = (yt, yt+1,...,yt+`−1)

12



denote a data block with starting point t ∈ {1, ..., n− `+ 1} .The block bootstrap is sampling
b = bn/`c blocks randomly with replacement from all possible blocks, and concatenating the boot-

strapped sample. Resampling overlapping blocks from {B(t) : t = 1, ..., n− `+ 1} yields MBB sam-
ple y∗1, ..., y

∗
N , of size N ≡ b`, which is defined as (B(I1), ...,B(Ib)). I ′is are iid discrete uniform

variables on {1, ..., n− `+ 1}. Let P ∗, E∗ and var∗ denote probability, expectation and variance of

the bootstrap distribution conditional on the original sample.

Using the block bootstrap sample, we estimate the MBB sample quantile,

ξ̂
∗
τ = arg min

ξ∈R

N∑
t=1

ρτ (y∗t − ξ) (4.1)

and compute the MBB quantile autocovariance

γ̃∗τk

(
ξ̂
∗
τ

)
=

1

N

N∑
t=k+1

ψτ

(
y∗t − ξ̂

∗
τ

)
ψτ

(
y∗t−k − ξ̂

∗
τ

)
. (4.2)

In a similar fashion, the MBB quantilogram ρ̂∗τk is defined as

ρ̂∗τk =

1
N

∑N
t=k+1 ψτ

(
y∗t − ξ̂

∗
τ

)
ψτ

(
y∗t−k − ξ̂

∗
τ

)
√

1
N

∑N
t=k+1 ψ

2
τ

(
y∗t − ξ̂

∗
τ

)√
1
N

∑N
t=k+1 ψ

2
τ

(
y∗t−k − ξ̂

∗
τ

)
=

γ̃∗τk

(
ξ̂
∗
τ

)
√

1
N

∑N
t=k+1 ψ

2
τ

(
y∗t − ξ̂

∗
τ

)√
1
N

∑N
t=k+1 ψ

2
τ

(
y∗t−k − ξ̂

∗
τ

) .
Similarly to Section 3, the MBB sample quantile, quantilogram and cross-quantilogram limit

theories follow from MBB-URP’s. Bootstrapping sample quantiles under weak dependence has

been studied (e.g., Sun and Lahiri, 2006). However, MBB consistency for sample quantile as in

(4.1) under long memory is new and of independent interest. Most existing works use subsampling

for this type of nonlinear statistics under long memory to accommodate the case of non-central limit

theorem (hence bootstrap is likely to fail). In view of the CLT’s under long memory established in

this paper (Theorem 3.2 and 3.3), we prove the bootstrap consistency of the MBB sample quantile,

the quantilogram and the cross-quantilogram in the presence of long memory.

We first establish the MBB-URP for the sample quantile under long memory, which is new in

the literature to the best of our knowledge.

Theorem 4.1 (MBB-URP for sample quantile) Suppose that yt follows the long-memory process
(2.1) under Assumptions 1 and 2. Then,

N1/2`−d
(
ξ̂
∗
τ − ξ̂τ

)
=

∑N
t=1 y

∗
t

N
1
2 `d

+ op(1).
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Using Theorem 4.1 and the arguments from Section 3.1, we have the following MBB-URP for

the (unscaled) quantilogram, which determines the main limit theory and MBB consistency of the

quantilogram.

Theorem 4.2 (MBB-URP for quantilogram) Suppose that (2.1) and Assumptions 1 and 2 hold.
Then, as n→∞

N1/2`−d
(
γ̃∗τk

(
ξ̂
∗
τ

)
− γ̃τk

(
ξ̂τ

))
= ∇Gτk

(∑N
t=1 y

∗
t

N
1
2 `d

)
+ op(1)

→d N(0, (∇Gτk)2 c2
d).

As a result of this MBB-URP for quantilogram, we have the following CLT

N1/2`−d (ρ̂∗τk − ρ̂τk)→d N

(
0,
c2
d (∇Gτk)2

τ2 (1− τ)2

)
,

leading to the MBB consistency of the quantilogram as given below.

Theorem 4.3 (MBB consistency for quantilogram) Suppose that yt follows the long-memory
process (2.1) under Assumptions 1 and 2, and that the rate conditions N = O(n) and ` = o(n)

hold. Then,

sup
x∈R

∣∣∣P ∗ (N1/2`−d (ρ̂∗τk − ρ̂τk) ≤ x
)
− P

(
n
1
2
−d (ρ̂τk − ρτk) ≤ x

)∣∣∣→p 0.

Remark 4.1 From Theorem 4.3, the MBB percentile methods by Efron (1979) are valid for con-

fidence interval construction for quantilograms. As a result, we are able to avoid estimating the

nuisance parameters in the asymptotic null distributions, except for the memory parameter d. The

estimation for d is readily available from the literature (Geweke and Porter-Hudak, 1983; Robinson,

1995; or Shimotsu and Phillips, 2005).

Remark 4.2 It should be possible to allow ` = `(n) to be data dependent. For example, we may

assume P (L(n) ≤ `n ≤ U(n)) → 1 where L(n) and U(n) are fixed sequences satisfying conditions

such as 1 ≤ L(n) ≤ U(n) ≤ n and L(n)→∞ and U(n) = o(n). In practice, data dependent rules

suggested for weakly dependent time series might be used in our context, following Lahiri (2003)

and Zhang et al. (2013), for example.

4.2 Block bootstrap for cross-quantilogram

The extension of the results from Section 4.1 to the cross-quantilogram is straightforward. For

simplicity, let τ = (τ1, τ2) and define the bootstrap version of unscaled cross-quantilogram

γ̃∗(τ1,τ2),k

(
ξ̂
∗
1,τ1 , ξ̂

∗
2,τ2

)
=

1

N

N∑
t=k+1

ψτ1

(
y∗1,t − ξ̂

∗
1,τ1

)
ψτ2

(
y∗2,t−k − ξ̂

∗
2,τ2

)
.
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The MBB cross-quantilogram ρ̂∗(τ1,τ2),k

(
ξ̂
∗
1,τ1 , ξ̂

∗
2,τ2

)
is defined analogously. From the above scenario

in Section 3.2 (i.e., y2t ∼ I(d2) with d2 ∈ (0, 1/2), but y1t is I(0) or I (d1) with d1 < d2), the limit

theory of y2t (with the stronger memory hence the slower convergence) dominates the asymptotic

theory.

Theorem 4.4 (MBB CLT and consistency for cross-quantilogram) Suppose that yt follows
the long-memory process (2.1) under Assumptions 1 and 2, and that the rate conditions N = O(n)

and ` = o(n) hold. Then,

N1/2`−d
(
ρ̂∗(τ1,τ2),k

(
ξ̂
∗
τ

)
− ρ̂(τ1,τ2),k

)
→d N

(
0,

c2
d (∇Gτk,2)2√

τ1 (1− τ1) τ2 (1− τ2)

)
,

so that

sup
x∈R

∣∣∣P ∗ (N1/2`−d
(
ρ̂∗(τ1,τ2),k

(
ξ̂
∗
τ

)
− ρ̂(τ1,τ2),k

)
≤ x

)
− P

(
n
1
2
−d
(
ρ̂(τ1,τ2),k − ρ(τ1,τ2),k

)
≤ x

)∣∣∣→p 0.

To construct a 95% bootstrap CI centered at zero, we use the bootstrap critical values based on

Theorem 4.4. Out of 1000 bootstrap replications, we use the 0.025 and 0.975 empirical quantiles

of the simulated values of N1/2`−d
(
ρ̂∗(τ1,τ2),k

(
ξ̂
∗
τ

)
− ρ̂(τ1,τ2),k

)
with the estimated d.

To compare with the test proposed in Han et al. (2016), we also consider a quadratic version

of Theorem 4.4. Under H0 : ρτk = 0,

sup
x∈R

∣∣∣P ∗ (Q̂∗τk ≤ x)− P (Qτk ≤ x)
∣∣∣→p 0

where

Q̂∗τk = N`−2d
(
ρ̂∗(τ1,τ2),k

(
ξ̂
∗
τ

)
− ρ̂(τ1,τ2),k

)2
(4.3)

and

Qτk = n1−2d
(
ρ̂(τ1,τ2),k − ρ(τ1,τ2),k

)2
.

Hence we can construct the one-sided test from this quadratic form to test H0 : ρτk = 0.

We investigate the finite sample performance of the bootstrap test statistics Q̂∗τk in the next

section. In particular, we compare our new test with the test from Han et al. (2016), which was

designed for weakly dependent (strong mixing) processes.

5 Monte Carlo Simulation

In this section we perform a small Monte Carlo simulation to evaluate the theory developed in

Sections 3 and 4. We generate bivariate Gaussian innovations,(
ε1t

ε2t

)
∼ iid N

((
0

0

)
,

(
1 φ

φ 1

))
,
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and construct the fractionally integrated processes (ARFIMA(0,d,0)):

log σ2
1t = y1t = (1− L)−d1 ε1t =

∞∑
j=0

a1,jε1t−j , and

log σ2
2t = y2t = µ2 + (1− L)−d2 ε2t = µ2 +

∞∑
j=0

a2,jε2t−j

where µ2 = 1, a1j = j−β1 with β1 = 1− d1 ∈
(

1
2 , 1
)
and a2j = j−β2 with β2 = 1− d2 ∈

(
1
2 , 1
)
. Note

that σ1t = exp
(

1
2y1t

)
. Now define a long memory stochastic volatility (LMSV) process based on

y1t:

y3t = µ3 + et · σ1t = et · exp

(
1

2
y1t

)
, and et ∼ iid N (0, 1) .

This simulation environment is particularly designed to emulate a financial return series (y3t) and

a long memory predictor (y2t), and their quantile-to-quantile predictive relations, as motivated in

the introduction. In Section 6 we indeed perform the data analysis in this type of scenario.

For any k ≥ 1 with φ = 0 (so ε1t and ε2t are independent), we have corr (y3t+k, y2t) =

corr (y3t, y2t−k) = 0. Similarly, from the imposed independence between ε1t and ε2t, we have

ρτk (y3t+k, y2t) = 0

for any k ≥ 1, regardless of the values of d1 and d2.

We simulate the above scenario, with k = 1 hence one lagged relation. It is straightforward

to extend the analysis to a larger k > 1 but the most common practice in the risk-return relation

literature is to use a one-lagged relation. We try all the possible combination of (d1, d2) from

di ∈ {0, 0.25, 0.45, 0.49}, i = 1, 2. As we see from Table 6.3 below, there are several stationary long

memory predictors in this range in practice. The simulation result in this section thus supports

the empirical Section 6. The sample size and the number of replications are both 1,000, and 11

quantile levels are considered. Table 5.1 and 5.2 below show the results from the original test of

Han et al. (2016) and those of the newly developed MBB procedure in this paper1. The nominal

size is 0.05 for all cases.

As we see from the tables, there are noticeable improvement regarding the empirical size controls.

When we look at the tails such as 5%, 10% or 20% the improvement is quite substantial under

the stronger memories like d1 = d2 = 0.45 or greater. The usual quantiles of interest are those in

the left tail, which relate to the economic risk management function. Therefore this improvement

indicates the importance to accommodate long-memory property of the underlying processes when

investigating the quantilogram and the cross-quantilogram.

Remark 5.1 From the theoretical developments in Section 4, our new MBB implementation only

1To use the result of (4.3), we use the block length ` = n1/2 following the suggestion of Lahiri (2003) and Kim
and Nordman (2011) and the known d values. The results with the estimated d are not quantitatively different and
available upon requests.
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Table 5.1: Empirical Size From the test in Han et al. (2016) (φ = 0)
d1 d2 τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
0 0 0.146 0.063 0.035 0.03 0.027 0.024 0.034 0.037 0.043 0.056 0.164
0 0.25 0.164 0.074 0.038 0.03 0.03 0.031 0.036 0.029 0.028 0.052 0.176
0 0.45 0.154 0.074 0.038 0.033 0.029 0.033 0.026 0.04 0.044 0.051 0.18
0 0.49 0.153 0.054 0.027 0.04 0.033 0.035 0.04 0.047 0.041 0.053 0.173
0.25 0 0.15 0.069 0.034 0.044 0.042 0.036 0.048 0.035 0.041 0.066 0.182
0.25 0.25 0.159 0.067 0.038 0.037 0.044 0.036 0.038 0.036 0.039 0.042 0.167
0.25 0.45 0.168 0.076 0.048 0.043 0.039 0.033 0.035 0.035 0.057 0.067 0.208
0.25 0.49 0.161 0.078 0.054 0.043 0.044 0.033 0.029 0.047 0.045 0.065 0.182
0.45 0 0.149 0.069 0.043 0.046 0.036 0.052 0.04 0.037 0.042 0.057 0.175
0.45 0.25 0.166 0.067 0.043 0.038 0.045 0.034 0.037 0.04 0.047 0.064 0.181
0.45 0.45 0.166 0.1 0.066 0.059 0.045 0.037 0.044 0.061 0.067 0.091 0.198
0.45 0.49 0.182 0.11 0.089 0.072 0.049 0.035 0.059 0.064 0.079 0.095 0.204
0.49 0 0.14 0.062 0.039 0.033 0.033 0.042 0.047 0.045 0.036 0.056 0.186
0.49 0.25 0.163 0.075 0.044 0.043 0.037 0.033 0.049 0.045 0.046 0.063 0.179
0.49 0.45 0.19 0.136 0.083 0.061 0.052 0.038 0.055 0.064 0.087 0.099 0.182
0.49 0.49 0.199 0.142 0.098 0.074 0.041 0.028 0.047 0.073 0.1 0.103 0.217

Table 5.2: Empirical Size from the new MBB procedure (φ = 0)
d1 d2 τ = 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
0 0 0.051 0.053 0.048 0.033 0.03 0.034 0.033 0.034 0.036 0.046 0.077
0 0.25 0.066 0.046 0.042 0.052 0.043 0.044 0.037 0.043 0.039 0.045 0.067
0 0.45 0.048 0.036 0.029 0.04 0.038 0.03 0.034 0.038 0.046 0.034 0.065
0 0.49 0.042 0.03 0.025 0.032 0.034 0.032 0.024 0.044 0.034 0.038 0.062
0.25 0 0.062 0.045 0.039 0.047 0.045 0.05 0.052 0.044 0.039 0.055 0.086
0.25 0.25 0.069 0.052 0.042 0.045 0.043 0.039 0.03 0.037 0.043 0.051 0.069
0.25 0.45 0.052 0.037 0.039 0.029 0.03 0.021 0.028 0.039 0.041 0.046 0.062
0.25 0.49 0.072 0.041 0.05 0.045 0.053 0.035 0.035 0.042 0.034 0.047 0.06
0.45 0 0.045 0.054 0.045 0.049 0.048 0.049 0.047 0.038 0.05 0.045 0.08
0.45 0.25 0.06 0.042 0.038 0.041 0.05 0.043 0.04 0.043 0.054 0.039 0.088
0.45 0.45 0.065 0.052 0.054 0.046 0.039 0.032 0.035 0.061 0.057 0.061 0.07
0.45 0.49 0.071 0.084 0.058 0.065 0.053 0.031 0.043 0.056 0.064 0.083 0.096
0.49 0 0.058 0.047 0.053 0.049 0.055 0.041 0.053 0.044 0.047 0.041 0.077
0.49 0.25 0.065 0.047 0.048 0.04 0.043 0.048 0.046 0.043 0.045 0.041 0.063
0.49 0.45 0.079 0.078 0.078 0.071 0.048 0.036 0.047 0.057 0.077 0.075 0.09
0.49 0.49 0.083 0.073 0.078 0.066 0.041 0.025 0.049 0.062 0.075 0.063 0.082
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requires the (estimated) d to properly normalize the test statistics. Han et al. (2016) used the

stationary bootstrap of Politis and Romano (1994) that uses the standardization before applying

bootstrap. Our test statistics, on the other hand, do not use any standardization.

6 Empirical Illustration

6.1 Predicting equity quantile-premium

The equity risk premium is a key quantity in many asset pricing models and risk management

for practitioners. The common time series econometric practice is to find some significant lagged

predictors for the risk premium of financial returns using the mean regression. There have been

recent suggestions, however, to analyze predictive evidence for stock return quantiles away from

the median. See, e.g., Fan and Lee (2017), Lee (2016) and Maynard et al. (2011) for the quantile

regression examples, and Han et al. (2016) for the cross-quantilogram analysis. In this section,

we look at the predictive relations between the quantile of risk premium (quantile-premium) and

the quantiles of lagged predictors with long memory. We investigate an extended Welch and Goyal

(2008) monthly data set, and pay special attention to a selected set of long memory predictors. In

Table 6.3, PP and ADF are Phillips-Perron (1988) and Augmented Dickey-Fuller (1979) tests for

unit root, respectively. GPH, LW and ELW are Geweke and Porter-Hudak (1983), Robinson (1995)

and Shimotsu and Phillips (2005) estimations for long memory parameters (and their confidence

intervals), repectively. Please see Section 8.2 for the data description, which is from Welch and

Goyal (2008).

Table 6.1: Predicting ERP Using Stock Variance (1934.1 - 2015.12)
τ vecQ.BP vecCV.BP vecQ.LB vecCV.LB
0.05 6.258122* 3.193047 6.298251* 3.213521
0.1 4.625497* 2.969979 4.655157* 2.989023
0.2 7.050775* 2.106086 7.095987* 2.119590
0.3 6.889871* 2.143346 6.934051* 2.157090
0.4 8.928027* 2.969750 8.985276* 2.988793
0.5 9.600142* 3.842038 9.661701* 3.866674
0.6 12.680617* 4.921545 12.761929* 4.953103
0.7 11.678003* 3.470186 11.752885* 3.492437
0.8 9.148741* 2.940431 9.207406* 2.959286
0.9 4.254994 4.387482 4.282278 4.415616
0.95 5.133685* 2.697254 5.166603* 2.714549

From Table 6.3, we conclude that the commonly used persistent predictors are typically: (i)

unit-root type nonstationary or (ii) nonstationary long memory, or (iii) stationary long memory.

We restrict our attention to selected stationary long memory predictors (svar and infl), and their

quantile-to-quantile predictive relations with the equity premium (rp-div). From Figure A.1 in

Appendix (Section 8.2), some meaningful predictive relations are expected.
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Table 6.2: Predicting ERP Using Inflation (1934.1 - 2015.12)
τ vecQ.BP vecCV.BP vecQ.LB vecCV.LB

tau=0.05 1.577830 1.776050 1.603949 1.805450
0.1 3.145840* 1.524904 3.197916* 1.550147
0.2 3.350293* 1.831532 3.405753* 1.861851
0.3 2.116541* 1.887074 2.151578* 1.918312
0.4 1.363168 1.595744 1.385734 1.622160
0.5 0.810929 1.695504 0.824353 1.723571
0.6 0.032237 1.665229 0.032771 1.692794
0.7 0.130669 1.942301 0.132832 1.974453
0.8 0.021810 1.506768 0.022171 1.531711
0.9 0.511148 1.182674 0.519609 1.202252
0.95 0.224654 1.191095 0.228373 1.210813

In Table 6.1, vecQ.BP is from (4.3), where vecCV.BP is the critical value from the moving

block bootstrap. VecQ.LB (Ljung-Box statistic) is the usual finite sample adjustment of VecQ.BP

(Box-Pierce statistic). Similarly for Table 6.2. All illustration uses the lag of 1 (k = 1), hence a

one-step ahead quantile predictive relation.

As we see from Tables 6.1 and 6.2, the quantile-to-quantile predictive relation appears more

prominently in the left tails than at the median when using inflation (infl). Moreover, there are

improved predictive evidences at almost all quantiles when using predictors such as stock variance

(svar). This may partly explain the weak risk-return relation from the mean-to-mean analysis and

the resulting "stock return predictability puzzle"; we have been looking at a situation where there

is not much predictability. The result is in line with the recent empirical results. Importantly, the

newly proposed MBB method enables valid inference for quantile-to-quantile predictive relations

in the presence of long memory, thereby enriching the scope of applications of the quantilograms.

7 Conclusion

This paper investigates the quantilogram and cross-quantilogram estimation, limit theory and the

statistical inference when the underlying processes exhibit long-range dependence. We show that

the rate of convergence is slower than the usual weakly dependent cases. Meanwhile asymptotic

normality still holds under a set of reasonable assumptions. The proper normalization is verified in

the limit theory, and we construct a valid moving block bootstrap (MBB) inference for testing the

null hypothesis that the quantilogram or cross-quantilogram is zero. While developing the theories,

various new uniform reduction principles (URPs) for the sample quantile and quantilograms are

developed. Our simulation results indicate the new MBB quantilogram inference has good size

control under some empirically relevant scenarios. The extended data set of Welch and Goyal

(2008) is studied to illustrate the benefit of the new inferential methods.

19



Table 6.3: Unit Root and Long Memory Tests (1934.1-2015.12)

PP ADF d̂ (GPH) d̂ (LW) d̂ (ELW)
rp-div 0.0100 0.0100 0.2421 0.2612 0.2566

(-0.0270, 0.5112) (0.2183, 0.304) (0.2138, 0.2994)
dp 0.0853 0.1395 0.6577 0.9401 0.8862

(0.3886, 0.9268) (0.8972, 0.9829) (0.8434, 0.9291)
dy 0.0985 0.1714 0.6943 0.9319 0.874

(0.4252, 0.9634) (0.8891, 0.9747) (0.8312, 0.9168)
ep 0.0100 0.0100 0.6755 0.744 0.7658

(0.4064, 0.9446) (0.7012, 0.7868) (0.723, 0.8086)
de 0.0100 0.0100 0.3794 0.6293 0.6817

(0.1103, 0.6485) (0.5865, 0.6721) (0.6389, 0.7245)
bm 0.3218 0.3720 0.8472 0.875 0.8745

(0.5781, 1.1162) (0.8321, 0.9178) (0.8317, 0.9173)
ntis 0.0100 0.0100 0.4335 0.784 0.7926

(0.1644, 0.7026) (0.7412, 0.8268) (0.7498, 0.8355)
tbl 0.6611 0.5350 0.8652 1.0729 1.0779

(0.5961, 1.1343) (1.0301, 1.1157) (1.0351, 1.1207)
tms 0.0100 0.0100 0.5634 0.8783 0.8853

(0.2943, 0.8325) (0.8355, 0.9211) (0.8424, 0.9281)
svar 0.0100 0.0100 0.1045 0.2649 0.2685

(-0.1646, 0.3736) (0.222, 0.3077) (0.2257, 0.3113)
dfy 0.0100 0.0100 0.5995 0.7248 0.6817

(0.3304, 0.8686) (0.6819, 0.7676) (0.6388, 0.7245)
dfr 0.0100 0.0100 -0.3821 -0.2717 -0.2588

(-0.6512, -0.1131) (-0.3145, -0.2288) (-0.3016, -0.2159)
infl 0.0100 0.0100 0.3852 0.3932 0.3973

(0.1161, 0.6542) (0.3503, 0.436) (0.3545, 0.4402)
lty 0.9557 0.9664 0.9605 1.0444 1.0508

(0.6914, 1.2296) (1.0015, 1.0872) (1.008, 1.0937)
ltr 0.0100 0.0100 0.0075 0.09 0.0937

(-0.2616, 0.2766) (0.0472, 0.1328) (0.0509, 0.1365)
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8 Appendix

8.1 Technical appendix: proofs and supporting lemmas

Lemma 8.1 1
n

∑n
t=k+1 ψ

2
τ

(
yt − ξ̂τ

)
→p τ (1− τ) and 1

n

∑n
t=k+1 ψ

2
τ

(
yt−k − ξ̂τ

)
→p τ (1− τ) un-

der (2.1) with (2.5).

Proof of Lemma 8.1. Note that

1

n

n∑
t=k+1

ψ2
τ

(
yt − ξ̂τ

)
=

1

n

n∑
t=k+1

(
τ − 1

(
yt < ξ̂τ

))2

= τ2 − 2τ
1

n

n∑
t=k+1

1
(
yt < ξ̂τ

)
+

1

n

n∑
t=k+1

1
(
yt < ξ̂τ

)
,
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and

1

n

n∑
t=k+1

1
(
yt < ξ̂τ

)
=

1

n

n∑
t=k+1

1
(
yt < ξ̂τ

)
=
F
(
ξ̂τ

)
n

n∑
t=k+1

1− F (1)(ξ̂τ )

n

n∑
t=k+1

yt

= F
(
ξ̂τ

)
+ op(1) = τ + op(1).

So
1

n

n∑
t=k+1

ψ2
τ

(
yt − ξ̂τ

)
= τ (1− τ) + op(1).

Similarly,
1

n

n∑
t=k+1

ψ2
τ

(
yt−k − ξ̂τ

)
= τ (1− τ) + op(1).

Proof of Lemma 2.1. Observe the cross product terms (omitting the remainder terms):

{1 (yt < x)− F (x)} {1 (yt−k < x)− F (x)}

=
{
F (1)(x)

}2
y

(1)
t y

(1)
t−k − F

(1)(x)F (2)(x)y
(1)
t y

(2)
t−k − F

(1)(x)F (2)(x)y
(2)
t y

(1)
t−k

+
{
F (2)(x)

}2
y

(2)
t y

(2)
t−k + ...+ F (p∗)(x)y

(p∗)
t y

(p∗)
t−k .

Using the orthogonal property E2 and the order of magnitudes in E4,

E [{1 (yt < x)− F (x)} {1 (yt−k < x)− F (x)}]

=
{
F (1)(x)

}2
E
[
y

(1)
t y

(1)
t−k

]
+
{
F (2)(x)

}2
E
[
y

(2)
t y

(2)
t−k

]
+ ...

=O
(
k−(1−2d)

)
+O

(
k−2(1−2d)

)
+ ...

=O
(
k−(1−2d)

)
,

for any given x, proving the claimed result.
Proof of Theorem 2.2. We combine the standard proof (e.g., Koenker, 2005; Section 4.2) with
URP for the indicator functional (2.4). Define

Dn (δ) =
1

n2d

n∑
t=1

{
ρτ

(
yt − ξτ −

δ

n1/2−d

)
− ρτ (yt − ξτ )

}

that is convex and is minimized at n
1
2
−d
(
ξ̂τ − ξτ

)
.

Using Knight’s identity

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0
[1 (u ≤ s)− 1 (u ≤ 0)] ds,
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with u = yt − ξτ and v = δ
n1/2−d

, we have

ρτ

(
yt − ξτ −

δ

n1/2−d

)
− ρτ (yt − ξτ ) =− δ

n1/2−dψτ (yt − ξτ )

+

∫ δ

n1/2−d

0
[1 (yt − ξτ ≤ s)− 1 (yt − ξτ ≤ 0)] ds.

Let Dn (δ) = Dn1 (δ) +Dn2 (δ), where

Dn1 (δ) = −δ
(

1

n1/2+d

n∑
t=1

ψτ (yt − ξτ )

)
,

and

Dn2 (δ) =
1

n2d

n∑
t=1

∫ δ

n1/2−d

0
[1 (yt ≤ ξτ + s)− 1 (yt ≤ ξτ )] ds.

Using (2.4),

[1 (yt ≤ ξτ + s)− 1 (yt ≤ ξτ )] =
(
F (ξτ + s)− F (1) (ξτ + s) yt + ...

)
−
(
F (ξτ ) + F (1) (ξτ ) yt + ...

)
= (F (ξτ + s)− F (ξτ ))

− yt
(
F (1) (ξτ + s)− F (1) (ξτ )

)
+ ...
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0
[1 (yt ≤ ξτ + s)− 1 (yt ≤ ξτ )] ds
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(
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1
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= Op
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2
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Using (2.4) to Dn1 (δ) again,

−δ
(

1

n1/2+d

n∑
t=1

ψτ (yt − ξτ )

)
= −δ

(
1

n1/2+d

n∑
t=1

(τ − 1 (yt < ξτ ))

)

= −δF (1) (ξτ )

(
1

n
1
2

+d

n∑
t=1

yt

)
+ op(1)

→d −δF (1) (ξτ )Zd (from Theorem 2.2).

Therefore,

Dn (δ) = Dn1 (δ) +Dn2 (δ)→d δ
2

2
F (1) (ξτ )− δF (1) (ξτ )Zd := D (δ) .

So by the Convexity Lemma (Pollard, 1991; also see Hjort and Pollard, 2011),

n
1
2
−d
(
ξ̂τ − ξτ

)
→d arg minD (δ) = Zd.

Proof of 3.8. We need to show:

n
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Thus, it suffi ces to show

sup
ξ1,ξ2∈R, |ξ1−ξ2|<δ

‖νn (ξ1)− νn (ξ2)‖ = op(1).

Using (2.4),

νn (ξ) =
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n
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Hence, (omitting lim supn→∞)

P
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]

= P

[
sup

ξ1,ξ2∈R, |ξ1−ξ2|<δ

∥∥∥∥(F (1) (ξ1)2 − F (1) (ξ2)2
)(∑n

t=k+1 {ytyt−k − E [ytyt−k]}
n
1
2

+d

)∥∥∥∥ > η

]

≤ P
[

sup
ξ1,ξ2∈R, |ξ1−ξ2|<δ

∥∥∥∥(∑n
t=k+1 {ytyt−k − E [ytyt−k]}

n
1
2

+d

)∥∥∥∥ > η

2
(
supF (1) (x)

) ∣∣F (1) (ξ1)− F (1) (ξ2)
∣∣
]
,

thus

lim sup
n→∞

P

[
sup

ξ1,ξ2∈R, |ξ1−ξ2|<δ
‖νn (ξ1)− νn (ξ2)‖ > η

]
→ 0,

as long as (i)
∑n
t=k+1{ytyt−k−E[ytyt−k]}

n
1
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= Op(1), and (ii) F (1) (·) is continuous. Note that (i) is
proved below (implied by 3.4); (ii) is implied by Assumption A2. Therefore, νn (·) is stochastically
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−d-neighborhood of ξτ ).

Proof of 3.4. We need to show(
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From Theorem 4.5.2 of Giraitis et al. (2012), the product ytyt−k is short-memory if d ∈ (0, 1/4) ,

so:
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Furthermore, for d ∈ (1/4, 1/2),

1

n2d

n∑
t=k+1

(ytyt−k − E (ytyt−k)) = Op(1),

so from the fact 1
2 + d > 2d for d ∈ (1/4, 1/2),

∑n
t=k+1 (ytyt−k − E (ytyt−k))

n1/2+d
=

n2d

n1/2+d

(
1

n2d

n∑
t=k+1

(ytyt−k − E (ytyt−k))

)
= Op

(
n2d

n
1
2

+d

)
= op(1).
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Proof of 3.8. Since

ψτ1
(
y1,t − ξ1,τ1

)
ψτ2

(
y2,t−k − ξ2,τ2

)
=
(
τ1 − 1

(
y1t < ξ1,τ1

)) (
τ2 − 1

(
y2s < ξ2,τ2

))
=
(
τ1 − 1

(
y1t < ξ1,τ1

)) (
F

(1)
2 (ξ2,τ2)y

(1)
2,t−k + F

(2)
2 (ξ2,τ2)y

(2)
2,t−k + ...

)
,

and from Lemma 1-7 of Tsay and Chung (2000)

1

n
1
2

+d

n∑
t=1

(
τ1 − 1

(
y1t < ξ1,τ1

))
y

(1)
2,t−k = Op

(
n−d

)
= op(1),

and the other terms are smaller orders so negligible. Therefore,

n

n
1
2

+d

(
γ̃kτ1,τ2

(
ξ̂1,τ1 , ξ̂2,τ2

)
− γkτ1,τ2

(
ξ̂1,τ1 , ξ̂2,τ2

))
= op(1).

Lemma 8.2 (MBB-URP for indicator functional) For MBB sample {y∗t }
N
t=1, we will have MBB-

URP for indicator functional

1

N1/2`d

N∑
t=1

ψτ

(
y∗t − ξ̂τ

)
=
(
F (1)(ξ̂τ )∗

) ∑N
t=1 y

∗
t

N
1
2 `d

+ op(1).

Proof of Lemma 8.2. We show the following:

1

N1/2`d

N∑
t=1

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

}
= op(1).
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The proof is using the standard MBB theory, see Tewes (2016), for example. Note that,

E∗

( 1

N1/2`d

N∑
t=1

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

})2


=
1

N`2d
E∗

 ∑
t∈B(i)

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

}2
=

1

N`2d
bE∗

 ∑
t∈B(i)

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

}2
=

1

N`2d
b

1

n− `+ 1

n−`+1∑
i=1

 ∑
t∈B(i)

{
1
(
yt < ξ̂τ

)
− F

(
ξ̂τ

)
+
(
F (1)(ξ̂τ )

)
yt

}2

=
1

`1+2d

1

n− `+ 1

n−`+1∑
i=1

 ∑
t∈B(i)

{
F (2)(ξ̂τ )y

(2)
t − F (3)(ξ̂τ )y

(3)
t + ...

}2

, using (2.4).

From the law of iterated expectation, and using the property E2 and E4 above,

E

( 1

N1/2`d

N∑
t=1

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

})2


=E

E∗
( 1

N1/2`d

N∑
t=1

{
1
(
y∗t < ξ̂τ

)
− F

(
ξ̂τ

)∗
+
(
F (1)(ξ̂τ )∗

)
y∗t

})2


=
1

`1+2d
E

 ∑
t∈B(i)

{
F (2)(ξ̂τ )y

(2)
t − F (3)(ξ̂τ )y

(3)
t + ...

}2

=O

 1

`1+2d
E

(∑̀
t=1

y
(2)
t

)2
 =

{
O
(
`2d

`

)
, if d ∈ (0, 1/4)

O
(

1
`2d

)
, if d ∈ (1/4, 1/2)

=o(1),

giving the required result.
Proof of Theorem 4.1. Similarly to the proof of Theorem 2.2, define

Dn (δ) =
1

`2d

N∑
t=1

{
ρτ

(
y∗t − ξ̂τ −

δ

N1/2`−d

)
− ρτ

(
y∗t − ξ̂τ

)}
,
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which is convex and minimized at δ = N1/2`−d
(
ξ̂τ − ξ̂

∗
τ

)
. Note that ξ̂τ is fixed conditional on data

(under P ∗). Therefore, using Knight’s identity Dn (δ) = Dn1 (δ) +Dn2 (δ) :

Dn1 (δ) = −δ
(

1

N1/2`d

N∑
t=1

ψτ

(
y∗t − ξ̂τ

))

=
(
F (1)(ξτ )∗

) ∑N
t=1 y

∗
t

N
1
2 `d

+ op∗(1),

where the last line comes from MBB-URP for indicator functional (Lemma 8.2)

Dn2 (δ) =
1

`2d

N∑
t=1

∫ δ

N1/2`−d

0
[1 (y∗t < s)− 1 (y∗t < 0)] ds

=
1

`2d

N∑
t=1

 δ2

2
(
N

1
2 `−d

)2

F (1)(ξ̂τ )∗ + op∗(1)

=
δ2

2
F (1)(ξτ )∗ + op∗(1).

Thus, by Convexity lemma again

N1/2`−d
(
ξ̂
∗
τ − ξ̂τ

)
= lim

n
arg minDn (δ)

=

∑N
t=1 y

∗
t

N
1
2 `d

+ op∗(1).

Proof of Theorem 4.2 and 4.3. To prove Theorem 4.3, it suffi ces to show

sup
x∈R

∣∣∣∣P ∗ (N1/2`−d
(
γ̃∗τk

(
ξ̂
∗
τ

)
− γ̃τk

(
ξ̂τ

))
≤ x

)
− Φ

(
x

cd (∇Gτk,2)

)∣∣∣∣ = op(1).

From the continuity of Φ (·) (Van Der Vaart (2000), Lemma 2.11), we only need to show (under
P ∗, omitted hereafter within this proof)

N1/2`−d
(
γ̃∗τk

(
ξ̂
∗
τ

)
− γ̃τk

(
ξ̂τ

))
→d N

(
0, c2

d (∇Gτk,2)2
)
.

Note that,

γ̃∗τk

(
ξ̂
∗
τ

)
−γ̃τk

(
ξ̂τ

)
=

1

N

N∑
t=k+1

ψτ

(
y∗t − ξ̂

∗
τ

)
ψτ

(
y∗t−k − ξ̂

∗
τ

)
− 1

n

n∑
t=k+1

ψτ

(
yt − ξ̂τ

)
ψτ

(
yt−k − ξ̂τ

)
.

Following the proof of Proposition B.5 of Han et al. (2016), combined with the proofs of (3.8),
(3.4), and using Theorem (4.1), we have

N1/2`−d
(
γ̃∗τk

(
ξ̂
∗
τ

)
− γ̃τk

(
ξ̂τ

))
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(
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= ∇Gτk
{
N1/2`−d

(
ξ̂
∗
τ − ξ̂τ

)}
+ op(1)

= ∇Gτk
∑N

t=1 y
∗
t

N
1
2 `d

+ op(1).

Therefore, together with the available MBB-CLT for the mean under long memory (e.g., The-
orem 2.1 of Kim and Nordman (2011)):∑N

t=1 y
∗
t

N
1
2 `d

→d N(0, c2
d),

we finally have
N1/2`−d

(
γ̃∗τk

(
ξ̂
∗
τ

)
− γ̃τk

(
ξ̂τ

))
→d N(0, (∇Gτk)2 c2

d).

8.2 Data description and plots of equity premium, stock variance and inflation

The variable names (with their abbreviation) follow Welch and Goyal (2008), which we refer for
detailed constructions and economic foundations of the data set. The extended data set (up to
2015) is obtain’s from Amit Goyal’s webpage (http://www.hec.unil.ch/agoyal/)

• “rp_div”: Equity Risk Premium (log) (including dividends).

• “dp”: Dividend-price ratio (log) - difference between the log of dividends paid on the S&P
500 index and the log of prices, where dividends are measured using a twelve-month moving
sum.

• “dy”: Dividend yield (log) - difference between the log of dividends and the log of lagged
prices.

• “ep”: Earnings-price ratio (log) - difference between the log of earnings on the S&P 500 index
and the log of prices, where earnings are measured using a twelve-month moving sum.

• “de”: Dividend-payout ratio (log) - difference between the log of dividends and log of earnings.

• “svar”: Stock variance - sum of squared daily returns on the S&P 500 index. Daily returns
for 1871 to 1926 are obtained from Bill Schwert, while daily returns from 1926 to 2005 are
obtained from CRSP.

• “bm”: Book-to-market ratio - ratio of book value to market value for the Dow Jones Industrial
Average.

• “ntis”: Net equity expansion - ratio of twelve-month moving sums of net issues by NYSE-listed
stocks to total end-of-year market capitalization of NYSE stocks.

• “tbl”: T-bill rate - interest rate on a 3-month Treasury bill (secondary market).
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• “lty”: Long-term yield - long-term government bond yield (Long-term government bond yields
for the period 1919 to 1925 is the U.S. Yield On Long-Term United States Bonds series from
NBER’s Macrohistory database. Yields from 1926 to 2005 are from Ibbotson’s Stocks, Bonds,
Bills and Inflation Yearbook).

• “ltr”: Long-term return - return on long-term government bonds (Long-term government
bond returns for the period 1926 to 2005 are from Ibbotson’s Stocks, Bonds, Bills and Inflation
Yearbook).

• “tms”: Term spread - difference between the long-term yield and the T-bill rate.

• “dfy”: Default yield spread - difference between BAA- and AAA-rated corporate bond yields.

• “dfr”: Default return spread - difference between long-term corporate bond and long-term
government bond returns.

• “infl”: Inflation - Inflation is the Consumer Price Index (All Urban Consumers) for the period
1919 to 2015 from the Bureau of Labor Statistics. Because inflation information is released
only in the following month, in our monthly regressions, we inserted one month of waiting
before use. Note since inflation rate data are released in the following month, we use x(i,t-1)
for inflation.
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Figure A.1: Plots of equity premium, stock variance and inflation
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