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Abstract

We study a simple auction model with interdependent values in which bidders can

learn their rival’s information and compete in the first-price or second-price auction.

We characterize unique symmetric equilibrium strategies—both learning and bidding

strategies—for the two auction formats. While bidders learn rival’s signals with higher

probabilities in the first-price auction, they earn higher rent in the second-price auction.

We also show that when learning cost is small, signal correlation is low, or value

interdependence is weak, the first-price auction generates a higher revenue than the

second-price auction, while the revenue ranking is reversed otherwise.

1 Introduction

In August 2013, the “big three” mobile network operators in Korea—SK Telecom, KT, and

LG Uplus—competed for long-term evolution (LTE) wireless spectrum bands in a spectrum

auction in Korea. Since KT was lagging behind its competitors in the LTE market at that

moment, it was imperative for the company to get an extra spectrum block that could be
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combined with its existing block to provide the LTE service. The first thing the company did

to prepare a bid in the auction was to form a task force that worked intensively to estimate

the values of the spectrum blocks to its rivals as well as the company itself. Also, the task

force advised the bid team throughout the bidding process and, to do so, they paid close

attention to what the true values of the rival companies could be.1 In the end, KT won the

desired block by outbidding a rival company by less than a couple of million dollars in the

contest where the three companies ended up paying more than two billion dollars in total.

We believe that the above story illustrates just one of many instances where bidders try

to acquire information about rivals. While the information acquisition in auctions has been

an important issue in the literature, there are few studies that investigate the acquisition of

information about rival bidders.2 Learning rival’s information is important in two aspects:

first, the learners can estimate the value of an auctioned object more precisely, gaining an

informational advantage; second, they can better predict the bidding strategy of their rival,

gaining a strategic advantage. Notice that the first aspect becomes important to the extent

that one’s value depends on his rival’s information, that is, the values are interdependent.

In the current paper, we study how the two aspects of learning work together to affect

the bidders’ incentive to learn their rival’s information in standard auctions—first-price and

second-price auctions—with interdependent values and thereby affect the performance of the

two auction formats.

To this end, we consider a simple model in which there are two bidders, who are ex

ante symmetric, competing for a single object. Each bidder is informed of a binary signal

which is correlated with the other’s signal. The value of the object for each bidder is given

as a linear combination of his own signal and his rival’s signal with more weight assigned

to the former.3 The weight assigned to the rival’s signal measures the degree of value

interdependence, capturing the private and common values as two polar cases. Our model

has a simple time line: Initially, for a given auction format, each bidder decides whether

to learn the other bidder’s signal by incurring a cost. This decision is unobservable, i.e.,

the information acquisition is covert. Next, bidders simultaneously decide how much to bid

based on their information. Lastly, the winner is announced and trade occurs according to

the auction format. This is the main setup for our study, denoted as I2. In the paper, we

1The auction format was a variant of the simultaneous ascending auction, followed by a one-shot, seal-bid
stage.

2We will later review the literature on information acquisition in auctions and mechanism design in
general.

3This implies that whoever holds a higher signal has a higher value for the object.
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also consider an alternative setup, denoted as I1, in which bidders are informed of no prior

signal and can incur a cost to learn their own signal. This setup has been studied in the

auction literature (for instance, Persico (2000) and Shi (2012) among others) and will be

used as a benchmark to compare the results from the main setup.

Compared to the benchmark case, our main setup, I2, has a couple of crucial differences:

Since bidders are informed of prior signals, they will have multi-dimensional information

in the bidding stage after learning their rival’s signal.4 Moreover, the learning decision of

each bidder is dependent on his prior signal, which makes the equilibrium characteriza-

tion and analysis highly nontrivial. Although the simplicity of our setup leaves a question

of generalization, it is instrumental for obtaining clear intuition about how the possibility

of acquiring rival’s signal affects bidders’ learning and bidding behavior through the two

channels—informational and strategic advantages. Also, it enables us to conduct various

comparative statics analyses.

In the analysis of our main setup, we characterize a unique (mixed-strategy) symmetric

equilibrium, consisting of learning and bidding strategies, for the two auction formats. To

explain, let us call a bidder with higher (resp., lower) prior signal strong (resp., weak) bidder.

For the second-price auction, bidders never learn their rivals’ signal and follow the same

bidding strategy as in the setup without the learning possibility, which results in an efficient

allocation, i.e., a strong bidder always wins against a weak bidder. Some interesting features

emerge from the equilibrium characterization for the first-price auction. First, despite binary

signals, the number of bidder types in the bidding stage can increase substantially and is

determined endogenously as a result of learning decision. Second, bidders’ learning behavior

depends on their prior signals. In particular, a strong bidder learns the rival’s signal with

higher probability than does a weak bidder. Third, unlike the first-price auction without

the learning possibility, a strong bidder may bid less aggressively than a weak bidder, in

particular when the former learns that his rival is weak while the latter learns that his rival

is strong. The resulting allocation is inefficient, and the total surplus is even lower if the

learning cost is accounted for.

The learning and bidding behavior in equilibrium can be explained by the aforementioned

two advantages. Clearly, the informational advantage is important in any auction format.

In contrast, the strategic advantage is more important in the first-price auction where bid-

4Although the two signals together determines each bidder’s value (which is single-dimensional), they
cannot be reduced to such single-dimensional information, since the rival’s signal also conveys the information
about his bidding strategy.
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ders wish to (optimally) shade their bids and, to do so, need to infer their rival’s strategy

accurately. Therefore, the equilibrium strategy involves higher learning probabilities in the

first-price auction than in the second-price auction.5 Note also that in the first-price auc-

tion, the strategic advantage is more valuable to a strong bidder than to a weak bidder,

since the former has a greater room for shading his bid upon learning that his rival is weak.

Thus, a strong bidder learns his rival’s signal with higher probability than a weak bidder

does. Moreover, there is a negative relationship between the two types’ learning behaviors:

the strong bidder’s learning probability tends to increase when the weak bidder’s learning

probability decreases. This is (partly) because a weak bidder bids less aggressively when not

knowing that his rival is strong, which gives his strong rival a greater incentive to learn and

shade bid.

Our analysis yields intuitive comparative statics, for which the learning cost and degrees

of signal correlation and value interdependence are central parameters. The learning proba-

bility decreases in the learning cost, irrespective of bidder types. The weak bidder’s learning

probability increases as signals become more correlated or values become less interdepen-

dent. This can be understood from observing that unlike a strong bidder, a weak bidder

derives the benefit of learning mostly from the informational advantage—that is, finding out

whether his value is higher than his prior signal would indicate—while learning has greater

informational value if the signal correlation is lower or value interdependence is stronger.6

As mentioned above, when a greater informational advantage induces a weak bidder to learn

more and bid more aggressively against his strong rival, it tends to negatively affect the

strong bidder’s strategic advantage of learning, making him learn less and thereby shade bid

less (i.e., bid more aggressively).

For the payoff consequence of the equilibrium learning/bidding behavior, observe first

that learning each other’s signal reduces bidders’ private information, leading to smaller

information rent. Thus, bidders earn lower payoff in the first-price auction than in the

second-price auction. However, the effect of learning on the seller’s revenue is more subtle.

We show that the first-price auction generates a higher revenue than the second-price auction

when a weak bidder’s learning probability is relatively high, which, as explained above, is the

case when the learning cost is small, signal correlation is low, and/or value interdependence

5Note that the strategic advantage exists even in I1, since the learning of one’s own signal helps predict
the rival’s (correlated) signal and thereby his bidding strategy. Hence, bidders in the first-price auction learn
their own signal with higher probability than in the second-price auction under I1 as well.

6Observe that the lower signal correlation means each bidder’s signal is less informative of his rival’s
signal.
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is weak. Otherwise, the second-price auction is revenue-superior. This is consistent with the

above observation that in the first-price auction, the weak bidder’s learning and its negative

effect on the strong bidder’s learning induce both types of bidders to bid more aggressively.

Several papers have studied the problem of information acquisition in auctions, but most

of them have focused on the problem of learning bidders’ own signal, assuming that bidders

have no prior information. Stegeman (1996) and Shi (2012) study this problem in the

private values setup while Milgrom (1981) and Matthews (1984) do so in the interdependent

values setup. Also, Hausch and Li (1993) compare first-price and second-price auctions in a

common value setup and show that the seller’s revenue is higher in the second-price auction

than in the first-price auction. Persico (2000) shows that with affiliated values, the first-price

auction provides a stronger incentive for bidders to acquire information than the second-price

auction does. Again, these studies assume no private information for bidders prior to their

information acquisition.

Closely related to our study, Bergemann and Välimäki (2005) discuss the possibility that

bidders engage in costly “espionage” in a private value first-price auction—which refers to

the activity of learning other bidder’s information. In private values setup, Fang and Morris

(2006) and Tian and Xiao (2010) study how the standard auctions are affected when bidders

observe their rival’s information. Fang and Morris (2006) show that when each of two bidders

observes an imperfect signal about the rival’s valuation, the first-price auction generates a

lower revenue than the second-price auction, which is consistent with our finding that when

values are less interdependent, the first-price auction tends to be revenue-inferior.7 However,

unlike the current paper, they assume that the information about rivals is not acquired but

exogenously given. Tian and Xiao (2010) extend Fang and Morris (2006) by endogenizing

bidders’ information acquisition.8 To the best of our knowledge, our work is the first to

study the acquisition of rival’s information in interdependent values setup.

The paper is organized as follows. We introduce our model in Section 2. Section 3 ana-

lyzes the first-price and the second-price auctions under the setup I1. Section 4 characterizes

equilibrium for the two auction formats under our main setup I2. The comparison between

the two auctions is provided in Section 5. Section 6 concludes the paper. Proofs are provided

in the Appendix and Supplementary Material.

7Fang and Morris (2006) also present an example in which their revenue ranking is reversed. For this
result, however, they assume that the information acquisition is common knowledge among bidders.

8Tian and Xiao (2010) compare two specifications: ex ante and interim information acquisition where
bidders can learn their rivals’ valuations before and after observing their own valuations, respectively. See
also Li and Tian (2008) for an analysis of the second-price auction.
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2 The Model

Suppose that there is a single object to be auctioned off to two bidders, 1 and 2. Each

bidder i = 1, 2 is initially informed of a signal si, which takes one of two values, 0 and

1. This signal will sometimes be referred to as bidder i’s prior signal. We assume that

Prob(si = 0) = Prob(si = 1) = 1
2

for each i = 1, 2, and the two signals are correlated as

follows: for all i, j = 1, 2 with i 6= j, and for all m,m′ ∈ {0, 1} with m 6= m′,

Prob(sj = m|si = m) = 1− Prob(sj = m′|si = m) = α ∈ (1
2
, 1).

Hence, a higher α means a higher correlation between the signals.

The value of the object to each bidder i = 1, 2 is given as

vi(si, sj) = βsi + (1− β)sj, β ∈ [1
2
, 1],

that is, values are interdependent in the sense that each bidder’s value depends on the other’s

signal as well as his own (unless β = 1). Note that when β = 1
2
, bidders have a common

value, and when β ∈ (1
2
, 1], whoever has a higher signal has a higher value for the object. For

this reason, a bidder with a low (resp., high) prior signal will be called weak (resp., strong)

bidder. Note that as β decreases, the relative impact of the other’s signal on one’s value

increases, that is, the values become more interdependent. This implies that the knowledge

of rival’s signal becomes more important for the estimation of one’s own value. Note also

that as β decreases, the value difference between weak and strong bidders becomes smaller

(i.e., values become more common).

We consider two auction formats, first-price and second-price auctions. In both auctions,

a bidder who submits a higher bid wins the object, while the winner pays the highest (i.e.,

his own) bid in the first-price auction and the second-highest (i.e., the rival’s) bid in the

second-price auction. Ties are broken randomly.

In each auction, our model of information acquisition consists of two stages; the learning

stage and the subsequent bidding stage. In the learning stage, each bidder i decides whether

to learn the rival’s signal sj, j 6= i, by incurring cost k > 0. We assume that whether each

bidder has acquired information is unobservable to his rival.9 In the bidding stage, the two

bidders submit bids in a given auction format, based on the information they have acquired

9This is a model of covert information acquisition, which captures a situation where one’s activity of
information acquisition is not readily detectable to others, as is plausible in many cases.
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in the learning stage. The model described so far is henceforth referred to as the setup I2.

We consider an alternative setup, called I1, which is identical to I2 except that each bidder

i is initially informed of no signals and decides to learn si at the learning stage by incurring

cost c > 0.10 This setup has been studied by the previous literature, such as Persico (2000)

and Shi (2012), and is used as a benchmark to compare the results from our main setup I2.

The information each bidder i holds at the bidding stage is called bidder i’s type and

denoted by ti, which can consist of both si and sj, or only si, or none of the two signals,

depending on the information setup as well as bidder i’s learning decision in that setup.

To simplify notation, for any m,m′ ∈ {0, 1}, we let ti = mm′ and ti = m indicate that

bidder i is informed of (si, sj) = (m,m′) and si = m, respectively, while ti = U indicates

that bidder i is uninformed of both signals (which can only arise under I1). We let Ωn

denote the set of all possible types under each setup In, n = 1, 2. Then, Ω1 = {U, 0, 1} and

Ω2 = {0, 1, 00, 01, 10, 11}. Let vt denote the expected value of the object to each bidder

conditional on his type being t:

v11 = E[vi(si, sj)|(si, sj) = (1, 1)] = 1 = 1− v00,

v1 = E[vi(si, sj)|si = 1] = β + (1− β)α = 1− v0,

v10 = E[vi(si, sj)|(si, sj) = (1, 0)] = β = 1− v01, and

vU = E[vi(si, sj)] = 1/2.

Note that v00 ≤ v0 ≤ v01 ≤ vU ≤ v10 ≤ v1 ≤ v11, where the inequalities become strict with

β ∈ (1
2
, 1). Let v(t, t′) denote the expected value of the object to a bidder conditional on his

own type being t and his rival’s type being t′. Clearly, for any m, m′ ∈ {0, 1} and any t,

v(m,m′) = v(mm′, t) = v(t,mm′) = vmm′ , v(m,U) = vm, and v(U,U) = vU .

Note also that

v(U, 0) = E[vi(si, sj)|sj = 0] = β(1− α) and v(U, 1) = E[vi(si, sj)|sj = 1] = βα + (1− β).

We will sometimes write vU0 and vU1 to denote v(U, 0) and v(U, 1), respectively.

Define the allocative surplus as the expected value bidders receive from the object allo-

10Note that we use different notations for the learning cost under I1 and I2, to distinguish the two different
types of learning.
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cation, which excludes the (expected) cost of learning. In our setup of binary signals, the

allocative surplus is higher if each bidder i with si = 1 is more likely to win the object

against the rival with sj = 0. The maximum allocative surplus is achieved when the former

always wins against the latter, and equals 1
2
α + (1− α)β. The total surplus is equal to the

allocative surplus minus the (expected) cost of learning.

Throughout the paper, we focus on the symmetric sequential equilibrium—henceforth re-

ferred to as symmetric equilibrium or more simply equilibrium—, allowing for mixed strate-

gies. The equilibrium strategy consists of learning strategy and bidding strategy. Under I1,

the equilibrium learning strategy is represented by πU , the probability that each uninformed

bidder i learns si. Similarly, under I2, the equilibrium learning strategy is represented by π0

and π1, the probabilities that each bidder i learns sj, j 6= i, conditional on his prior signal

being si = 0 and 1, respectively. Given the learning strategies under a given setup In, we

let Ω ⊆ Ωn denote the set of all bidder types that arise with positive probability in equi-

librium.11 The equilibrium bidding strategy is represented by a profile of bid distributions

{Ht}t∈Ω, where Ht(b) is the probability that a type-t bidder submits a bid less than or equal

to b ∈ R+. Let Et denote the support of the equilibrium bid distribution Ht with int(Et)

denoting its interior, and let bt := supEt and bt := inf Et. The equilibrium payoff for each

type in the bidding stage is denoted by Γt. Note that this payoff does not account for the

learning cost.

A sequential equilibrium requires bidders behave optimally in both learning and bidding

stages. First, the learning strategy must be optimal, comparing the learning cost against

the benefit of learning, which is the payoff increase that accrues in the bidding stage from

learning.12 Specifically, bidders learning with a positive probability implies the cost is no

greater than the benefit, while bidders strictly randomizing the learning strategy implies the

cost and benefit are equal. In the bidding stage, each bidder must bid optimally given his

information (or type), his belief on the rival’s type, and the rival’s bidding strategy. By

definition of sequential equilibrium, we impose the consistency requirement on the bidders’

belief. This requirement is only slightly stronger than imposing the Bayes rule alone, in that

it requires each bidder to believe that his rival follows the equilibrium learning and bidding

11For instance, if πU ∈ (0, 1) under I1, then Ω = {U, 0, 1}. Likely, if π0 = 0 and π1 ∈ (0, 1) under I2, then
Ω = {0, 1, 10, 11}.

12Because of the assumption that the learning decision is unobservable to the other bidder, learning an
additional information can never hurt the bidder in the bidding state since he can simply ignore it. Kim
(2008) shows, however, that a bidder can get worse off with learning an additional information (even without
any learning cost) when the learning decision is observable, since it can cause a rival’s adverse response.
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strategies even after the bidder himself deviates from the equilibrium strategy in the learning

stage.

3 Analysis of Setup I1

In this section, we study the first-price and second-price auctions under the benchmark setup

I1. All proofs in this section are provided in Supplementary Material.

We first characterize a unique symmetric equilibrium for the second-price auction. In

the characterization, we focus on the range of cost c that permits bidders to learn with a

positive probability.13

Proposition 1 (Second-Price Auction). Suppose that c ∈ (0, c), where c := v1−vU
2

. Then,

there exists a unique symmetric equilibrium of the second-price auction under I1 in which

(i) πU = v1−vU−2c
v1−vU

∈ (0, 1), which is increasing in α and β while decreasing in c;

(ii) each bidder of type t ∈ Ω = {U, 0, 1} bids b0 = v00 < bU = vU < b1 = v11;

(iii) the payoff for each bidder is equal to ΓU = 1
2
πU(vU0 − v00), which is decreasing in c.

To explain Part (ii) first, an uninformed bidder bids the ex ante expected value of the

object, while each bidder who is informed of his own signal bids what would be the object

value if his rival had the same signal. This strategy is identical to the well known equi-

librium characterization for the second-price auction in the standard interdependent values

setup—e.g., Milgrom and Weber (1982)—where bidders’ information is exogenously given.

To explain Part (i), observe from Part (ii) that each bidder i’s learning yields a positive gain

only when he learns si = 1 while his rival is uniformed and bids vU in equilibrium, since if

the rival is informed of sj = 0 or 1, bidder i obtains the same payoff whether or not he is

informed. Thus, the benefit from learning is proportional to v1 − vU = β + (1 − β)α − 1
2
,

capturing the informational advantage. This benefit increases as α or β increases—that is,

signals become more correlated or values become more private—, explaining the effect of

these parameters on πU . Also, πU is increasing as the learning cost c decreases, as intuitively

clear. Lastly, the indifference between learning and not learning implies that the equilib-

13One can easily check that if c = 0, then πU = 1, and if c ≥ c, then πU = 0 in the unique equilibrium
in both second-price and first-price auctions. It is well known that there are asymmetric equilibria in the
(symmetric) second-price auction without information acquisition. In our model, there also exist asymmetric
equilibria, for instance, the one where bidder i learns si and bids v11 if si = 1 and v00 if si = 0, and bidder
j 6= i bids vU without learning sj .
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bU = b1 b1

E0 EU E1

v00

Figure 1: Bid supports of the first-price auction under I1 when πU > 0.

rium payoff of each bidder i equals ΓU , the payoff of an uninformed bidder. This explains

Part (iii).

We next characterize the symmetric equilibrium for the first-price auction:

Proposition 2 (First-Price Auction). Suppose that c ∈ (0, c). Then, there exists a unique

equilibrium of the first-price auction under I1 in which

(i) πU ∈ (0, 1) solves the equation

(1− πU)(1− απU) = (v1 − 2c− πUv1)(2− πU) (1)

and is increasing in α and β while decreasing in c;

(ii) v00 = b0 = b0 = bU < bU = b1 < b1 (refer to Figure 1), where

b1 =
(1− πU)v1 − 2c

1− απU
and b1 = v1 − 2c− πUvU0; (2)

(iii) the payoff for each bidder is equal to ΓU = 1
2
πU(vU0 − v00), which is decreasing in c.

The equilibrium characterized in Proposition 2 is similar to that of the second-price

auction in Proposition 1, except that bidders are randomizing their bidding strategies as

well as learning strategies. Figure 1 depicts the support of bid distribution for each type of

bidders, Et for t ∈ Ω ≡ {U, 0, 1}, as given in Part (ii).

We now compare the equilibrium outcomes of the first-price and second-price auctions.

Proposition 3. Under I1, the learning probability, the bidders’ payoff, and the allocative

surplus are higher in the first-price auction than in the second-price auction, while the total

surplus and the seller’s revenue are higher in the second-price auction than in the first-price

auction.

The first-price auction induces bidders to learn their (own) signals with higher probability

than does the second-price auction, as depicted in Figure 2(a), while the learning probabil-

ities are strictly positive under both auctions. Intuitively, the higher probability of bidders

10



(a) Learning probability (according to c) (b) Learning probability (according to α)

Figure 2: Comparison of learning probabilities. Primitive values: α = 0.7, β = 0.6,
c = 0.05. The solid and the dashed lines represent the first- and the second-price auctions,
respectively.

learning their private information (or their own signals) in the first-price auction translates

into more information rent of bidders, or higher equilibrium payoff in the first-price auction

(even after accounting for the learning cost).

The higher learning probability in the first-price auction is reminiscent of the result

established by Persico (2000), showing (in the setup with continuum signals) that bidders

acquire more accurate signals in the first-price auction than in the second-price auction.

Intuitively, this is driven by the strategic advantage that matters more in the first-price

auction, as explained in the introduction. Note that this advantage becomes greater when

signals are more correlated, because learning one’s own signal then conveys more accurate

information about the other’s (correlated) signal and thus his bidding strategy. This explains

why the discrepancy between the learning probabilities in the two auction formats increases

as α increases, as shown in Figure 2(b).

To compare the total surplus in the two auctions, recall that the total surplus is equal

to the allocative surplus minus the sum of the two bidders’ (expected) learning cost. The

latter cost 2πUc is proportional to the learning probability. The allocative surplus also

increases in the learning probability, because when bidders are informed of their signals with

higher probability, each bidder i with si = 1 is more likely to win against the rival bidder

j with sj = 0. Thus, both the learning cost and the allocative surplus increase going from

the second-price to first-price auction, while the former dominates the latter so the total

surplus is higher in the second-price auction. Lastly, the observations made so far imply

that the seller’s revenue, which equals the total surplus minus bidders’ payoff, is higher in

11



the second-price auction than in the first-price auction.

4 Analysis of Main Setup I2

We now turn to the analysis of I2 in which each bidder i is initially informed of si and decides

whether or not to learn sj, j 6= i. In this setup, we ask how bidders with different prior

signals learn their rival’s signal, and how it affects their bidding strategy, and thereby their

payoffs, the seller’s revenue, and the total surplus in the two auction formats. As we will

show, the answers to these questions depend on the magnitude of learning cost (i.e., k) and

the degrees of signal correlation and value interdependence (i.e., α and β). Our intuition

behind the results will come from understanding a combined effect of the informational and

strategic advantages on bidders’ incentive to learn their rival’s signal.

4.1 Second-Price Auction

The following theorem shows that the second-price auction induces no learning.

Theorem 1. In the second-price auction under I2, there exists a unique symmetric equilib-

rium in which

(i) π1 = π0 = 0;

(ii) each bidder of type t ∈ Ω = {0, 1} bids b0 = v00 < b1 = v11;

(iii) each bidder’s payoff is 1
2
(1− α)(v10− v00), which is decreasing in α, increasing in β

and independent of k.

Proof. See Appendix A.1. �

With no bidder learning the rival’s signal, the equilibrium bidding strategy is identical to

that of the standard setup without the learning possibility. The property of this strategy is

that the winning bidder’s payment is weakly lower than his (true) value, while the winning

bid is weakly higher than the losing bidder’s (true) value.14 This implies, in contrast with

I1 case, that neither the winning bidder nor the losing bidder can gain from learning the

other’s information. Hence, π1 = π0 = 0 constitutes an equilibrium. The proof of Theorem 1

is mostly devoted to establishing the equilibrium uniqueness within the symmetric class.

14For instance, a bidder i with si = 1 has value v11 or v10 when the rival bidder has sj = 1 or sj = 0,
respectively, in which case bidder i pays b1 = v11 (conditional upon winning) or b0 = v00.
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Note also that given the equilibrium learning and bidding strategies, each bidder i with

si = 1 wins for sure against the rival with sj = 0. This implies that the allocation is fully

efficient, achieving the maximum allocative surplus 1
2
α + (1 − α)β. The total surplus also

achieves the first-best, since no bidder incurs the learning cost.

4.2 First-Price Auction

Turning to the analysis of the first-price auction under I2, the following proposition provides

the overall pattern of information acquisition in equilibrium:

Proposition 4. In the first-price auction under I2, the following results hold:

(i) There exists a unique symmetric equilibrium with π1 = π0 = 0 if and only if k ≥ k1 :=

α(1− α)(v11 − v00);

(ii) π0, π1 < 1 in any symmetric equilibrium;

(iii) There is no symmetric equilibrium with π1 = 0 < π0, so π1 must be positive if k < k1.

Proof. See Appendix B.1. �

Note that no bidder chooses to learn his rival’s signal if the learning cost is above the

threshold k1. With the learning cost below this threshold, a strong bidder—i.e., bidder with

high prior signal—is learning with positive probability, while a weak bidder—i.e., bidder

with low prior signal—may not. It suggests that strong bidders are more prone to learn

their rival’s signal. Indeed, as we will see later, for values of k lower than k1, strong bidders

are learning with higher probability than weak bidders, while the latter may not learn at

all. This is because the strategic advantage from learning rival’s signal gives strong bidders

a greater benefit, which comes from being able to shade their bids against a weak rival. This

benefit decreases as signals become more correlated (that is, the rival is less likely to be

weak). So the threshold learning cost k1 = α(1− α)(v11 − v00) goes down as α increases.

We proceed with a more detailed analysis of the equilibrium in the case that learning

occurs with positive probabilities (i.e., at least one of π1 and π0 is positive). In all equilibrium

characterizations below, the support of bid distribution for each type of bidder is a connected

interval: that is, Et = [bt, bt] for all t ∈ Ω, while the interval may be degenerate (i.e., bt = bt).

We will describe the equilibrium bidding strategies by only specifying the upper and lower

bounds of the bid supports. The equilibrium bid distribution, Ht(·), can then be derived in

a straightforward manner using the fact that the payoff for each type t ∈ Ω remains constant

over the interval Et.
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E0 = E10 E1 E11

v00

Figure 3: Bid supports of the first-price auction under I2 when π1 > 0 = π0

We first provide a characterization of symmetric equilibrium in which only strong bidders

learn with positive probability. In this case, a weak bidder will always be of type t = 0, but a

strong bidder can be of type t = 1, t = 10 or t = 11 when he does not learn the rival’s signal,

learns that it is low, or learns that it is high, respectively. We thus have Ω = {0, 1, 10, 11}.

Proposition 5. In any symmetric equilibrium with π1 > 0 = π0 for the first-price auction

under I2, the following results hold:

(i) π1 solves the equation

v11 − v01

k
=

1

1− α
+

1

α(1− π1)
− αv01

k[α + (1− α)π1]
; (3)

(ii) v00 = b0 = b10 < b0 = b10 = b1 < b1 = b11 < b11 (refer to Figure 3), where

b10 = v11 −
k

(1− π1)α
− k

1− α
, b1 = v11 −

k

(1− π1)α
, b11 = v11 −

k

α
; (4)

(iii) This equilibrium exists only if k ∈ [k0, k1), where k0 is the (unique) solution of

k = (1− α)π1(v01 − b0). (5)

Proof. See Appendix B.2. �

The supports of equilibrium bid distributions in Part (ii) are depicted in Figure 3. Ob-

serve that the bid support of strong bidder shifts upward as he learns that the rival is strong

(i.e., E11 lies above E1), and likewise, it shifts downward as he learns that the rival is weak

(i.e., E10 lies below E1). This reflects the informational advantage. The less aggressive

bidding of type t = 10 bidder is also a consequence of the strategic advantage: each strong

bidder who learns that his rival is weak revises downward his inference of the rival’s bidding

strategy and shades his bid further.

Let Γt denote the equilibrium payoff of type t bidder, where t ∈ Ω. The learning proba-

bility π1 in Part (i) is chosen to make bidder i with si = 1 indifferent between learning and

14



not learning; that is,

Γ1 = (1− α)Γ10 + αΓ11 − k, (6)

where the right hand side comes from the fact that when bidder i learns the rival’s signal

sj, it will be sj = 0 with probability 1 − α and sj = 1 with probability α. Rearranging (6)

yields the expression (3).

To understand Part (iii), note that if bidder i with signal si = 0 (i.e., weak bidder)

deviates to learn his rival’s signal sj, then he could lower his bid to the lowest level v00 upon

learning sj = 0 or he could raise his bid to b10 upon learning sj = 1, which results in the

deviation payoff equal to the right hand side of (5).15 If k < k0, then this payoff exceeds the

learning cost, so the equilibrium where only strong bidders are learning cannot be sustained.

We next provide a characterization of equilibrium in which both strong and weak bidders

learn with positive probabilities. Note that we have Ω = Ω2 = {0, 1, 00, 01, 10, 11}.

Proposition 6. In any symmetric equilibrium with 0 < π0, π1 < 1 for the first-price auction

under I2, the following results hold:

(i) π1 solves the equation

v11 − v01

k
=

1

1− α
+

1

α(1− π1)
− 1

(1− α)π1

, (7)

while

π0 =
v01 − k

(1−α)π1
− k

α

v10 − k
α

< π1; (8)

(ii) v00 = b00 = b00 = b0 = b10 < b0 = b01 < b01 = b10 = b1 < b1 = b11 < b11 (refer to

Figure 4), where

b0 =
k

α
, b10 = v01 −

k

(1− α)π1

, b1 = v11 −
k

α(1− π1)
, b11 = v11 −

k

α
; (9)

(iii) This equilibrium exists only if k < k0, where k0 is defined by (5).

Proof. See Appendix B.3. �

Figure 4 illustrates the supports of equilibrium bid distributions. Note that E11 lies above

E1 and E10 lies below E1, as was the case with π1 > 0 = π0. With the learning cost below

15This is the best deviation payoff, so the equilibrium sustains as long as this payoff does not exceed the
learning cost.
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Figure 4: Bid supports of the first-price auction under I2 when π1, π0 > 0

the threshold k0, weak bidders also learn with positive probability, i.e., π0 > 0. They then

adopt a more (resp., less) aggressive bidding strategy when their rival’s signal turns out to

be high (resp., low)—i.e., E01 (resp., E00) lies above (resp., below) E0. This again reflects

the informational advantage. It is worth noting that the support E01 overlaps with the upper

segment of the support E10, suggesting that the type t = 01 tends to bid more aggressively

than the type t = 10.16 This is because type t = 10 bidder entertains the possibility of

competing against a weak rival of type t = 0 or t = 01, while type t = 01 bidder is certain

about his rival being strong and of type t = 10 or t = 1.

The following theorem summarizes the equilibrium characterization in Proposition 4

through Proposition 6 and establishes the existence of (unique) symmetric equilibrium.

Theorem 2. Under I2, there exists a unique symmetric equilibrium of the first-price auction

in which

(i) for k ≥ k1, π1 = π0 = 0;

(ii) for k ∈ [k0, k1), π0 = 0 and π1 ∈ (0, 1) is given as the solution of (3), which is

decreasing in k and increasing in β;

(iii) for k < k0, π1 ∈ (0, 1) is given as the solution of (7), which is decreasing in k and

increasing in α and β, while π0 ∈ (0, 1) is given as (8) and decreasing in k, α and β.

(iv) each bidder’s payoff is 1
2
(1−α)(v10−b10), which is increasing in k and β and decreasing

in α for k < k1.17

Proof. See Appendix B.4. �

It is intuitive that the learning probabilities decrease in k.18 To understand the effect of α

16In fact, a numerical analysis shows that the bid distribution of t = 01 first-order stochastically dominates
that of t = 10 for certain parameter values.

17The term b10 is given by (4) for k ∈ [k0, k1) and (9) for k < k0. It is straightforward to check that in
the case k ≥ k1, the bidders’ payoff is increasing in β and decreasing in α while being constant in k.

18Interestingly, as k converges to zero, π1 converges to 1 but π0 converges to v01
v10

< 1, as can be seen
from (8). In fact, the limit of bidding strategies combined with these learning probabilities constitutes an
equilibrium when the learning cost is zero. However, there are other equilibria with zero learning cost. Our
result thus provides a selection of equilibrium at k = 0 that is robust to perturbation of the learning cost.
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(a) Changes of π0 and π1 according to α (b) Changes of π0 and π1 according to β

Figure 5: Learning probabilities in the first-price auction under I2. Primitive values:
α = β = 0.6 and k = 0.07. In panel (a), k < k0 for α < 0.73; k ∈ [k0, k1) for α ∈ [0.73, 0.92);
k ≥ k1 for α ∈ [0.92, 1). In panel (b), k < k0 for β < 0.67; k ∈ [k0, k) for β ∈ [0.67, 1]. The solid
and the dashed lines respectively represent π1 and π0.

on the learning probabilities, recall that under I1, a higher α—i.e., higher correlation between

signals—allows one to make more accurate inference of the other’s signal and bidding strategy

by learning his own signal, which gives a greater incentive to learn the latter signal. Under

I2, however, the higher correlation means that the prior signal each bidder initially holds is

already more informative of his rival’s signal, so bidders expect less informational or strategic

gain from learning their rival’s signal. While π0 is decreasing in α as a consequence, it gives

strong bidders an incentive to sustain, or even slightly increase, their learning probability

as α increases (even in the range of α where π0 = 0) unless α is too high, as depicted in

Figure 5(a). With (relatively) higher α, a weak bidder learns with lower probability and

also believes his rival is more likely to be weak, thereby bidding less aggressively against a

strong rival, which gives the latter a greater incentive to learn the former’s signal and shade

his bid.19

The benefit from the strategic advantage depends also on the degree of value interde-

pendence: a higher β—i.e., lower interdependence—increases the value discrepancy between

strong and weak bidders, which enables strong bidders to shade their bids more and thereby

draw more benefit from learning that their rival is weak. This explains why the learning

probability of strong bidders, π1, is increasing in β for any k < k1. In contrast, π0 is neg-

atively affected by higher β.20 This follows from the fact that the lower interdependence

19It is true that with higher α, a strong bidder also believes his rival to be of the same type, which affects
his learning incentive negatively. However, the overall effect turns out to be slightly positive (unless α is too
high), as can be seen from Figure 5(a).

20It can be shown that π0 = 0 when β is sufficiently high.
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makes learning the other’s signal less valuable for one’s value estimation—that is, it reduces

the informational advantage—while a weak bidder derives the benefit of learning mostly

from the informational advantage. With π0 being lower due to higher β, weak bidders are

likely to bid less competitively when facing strong bidders, which will reinforce the learning

incentive of strong bidders. Figure 5(b) depicts how the learning probabilities change with

the value interdependence.

The equilibrium payoff in Part (iv) of Theorem 2 follows from the fact that each bidder

obtains a positive payoff only when his own signal is high and his rival’s signal is low, which

yields the (ex-ante) payoff 1
2
(1 − α)Γ10 = 1

2
(1 − α)(v10 − b10) since, by bidding b10, he wins

against the rival with low signal for sure (irrespective of whether the latter has learned or

not). The fact that this payoff is increasing in k means that a lower learning cost (i.e., lower

k) is harmful to bidders’ payoff, which is intuitive since a lower cost induces both strong and

weak bidders to learn with higher probability, thereby intensifying the bidding competition.

Note also that the increase in signal correlation (i.e., higher α) reduces bidders’ payoff,

though it induces less learning by weak bidders. This is because a higher signal correlation

in itself has the effect of intensifying the bidding competition. For instance, if signals are

perfectly correlated, then the entire rent for bidders will be competed away. In contrast, a

higher β increases bidders’ payoff through its opposed effects on weak and strong bidders’

learning incentives that facilitate the bid shading by the latter bidders. The effect of α and

β in Part (iv) should be taken with some caution since the maximum surplus, 1
2
α+(1−α)β,

also varies with those parameters. However, their effect on the normalized payoff, which is

defined as the bidders’ payoff divided by the maximum surplus, remains qualitatively the

same as in Part (iv) of Theorem 2, as depicted in Figure 6.

Remark 1. So far we have assumed that bidders learn their rival’s signal perfectly whenever

they pay the learning cost. The model can be easily extended to the case of imperfect

learning. To do so, assume that when each bidder i decides to learn the rival’s signal, he learns

sj, j 6= i, with probability q ∈ (0, 1] but learns nothing with the remaining probability.21

Note that q measures the precision of learning, and that q = 1 in our setup I2.

Consider the case in which only strong bidders decide to learn with a positive probability.

21One can consider an alternative extension in which each bidder observes another signal that is imperfectly
correlated to the rival’s signal. This model is impenetrable to our analysis, however.
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(a) Normalized bidder payoff according to α (b) Normalized bidder payoff according to β

Figure 6: Bidder’s normalized payoff in the first-price auction under I2. Primitive
values: α = β = 0.6 and k = 0.07.

The analysis is modified only in so far as the indifference condition (6) changes to

Γ1 = q
(
(1− α)Γ10 + αΓ11

)
+ (1− q)Γ1 − k, (10)

where the left hand side is the payoff from no learning and the right hand side is the payoff a

bidder i with high prior signal expects from deciding to learn sj. This expression follows from

the fact that the learning succeeds with probability q, in which case the payoff of the bidder

with high prior signal is equal to Γ10 and Γ11 with probability 1 − α and α, respectively,

while, if the learning fails with probability 1− q, then his payoff equals Γ1. Rearranging the

terms in (10), we have

Γ1 = (1− α)Γ10 + αΓ11 −
k

q
.

Comparing this with (6) reveals that the bidder is now paying a higher cost k/q > k to have

the same information that he would have obtained if the learning was perfect. It is also

straightforward to see that all other equilibrium conditions remain unchanged, except that

π1 is replaced by qπ1. As a consequence of these observations and Theorem 2, the effective

learning probability, qπ1, is increasing in the learning precision q.22 An analogous analysis

applies to the case in which both strong and weak bidders decide to learn with positive

probabilities.

22However, our numerical analysis shows that the probability of learning decision, π1, is changing non-
monotonically in q.
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(a) Total surplus (b) Allocative surplus (c) Learning costs

Figure 7: Comparison of the total surplus Primitive values: α = β = 0.6. The solid and
the dashed lines represent the first-price and the second-price auctions, respectively.

5 Comparison of the Two Auction Formats

Using the equilibrium characterization obtained so far under I2, we compare the performance

of the first-price and second-price auctions in terms of total surplus, bidders’ payoff and

the seller’s revenue. To do so, let TFPA and TSPA denote the total surplus in the unique

symmetric equilibrium of the first-price and second-price auctions, respectively. Likewise let

BFPA and BSPA denote the bidders’ equilibrium payoffs, and let RFPA and RSPA denote the

seller’s equilibrium revenues. Note that for k ≥ k1, there is no learning in the equilibrium

of both auctions, which leads to the outcomes with TFPA = TSPA, BFPA = BSPA, and

RFPA = RSPA. Henceforth, we focus on the case where k < k1.

� Total surplus. Recall that the total surplus—or simply referred to as surplus—is equal

to the allocative surplus minus the learning costs. Recall also from Theorem 1 that the

second-price auction achieves the highest possible surplus for two reasons: (i) the allocation

is efficient; and (ii) the learning cost is not incurred. The dashed lines in Figure 7 depicts

total surplus and the allocative surplus in the second-price auction. The first-price auction,

however, fails both (i) and (ii). In particular, (i) fails since strong bidders often lose to weak

bidders, as can be seen from the fact that the support E10 overlaps with E0 or E01. The

solid lines in Figure 7 depict the total surplus, the allocative surplus, and the learning costs

in the first-price auction.

Proposition 7. For any k < k1, TFPA < TSPA.
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(a) According to k (b) According to α (c) According to β

Figure 8: Comparison of the bidders’ payoff. Primitive values: α = β = 0.6 and k = 0.07.
The solid and the dashed lines represent BFPA and BSPA, respectively.

� Bidders’ payoff. In both auction formats, each bidder obtains a positive payoff only

when his (prior) signal is high and his rival’s signal is low. The resulting equilibrium payoff

for each bidder is 1
2
(1 − α)(v10 − v00) in the second-price auction and 1

2
(1 − α)(v10 − b10)

in the first-price auction, as shown by Theorem 1 and Theorem 2, respectively. Given that

b10 > v00 = 0, the bidders’ payoff is higher in the second-price auction than in the first-price

auction.

In addition, Figure 8 reveals that the difference in the bidders’ payoff between the two

auctions becomes larger as k, α or β becomes smaller. Recall that with smaller k, α or β,

weak bidders learn their rival’s signal with a higher probability. The direct effect of this

learning on the bidding strategy of weak bidders themselves is ambiguous: they will bid

more or less aggressively as their rival turns out to be strong or weak, respectively. However,

it has an indirect effect of making strong bidders bid more aggressively, since they expect

their weak rival to be informed of their high signal and thus bid more aggressively (with

higher probability). It thus decreases the payoff of strong bidder facing a weak rival, which

causes the bidders’ equilibrium payoff in the first-price auction to decrease as well, since

each bidder obtains a positive payoff only when the bidder himself is strong while his rival

is weak. Indeed, the following proposition shows that the payoff difference between the two

auctions is widening as k, α or β becomes smaller.

Proposition 8. For any k < k1, BSPA > BFPA and BSPA − BFPA is decreasing in k, α

and β.

Proof. See Appendix C.1. �
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(a) According to k (b) According to α (c) According to β

Figure 9: Comparison of the seller’s revenue. Primitive values: α = β = 0.6 and k = 0.07.
The solid and the dashed lines represent RFPA and RSPA, respectively.

� Seller’s revenue. Note that the seller’s revenue is equal to the total surplus minus the

sum of two bidders’ payoffs. As both the total surplus and the bidders’ payoff are higher in

the second-price auction than in the first-price auction, the revenue ranking between the two

auctions can go either way. Indeed, the following proposition shows that the seller’s revenue

in the first-price auction is higher than that in the second-price auction when either k is

small or both α and β are small, while the ranking is reversed when β is sufficiently large.

Proposition 9. For any k < k1, the following results hold true:

(i) RFPA > RSPA if k is close to 0, while RFPA and RFPA − RSPA are maximized at

k = 023;

(ii) RFPA > RSPA if α and β are close to 1
2
;

(iii) RFPA < RSPA if β is close to 1.

Proof. See Appendix C.2. �

To understand Parts (i) and (ii), recall from Part (iii) of Theorem 2 that the weak

bidder’s learning probability is decreasing in the parameter values (k, α, and β). Recall also

that the weak bidder’s learning has a positive effect on the strong bidder’s bidding strategy

and thus on the seller’s revenue in the first-price auction. Moreover, according to Part (i),

the seller’s revenue from the first-price auction is maximized at zero learning cost (with

other parameters being fixed). In this case, strong bidders learn their rival’s signal at zero

cost and outbid weak rival with probability one, which implies the total surplus achieves its

first-best.24 On the other hand, the bidders’ payoff is minimized at k = 0 according to Part

23Since we assume k > 0, this should be understood as a limit result with k converging to zero.
24See Figure 7(a) for an illustration of this result.
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(iv) of Theorem 2. Thus, the seller’s revenue, which equals the total surplus minus bidders’

payoffs, is maximized at k = 0.

In contrast, with β close to 1 (i.e, values being almost private), weak bidders never learn

and then make very low bids since their value is low (close to 0). This induces strong bidders

to learn with high probability as long as the learning cost is not too high (i.e., k ≤ k1).

Upon learning that their rival is weak, strong bidders can win the object at very low price,

which is detrimental to the seller’s revenue, reversing the revenue ranking in Part (iii). In

fact, our numerical analysis, as in Figure 9(c), shows that there is a threshold level of value

interdependence such that the first-price auction is revenue-superior to second-price auction

if and only if β is small (that is, value interdependence is strong). This result is consistent

with the finding by Fang and Morris (2006) that in the private values case, the first-price

auction is revenue-inferior to second-price auction when bidders observe signals correlated

with their rival’s value, although the signals are given exogenously unlike our model.

6 Concluding Remarks

This paper investigates the problem of endogenous information acquisition in interdepen-

dent value auctions. We characterize the unique symmetric equilibrium in both first-price

and second-price auctions and analyze bidders’ learning and bidding behavior through two

channels—informational and strategic advantages. We show that under I2, the total surplus

and the bidder payoff are higher in the second-price auction, but the ranking of the seller’s

revenue between the two auction formats depends on the magnitude of learning cost as well

as the degrees of signal correlation and value interdependence. These findings are distin-

guished from the findings in the previous literature, which has mostly studied I1 and found

that the total surplus and the seller revenue are higher in the second-price auction, while

the bidder payoff is higher in the first-price auction.

Appendix

We provide proofs for the second-price auction and then those for the first-price auction. All

of omitted proofs are provided in Supplementary Material.
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A Proofs for Section 4.1

We first provide a couple of lemmas to prove Theorem 1. Let us introduce a couple of

notations. For any t, t′ ∈ Ω, let p(t′|t) be the probability with which each bidder of type t

believes his rival to be of type t′, given the equilibrium learning strategy. Let

Ωt := {t′ ∈ Ω | p(t′|t) > 0}

be the set of all rival types that a bidder of type t faces with positive probabilities. These

notations will continue to be used in the analysis of the first-price auction.

Lemma 1. Under In, n = 1, 2, if t ∈ {U, 0, 1} ∩ Ω, then bt ≥ v(t) := mint′∈Ωt v(t, t′) and

bt ≤ v(t) := maxt′∈Ωt v(t, t′) in any symmetric equilibrium of the second-price auction.

Lemma 2. In any symmetric equilibrium of the second-price auction under I2, the following

results hold:

(i) If t = mm ∈ Ω with m = 0 or 1, then Et = {vt};
(ii) If π1 > 0, then π0 > 0 and b01 > v01, while Et ∩ (v01, b01) = ∅ for any t ∈ Ω01;

(iii) If π0 > 0 and 1 ∈ Ω, then E1 ∩ [b01, v11) = ∅;
(iv) If π1 = 0, then E0 = {v00}.

A.1 Proof of Theorem 1

Proof of Part (i). To show π1 = 0, suppose for a contradiction that π1 > 0. Let us first

consider the case that π1 ∈ (0, 1) so 1 ∈ Ω. In this case, π0 > 0 by Part (ii) of Lemma 2, and

b1 ≥ v(1) = v10 by Lemma 1. Also, E1 ∩ (v01, v11) = ∅ from Parts (ii) and (iii) of Lemma 2.

Hence, it must be the case that E1 ⊂ {v01, v11}. If v01 ∈ E1 so that type t = 1 puts a

mass at v01, then the same type can profitably deviate to bid v01 + ε for sufficiently small

ε > 0. Assume thus that E1 = {v11} = E11, where the second equality follows from Part (i)

of Lemma 2. This means that each bidder i with si = 1 can never earn a positive payoff if

sj = 1, which implies that it is also optimal for him to bid v10 irrespective of sj. Then, he

can do better by not learning sj and bidding v10, since it saves the information acquisition

cost k. A similar contradiction can be established in the case π1 = 1.

We now show π0 = 0. Consider a bidder i with si = 0 and suppose he learns sj. If sj = 0,

then he obtains zero payoff in the bidding stage, clearly. If sj = 1, then the rival must be of

type t = 1, given the fact that π1 = 0. Since b1 = b1 = v1 ≥ v01 by Lemma 1, bidder i can
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never earn a positive payoff. So, bidding v00 without learning sj is better for bidder i than

learning sj, since it saves the information acquisition cost. �

Proof of Parts (ii) and (iii). The proof that each bidder of type t = m ∈ {0, 1} must

bid vmm in symmetric equilibrium is similar to the proof of Part (ii) of Proposition 1 (see

Supplementary Material) and hence omitted. Part (iii) immediately follows from Part (i). �

B Proofs for Section 4.2

To analyze the first-price auction, observe first that for any t ∈ Ω and b ≥ 0,

Γt(b) =
∑
t′∈Ωt

p(t′|t)
[
Ht′(b−) +

Ht′(b)−Ht′(b−)

2

]
(v(t, t′)− b),

where Ht′(b−) := limb′↗bHt′(b
′). The expression in the square bracket is due to the assump-

tion that any bid tie is broken randomly. Note that the above payoff does not account for

the learning cost. Note also that Γt = Γt(b) for b ∈ Et (recall that Γt is the equilibrium

payoff for type t).25

Lemma 3. Call a subset Ω′ ⊂ Ω a component of Ω if Ωt ⊂ Ω′ for any t ∈ Ω′, i.e. types

in Ω′ face each other and no others. Then, for any component Ω′ of Ω, there exists at least

one type t ∈ Ω′ with Γt = 0.

Lemma 4. Define for any t ∈ Ω, Lt := {t′ | bt ≥ bt′}. Consider any type t deviating to bid

b ∈ Et′\Et with t′ ∈ Ωt\{t} such that no type puts a mass at b and there is only one type

t′′ ∈ Ωt ∩ Ωt′ with b ∈ Et′′. Then, Γt(b) is nonincreasing at such b if

p(Lt′|t)
p(t′′|t)

≥ p(Lt′|t′)
p(t′′|t′)

and v(t, t′′) ≤ v(t′, t′′). (B.1)

Also, Γt(b) is nondecreasing at such b if

p(Lt′|t)
p(t′′|t)

≤ p(Lt′|t′)
p(t′′|t′)

and v(t, t′′) ≥ v(t′, t′′). (B.2)

25To be precise, Γt = Γt(b) for some b ∈ int(Et) or a mass point b of the distribution Ht. This is because
some bid in Et, for instance bt, can be suboptimal for type t (though bt ∈ Et), in particular if there is some
other type who puts a mass at bt.
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B.1 Proof of Proposition 4

Proof of Part (i). Suppose that π0 = π1 = 0 in equilibrium. The existing literature, for

instance Campbell and Levin (2000), shows that in this case, there is a unique equilibrium

bidding strategy in which each type-0 bidder bids v00 for sure, while each type-1 bidder

randomizes his bid over interval [v00, b1] with b1 = αv11+(1−α)v00, following the distribution

H1(b) =
(1− α)(b− v00)

α(v11 − b)
. (B.3)

The equilibrium payoffs for type-0 and type-1 are respectively equal to 0 and (1−α)(v10−v00).

We prove the first statement by showing that no bidder has an incentive to learn his

rival’s signal if and only if k ≥ k1. If bidder i with si = 1 deviates to learn sj, then the

maximum payoff from this deviation, exclusive of the learning cost, is given as

Γ̃ = (1− α)(v10 − v00) + max
b∈[v00,b1]

αH1(b)(v11 − b), (B.4)

where the first term is the payoff from bidding v00 + ε (for an arbitrary small ε > 0) after

learning sj = 0 while the second term is the payoff from bidding the optimal b ∈ [v00, b1]

after learning sj = 1. By substituting (B.3) into (B.4), we obtain

Γ̃ = (1− α)(v10 − v00) + max
b∈[v00,b1]

(1− α)(b− v00) = (1− α)(v10 − v00) + (1− α)(b1 − v00).

Thus, bidder i with si = 1 has no incentive to deviate and learn sj if and only if

Γ̃− k ≤ (1− α)(v10 − v00) ⇔ k ≥ α(1− α)(v11 − v00) = k1.

Similarly, each bidder i with si = 0 has no incentive to deviate if k ≥ k1. �

Proof of Part (ii). Suppose π1 = 1 for a contradiction. Then, the singleton set {11} is a

component, so that Γ11 = 0 by Lemma 3. Thus, the payoff for each bidder i with si from

learning sj equals αΓ11 + (1− α)Γ10 − k = (1− α)Γ10 − k. However, if he bids some b ∈ E10

without learning, then the resulting payoff would be at least (1 − α)Γ10 > (1 − α)Γ10 − k,

a contradiction. Next, suppose π0 = 1 for a contradiction. Then, the singleton set {00}
is a component, so Γ00 = 0 by Lemma 3. We argue that Γ01 = 0, which will establish

the desired contradiction since it means that bidder i with si = 0, after learning sj, would
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earn zero payoff in the bidding stage, so learning only entails the cost k. If Γ01 > 0 to the

contrary, then we must have b01 < v01, which in turn implies Γ1,Γ10 > 0 since the type-1

bidder can get a positive payoff by bidding some b ∈ (b01, v01) against his rival with zero

signal. By the above observation, we cannot have Γ11 = 0, so Γ11 > 0. In sum, Γt > 0 for

all t ∈ Ω′ = {1, 01, 10, 11}, which cannot hold true due to Lemma 3, however, since Ω′ is a

component if π0 = 1. �

Proof of Part (iii). Suppose for contradiction that π0 > 0 = π1. We then have Ω01 = {1},
implying that Γ01 = H1(b01)(v01 − b01). Thus, the payoff of each bidder i with si = 0 from

learning sj is

αΓ00 + (1− α)Γ01 − k = (1− α)Γ01 − k = (1− α)H1(b01)(v01 − b01)− k = Γ0 ≥ 0, (B.5)

where the first equality holds since Γ00 = 0 while the last equality holds since π0 ∈ (0, 1)

means that bidder i with si = 0 is indifferent between learning and not learning. Next, we

must have b1 ≤ b01, since otherwise Γ01 = 0. Since this implies that the type t = 1 always

loses to the rival type t = 01 by bidding b1, we must have Γ1 = (1−α)(1−π0)H0(b1)(v10−b1).

Consider now bidder i with si = 1 deviating to learn sj. If he bids b1 after learning sj = 0

and b01 after learning sj = 1, then the resulting payoff, exclusive of the learning cost, is

(1− α)H0(b1)(v10 − b1) + αH1(b01)(v11 − b01) = Γ1 + αH1(b01)(v11 − b01).

So, the net gain from the deviation is at least

[
Γ1 + αH1(b01)(v11 − b01)− k

]
− Γ1 = αH1(b01)(v11 − b01)− k > 0,

where the inequality follows from (B.5) and the facts that α > 1 − α and v11 > v01. This

means that bidder i with si = 1 has a strict incentive to learn sj, a contradiction. �

B.2 Proof of Proposition 5

We first provide some characterizations of symmetric equilibrium with π1 > 0:

Lemma 5. In any symmetric equilibrium with π1 > 0 (whether or not π0 = 0),

(i)
⋃
t∈Ω Et is a connected interval while no type t 6= 00 puts a mass at any b ∈

(⋃
t∈Ω Et

)
\{v00};

(ii) Em0 ∩ Em1 = ∅ for m = 0 or 1;
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(iii) Γt > 0 = Γ0 = Γ00 for all t 6= 0, 00;

(iv) Et ⊆ Et :=
⋃
t′∈Ωt

Et′ for any t ∈ Ω;

(v) b00 = b00 = b0 = v00;

(vi) v00 < b1 < b11;

(vii) b0 = v00 < b0;

(viii) b10 = v00 < b10 = b1 while E10 = [b10, b10];

(ix) Γ1 = (1− α)Γ10 and k = αΓ11.

Lemma 6. In any symmetric equilibrium with π1 > 0 = π0,

(i) b0 = b10 = b1 while E0 = E10 = [v00, b0];

(ii) b1 = b11 while E1 = [b1, b1] and E11 = [b11, b11].

Proof of Parts (i) and (ii). Lemma 5 and Lemma 6 together imply that the supports

of the equilibrium bids distributions must look like those in Figure 3. Given this, one can

write the equilibrium conditions as follows:

0 = Γ0(b0) = α(v00 − b0) + (1− α)π1(v01 − b0) (B.6)

(1− α)(v10 − b0) = Γ1(b0) = Γ1(b1) = (1− α)(v10 − b1) + α(1− π1)(v11 − b1) (B.7)

(1− π1)(v11 − b1) = Γ11(b1) = Γ11(b11) = v11 − b11 (B.8)

k = αΓ11(b11) = α(v11 − b11), (B.9)

where the first equalities of (B.6) and (B.9) hold due to Parts (iv) and (ix) of Lemma 5,

respectively. From (B.9), b11 = v11− k
α
. Substituting this into (B.8) yields b1 = v11− k

(1−π1)α
,

which can then be substituted into (B.7) to yield b0 = v11 − k
(1−π1)α

− k
1−α . We thus obtain

(4). To obtain (3), rearrange (B.6) to get

b0 =
αv00 + (1− α)π1v01

α + (1− α)π1

=
(1− α)π1v01

α + (1− α)π1

. (B.10)

Equating this with b0 in (4) yields (3). It is straightforward to check that the RHS of (3) is

increasing in π1 so there exists a unique solution (if any) that solves (3). �

Proof of Part (iii). We show that there is some k0 < k1 such that if k /∈ [k0, k1), there

is no equilibrium with π1 > 0 = π0. First, one can easily check that for k = k1 = α(1− α),

π1 = 0 is the (unique) solution of (3). Thus, there is no positive solution to (3) if k ≥ k1,

since the RHS of (3) is increasing in π1. Next, we show that if k < k0, then each bidder i
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with si = 0 can profitably deviate to learn sj. To see the payoff from this deviation, after

learning sj = 0, the bidder i of type ti = 00 can only obtain zero payoff (by bidding v00).

After learning sj = 1 (with probability 1 − α), the bidder i of type ti = 01 can bid b0 to

obtain (v01− b0). Thus, the deviation payoff is at least (1−α)π1(v01− b0), which is equal to

α(b0− v00) by (B.6). This payoff is decreasing in k since b0 is decreasing in k.26 This implies

that the deviation is profitable for k < k0, given the definition of k0 in (5). �

B.3 Proof of Proposition 6

Let us first provide further characterizations of symmetric equilibrium with π1, π0 > 0.

Lemma 7. In any symmetric equilibrium with π1, π0 > 0,

(i) b0 = b01 while E0 = [v00, b0] and E01 = [b01, b01];

(ii) b1 = b11 while E11 = [b11, b11];

(iii) b0 ≤ b1;

(iv) b01 ∈ [b1, b1] while E01 = [b01, b01];

(v) (1− α)Γ01 = k.

Lemma 8. If k ≥ k0, then there is no symmetric equilibrium with π1, π0 > 0.

Lemma 9. If k < k0, then b01 = b10 in any symmetric equilibrium with π1, π0 > 0.

Proof of Parts (i) and (ii). By Lemma 5, Lemma 7, and Lemma 9, the supports of the

equilibrium bid distributions must look like those in Figure 4. Using this, we can write the

equilibrium conditions as follows:

0 = Γ0(b0) = α(v00 − b0) + (1− α)π1H10(b0)(v01 − b0) (B.11)

(1− α)(v10 − b10) = Γ1(b10) = Γ1(b1) = (1− α)(v10 − b1) + α(1− π1)(v11 − b1) (B.12)

π1H10(b01)(v01 − b01) = Γ01(b01) = Γ01(b01) = π1(v01 − b01) (B.13)

(v10 − b10) = Γ10(b10) = Γ10(b0) = (1− π0)(v10 − b0) (B.14)

k = (1− α)Γ01(b01) = (1− α)π1(v01 − b01) (B.15)

k = αΓ11(b1) = α(1− π1)(v11 − b1) (B.16)

k = αΓ11(b11) = α(v11 − b11), (B.17)

26To see it, rewrite (B.6) to get b0 = (1−α)π1v01
α+(1−α)π1

, which is decreasing in k since π1 is decreasing in k.
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where the first equalities in (B.15) to (B.17) hold due to Part (ix) of Lemma 5 and Part (v)

of Lemma 7. Observe that b01, b1 and b11 in (9) are directly obtained by rearranging (B.15),

(B.16), and (B.17), respectively. Next, rearranging (B.11) yields

b0 =
αv00 + (1− α)π1H10(b0)v01

α + (1− α)π1H10(b0)
. (B.18)

Note that

H10(b0) = H10(b01) =
v01 − b01

v01 − b0

=
k

(1− α)π1(v01 − b0)
, (B.19)

where the first equality follows from b0 = b10, the second from (B.13), and the third from

substituting the expression for b01 in (9). We obtain the expression of b0 in (9) by substituting

(B.19) into (B.18) and then solving for b0.

Let us now obtain π0 and π1. For π0, rearrange (B.14) to get

π0 = 1− v10 − b10

v10 − b0

=
b10 − b0

v10 − b0

. (B.20)

Substituting this equation into the expressions for b10 = b01 and b0 in (9) yields (8). To show

that π1 is obtained by solving (7), substitute b10 = v01 − k
(1−α)π1

into (B.12) to get

(1− α)

(
v10 − v01 +

k

(1− α)π1

)
= (1− α)(v10 − b1) + α(1− π1)(v11 − b1)

= (1− α)

(
v10 − v11 +

k

α(1− π1)

)
+ k,

where the second equality holds since b1 = v11− k
α(1−π1)

. Then, (7) is obtained by rearranging

the leftmost and rightmost terms of the above equation. The RHS of (7) increases from −∞
to ∞ as π1 increases from 0 to 1 while the LHS is constant, and hence there is a unique

solution π1 ∈ (0, 1) to (7).

Lastly, to show π1 > π0, observe first that

π1 − π0 = π1 −
b01 − b0

v10 − b0

=
v10 − b01 − (1− π1)(v10 − b0)

v10 − b0

, (B.21)

where the first equality follows from (B.20). Next, we use v11 − v01 = v10 and b0 = k
α

to
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rewrite (7) as

(1− π1)(v10 − b0) =
k(1− π1)

1− α
− k(1− π1)

(1− α)π1

+
kπ1

α

Substituting this and b01 = v01 − k
(1−α)π1

into the numerator of the last term in (B.21),

v10 − b01 − (1− π1)(v10 − b0) = v10 − v01 +
k

(1− α)π1

− k(1− π1)

1− α
+
k(1− π1)

(1− α)π1

− kπ1

α

= v10 − v01 +
k

(1− α)π1

− k

1− α
+

kπ1

1− α
+
k(1− π1)

(1− α)π1

− kπ1

α

= v10 − v01 +
2k

1− α

(
1

π1

− 1

)
+ π1

(
k

1− α
− k

α

)
> 0,

where the inequality holds since v10 > v01, π1 < 1 and α > 1
2
. We thus have that π1 > π0. �

Proof of Part (iii). The result follows directly from Lemma 8. �

B.4 Proof of Theorem 2

Proof of Part (i). By Part (iii) of Proposition 4, there does not exist an equilibrium

with π1 = 0 < π0. Then, Parts (iv) of Proposition 5 and Proposition 6 together imply

that bidders are learning with positive probability only if k < k1. Thus, we must have

π1 = π0 = 0 if k ≥ k1, in which case the uniqueness (and existence) of equilibrium follows

from Proposition 4. �

Proof of Part (ii). By Parts (ii) and (iii) of Proposition 4 and Part (iii) of Proposition 6,

there is no equilibrium where π1 = π0 = 0 or π1 = 0 < π0 or π1, π0 > 0 if k ∈ [k0, k1). We

must thus have π1 > 0 = π0, in which case π1 is given by (3).

We now show that π1 is decreasing in k and increasing in β. It is immediate that π1

is decreasing in k from the fact that the LHS of (3) is decreasing in k while the RHS is

increasing in k and π1. To show π1 is increasing in β, rewrite (3) as

v11

k
=

1

1− α
+

1

α(1− π1)
+
v01

k

(
1− α

α + (1− α)π1

)
.

With v01 = 1 − β, the RHS of this equation is decreasing in β, which implies that π1 is

increasing in β since the RHS is increasing in π1 while the LHS is constant.
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Next, while the uniqueness of equilibrium follows from Proposition 5, it remains to show

that no bidder has a profitable deviation from the equilibrium bidding or learning strategy.

For no profitable deviation from the equilibrium bidding strategy, we need to prove that no

bidder type t ∈ Ω has an incentive to deviate to place a bid in Et′ with t′ ∈ Ωt. As with

the proof of Proposition 2 (see Supplementary Material), this proof follows directly from

applying Lemma 4, and hence is omitted. For no profitable deviation from the equilibrium

learning strategy, it suffices to show that each bidder i with si = 0 has no incentive to deviate

to learn sj. To do so, note that after learning sj = 0, it is optimal for ti = 00 to bid v00 and

obtain zero payoff, since 00 ∈ Ω. Let Γ∗01(k) denote the payoff of ti = 01, as a function of k,

from bidding optimally after learning sj = 1. Then, the best payoff that ti = 0 can expect

from learning sj is given by (1− α)Γ∗01(k)− k.

Claim 1. Γ∗01(k) is decreasing in k.

Claim 2. (1− α)Γ∗01(k0) = k0.

Claim 1 and Claim 2 together imply that (1− α)Γ∗01(k)− k ≤ 0 if k ≥ k0, which means

that the deviation is unprofitable. �

Proof of Part (iii). By Parts (ii) and (iii) of Proposition 4 and Part (iv) of Proposition 5,

there is no equilibrium in which π1 = π0 = 0 or π1 > 0 = π0 or π1 = 0 < π0, if k < k0. We

must thus have π1, π0 > 0 in equilibrium (if any), in which case π1 and π0 are given by (7)

and (8), respectively.

We now prove the effects of k on π1 and π0. The fact that π1 is decreasing in k is

immediate from the fact that the RHS of (7) is increasing in π1 while the LHS is increasing

in k. For the effect of k on π0, note that b0 and b10 in (9) are increasing and decreasing in

k, respectively. Given this, the middle expression of (B.20) is decreasing in k, and so is π0.

The effects fo α and β on π1 and π0 follow from the next claim.

Claim 3. For any k < k0, ∂π1/∂α, ∂π1/∂β > 0, while ∂π0/∂α, ∂π0/∂β < 0.

Lastly, while the uniqueness of equilibrium follows from Proposition 6, we need to show

that no type t ∈ Ω has an incentive to deviate to bid some b ∈ Et′ where t′ ∈ Ωt\{t}.27 Since

this result follows directly from applying Lemma 4 in many cases, we only analyze the cases

in which the proof relies on the following claim (whose proof is contained in Supplementary

Material).

27Clearly, there is no profitable deviation from the equilibrium learning strategy, since each bidder is
indifferent between learning and not learning irrespective of his signal.
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Claim 4. Γ0(b) is decreasing in b ∈ E01, Γ1(b) is constant for b ∈ E10, and Γ01(b) is

increasing in b ∈ E0.

Consider first type t = 0—for whom Ωt = {0, 1, 10, 00}—deviating to bid some b ∈
E10\E0 = E01. Since Γ0(b) is decreasing in b ∈ E01, this deviation is unprofitable. Next,

consider t = 1—for whom Ωt = {1, 0, 01, 11}—deviating to bid some b ∈ E10 = E0 ∪ E10.

Since the deviation payoff Γ1(b) is constant across the interval E10, we have Γ1(b) = Γ1(b10) =

Γ1(b1) = Γ1 for all b ∈ E10, so such deviation is unprofitable. Lastly, consider type t = 01—

for whom Ωt = {1, 10}—deviating to bid b ∈ E0 = E10\E01. Since Γ01(b) is increasing in

b ∈ E0, we have Γ01(b) ≤ Γ01(b0) = Γ01(b01) = Γ01 for all b ∈ E0, as desired. �

Proof of Part (iv). We begin with a couple of observations as follows (whose proofs are

again contained in Supplementary Material):

Claim 5. ∂(1−α)(v10−b0)
∂α

< 0 for any k ∈ [k0, k1).

Claim 6. For any k < k1, b10 is decreasing in k, α and β.

Consider first the case k ∈ [k0, k1). The (ex-ante) equilibrium payoff for each bidder

equals

1
2
Γ0 + 1

2
[(1− πU)Γ1 + πU(αΓ11 + (1− α)Γ10 − k)] = 1

2
(1− α)Γ10 = 1

2
(1− α)(v10 − b0),

where the first equality holds since Γ0 = 0, Γ1 = (1− α)Γ10, and αΓ11 = k. Note that since

b0 = b10 and b10 is decreasing in k and β by Claim 6, the equilibrium payoff, 1
2
(1−α)(v10−b0),

is increasing in k and β. The comparative statics regarding α follows from Claim 5.

Consider next the case k < k0. The (ex-ante) equilibrium payoff for each bidder equals

1
2

[(1− π0)Γ0 + π0(αΓ00 + (1− α)Γ01 − k)] + 1
2

[(1− π1)Γ1 + π1(αΓ11 + (1− α)Γ10 − k)]

= 1
2
π0 ((1− α)Γ01 − k) + 1

2
[(1− α)Γ10 + π1(αΓ11 − k)] = 1

2
(1− α)Γ10 = 1

2
(1− α)(v10 − b10),

where the first equality follows from Γ0 = Γ00 = 0 and Γ1 = (1 − α)Γ10, and the second

equality from αΓ11 = k = (1 − α)Γ01. To see how the expression after the third equality

changes in k and β, note that b10 = b01 is decreasing in β and k by Claim 6. Thus, the

equilibrium payoff is increasing in k and β. To see the effect of α, write the ex-ante payoff
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as

1
2
(1−α)Γ10 = 1

2
(1−α)(v10−b0) = 1

2
(1−α)

(
v10 − v01 +

k

(1− α)π1

)
= 1

2
(1−α)(2β−1)+

k

2π1

,

which is decreasing in α since 2β − 1 ≥ 0 and π1 is increasing in α. �

C Proofs for Section 5

C.1 Proof of Proposition 8

The difference of bidders’ payoff between the two auctions is 1
2
(1 − α)b10. Since b10 is

decreasing in k and β by Claim 6, so is 1
2
(1− α)b10. Next, note that ∂(1−α)b10

∂α
= −b10 + (1−

α)∂b10
∂α

< 0, where the inequality follows from Claim 6.

C.2 Proof of Proposition 9

Proof of Part (i). We first prove that as k → 0, the total surplus in the first-price auction,

TFPA, approaches the first-best level 1
2
α+(1−α)β. Since the learning cost vanishes as k → 0,

we only need to show that the allocative surplus approaches the first-best level, which holds

true if the winning probability of type t = 10 against the rival of type t = 0 or t = 01

approaches 1 as k → 0. To show this, it suffice to prove that for any fixed small ε > 0,

there is sufficiently small k(< k0) such that for k < k, H01(b′) > 1 − ε = 1 − H10(b′) for

some b′ ∈ int(E01), since it will imply that the winning probability of type t = 10 against

type t = 0 or t = 01 is at least (1 − π0) + π0(1 − ε)2, which becomes arbitrarily close to

1 by making ε sufficiently small. With k close to 0 and thus smaller than k0, the bidding

distributions of type t = 01 and t = 10 on E01 are given as

H01(b) =
(1− π0)

π0

(b− b0)

v10 − b
and H10(b) =

v01 − b01

v01 − b
. (C.1)

Observe also that as k → 0, we have π1 → 1, π0 → v01
v10

, b0 → v00 = 0, and b01 = b10 → v01.

Now let b′ be defined such that H10(b′) = ε. By (C.1), we have b′ = b01−(1−ε)v01
ε

, which

converges to v01 as k → 0 since b01 → v01 as k → 0. Given this and (C.1), we have

H01(b′) = (1−π0)
π0

(b′−b0)
v10−b′ →

v10−v01
v01

v01
v10−v01 = 1 as k → 0 since π0 → v01

v10
and b0 → v00 = 0 as

k → 0. Thus, one can find sufficiently small k such that H01(b′) > 1− ε, as desired.
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To prove that RFPA > RSPA at k ' 0, recall from Part (iv) of Theorem 2 that each

bidder’s payoff in the first-price auction is 1
2
(1−α)(v10− b10) = 1

2
(1−α)

(
2β − 1 + k

(1−α)π1

)
,

where the equality follows from b10 in (9). Thus, BFPA = (1 − α)(2β − 1 + k
(1−α)π1

), which

converges to (1− α)(2β − 1) as k → 0. Therefore, at k ' 0,

RFPA = TFPA −BFPA ' 1
2
α + (1− α)β − (1− α)(2β − 1) = 1

2
α + (1− α)(1− β).

In the second-price auction, according to Theorem 1, a positive payment is made only when

both bidders have high signal and equals v11 = 1, which means that RSPA = 1
2
α < RFPA '

1
2
α + (1− α)(1− β) at k ' 0, as desired.

Next, by Theorem 2, the bidders’ payoff decreases as k decreases. Thus, it is minimized

as k → 0. Combining this with the above finding that the total surplus approaches the

first-best level as k → 0 implies that the seller’s revenue is maximized as k → 0. �

Proof of Part (ii). We show that at α = β = 1
2
, RFPA > RSPA, from which the desired

result will follow since the seller’s revenue as well as the equilibrium strategy is continuous

at α = β = 1
2
. So let α = β = 1

2
, and note that RSPA = 1

2
α = 1

4
while the allocative surplus

in the first-price auction is equal to 1
2
.28 Consider the case of k ∈ [k0, k1) in the first-price

auction in which

(1− α)(v10 − b0) = (1− α)

(
v10 −

(1− α)π1v01

α + (1− α)π1

)
=

1

4(1 + π1)
, (C.2)

where the first equality follows from b0 in (4) and some rearrangement, and the second

equality holds since α = β = 1
2
. Hence, RFPA = 1

2
− π1k − 1

4(1+π1)
, where π1k is the learning

cost. We thus have

RFPA −RSPA =
1

2
− π1k −

1

4(1 + π1)
− 1

2
= π1

(
1

4(1 + π1)− k

)
=

π3
1

8 + 4π1(1− π1)
> 0,

where the last equality holds since

k =
(1− π1)(2 + π1)

4(2− π1)(1 + π1)
, (C.3)

which follows from (3) and the fact that α = β = 1
2
.

28With β = 1
2 , the values are common across bidders and equal to 1

2 , which means that the allocative
surplus is 1

2 irrespective of the allocation, as long as someone obtains the object.
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Before turning to the case of k < k0, we show that k0 = 1
10

at α = β = 1
2
. To see this,

recall that from (5), k0 is the unique solution to

k = (1− α)(v01 − b0)π1 =
π1

4(1 + π1)
,

where the second equality follows from the fact that v10 = v01 = 1
2

(since β = 1
2
) and (C.2).

Equating this with (C.3), we have π1 = 2
3

and k0 = 1
10

. Next, for k < k0,

BFPA = (1− α)(v10 − b01) = (1− α)

(
v10 − v01 +

k

(1− α)π1

)
=

k

π1

,

where the last equality holds since α = β = 1
2
. Thus,

RFPA −RSPA = TFPA −BFPA −RSPA =
1

2
− (π0 + π1)k − k

π1

− 1

4

=
1

4
−
(

1− 4k

(1− 4k)π1

+ π1

)
k − k

π1

=
2− π1 − 2π3

1 + 2π4
1

4(1− 2π1)(1− 3π1 + π2
1)
,

where the second equality follows from (8) and the fact that α = β = 1
2
, and the last equality

holds since k = (1−π1)π1
4(3π1−π2

1−1)
from substituting α = β = 1

2
into (7). One can show that the

numerator of the RHS of the last equality attains its minimum value 0.019 at π1 ≈ 0.637,

and the denominator is strictly positive for any π1 >
1
2
, which holds true since the fact that

k = (1−π1)π1
4(3π1−π2

1−1)
< k0 = 1

10
implies π1 >

2
3
. �

Proof of Part (iii). With β ' 1, we have v01 ' 0, so the expression in (8) becomes

negative, meaning that we must have π0 = 0 in the equilibrium. Thus, from (3), we obtain

π1 ' α(1−α)−k
α(1−α−k)

> 0. Substituting this into b0 = b10 in (4), we have b0 = b10 ' 0 and thus

BFPA = 2× 1
2
(1− α)(v10 − b10) ' (1− α) (C.4)

since v10 ' 1 with β ' 1. Also, TFPA ≤ 1
2
α + (1− α)− π1k. Hence,

RFPA = TFPA −BFPA ≤ 1
2
α + (1− α)− π1k −BFPA ' 1

2
α− π1k <

1
2
α = RSPA.

where the approximate equality follows from (C.4) and the strictly inequality holds since

k, π1 > 0. �
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Bergemann, D. and J. Välimäki (2005). Information in mechanism design. Cowles Founda-

tion Discussion Paper.

Campbell, C. M. and D. Levin (2000). Can the seller benefit from an insider in common-value

auctions? Journal of Economic Theory 91, 106–120.

Fang, H. and S. Morris (2006). Multidimensional private value auctions. Journla of Economic

Theory 126, 1–30.

Hausch, D. B. and L. Li (1993). A common value auction model with endogenous entry and

information acquisition. Economic Theory 3 (2), 315–334.

Kim, J. (2008). The value of an informed bidder in common value auctions. Journal of

Economic Theory 143, 585–595.

Li, S. and G. Tian (2008). Equilibria in second price auctions with information acquisition.

Manuscript, Department of Economics, Texas A&M University.

Matthews, S. (1984). Information acqusition in discriminatory auctions. In M. Boyer and

R. E. Kihlstrom (Eds.), Bayesian Models in Economic Theory, pp. 181–207. Amsterdam:

North-Holland.

Milgrom, P. R. (1981). Rational expectations, information acquisition, and competitive

bidding. Econometrica 49, 921–943.

Milgrom, P. R. and R. J. Weber (1982). A theory of auctions and competitive bidding.

Econometrica 50, 1089–1122.

Persico, N. (2000). Information acqusition in auctions. Econometrica 68, 135–148.

Shi, X. (2012). Optimal auctions with information acquisition. Games and Economic Be-

havior 74, 666–686.

Stegeman, M. (1996). Participation costs and efficient auctions. Journal of Economic The-

ory 71, 228–259.

37



Tian, G. and M. Xiao (2010). Endogenous information acquisition on opponents’s valuations

in multidimensional first price auctions. Manuscript, Department of Economics, Texas

A&M University.

38



Supplementary Material for

“Learning Rival’s Information in the Interdependent

Value Auctions”

Jinwoo Kim and Youngwoo Koh∗

January 18, 2019

Contents

S1 Proofs for Section 3 3

S1.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

S1.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

S1.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

S2 Omitted Proofs 12

S2.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

S2.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

S2.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

S2.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

S2.5 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

S2.6 Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S2.7 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

S2.8 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

S2.9 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

S2.10Proof of Claim 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

∗Kim: Department of Economics, Seoul National University, jikim72@gmail.com; Koh: College of Eco-
nomics and Finance, Hanyang University, youngwoo.koh@gmail.com.

1



S2.11Proof of Claim 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

S2.12Proof of Claim 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

S2.13Proof of Claim 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

S2.14Proof of Claim 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

S2.15Proof of Claim 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



This notes consists of two sections. Section S1 provides proofs for I1 case in Section 3,

and Section S2 provides omitted proofs in the Appendix of the paper.

S1 Proofs for Section 3

For any type-t bidder and his bids b and b̃, we say that b ex-post dominates b̃ for t (or

b̃ is ex-post dominated by b for t) if b yields payoff no less than b̃ does against equilibrium

strategy of any rival type t′ ∈ Ωt and strictly higher payoff against equilibrium strategy of

some rival type t′ ∈ Ωt. Note that no equilibrium bid can be ex-post dominated.

S1.1 Proof of Proposition 1

We first establish a useful lemma.

Lemma S1. Under I1, EU = {vU} and Em = {vmm} for each m = 0, 1, and πU 6= 0, 1 in

any symmetric equilibrium.

Proof. We first show that EU = {vU} and Em = {vmm} for each m = 0, 1.1 To begin, we

use Lemma 1 to make the following observations: (a) bU , bU ∈ [v0, v1]; (b) v00 ≤ b0 ≤ b0 ≤
v01 < v10 ≤ b1 ≤ b1 ≤ v11. An implication of (b) is that type-1 bidder always wins against

type-0 rival. Observe now that b0 ≤ v0 since otherwise we must have some b ∈ (v0, v01] ∩E0

that is ex-post dominated by b′ = v0 for type-0 bidder for the following reason: if he faces

type-0 or type-U rival, then he only avoids some negative payoffs (without giving up any

positive payoff) by reducing his bid from b to b′;2 he always loses against type-1 rival by

bidding either b or b′. Given that b0 ≤ v0 and b1 ≥ v10 > vU , we must have [v0, vU)∩EU = ∅
since otherwise we can find some b ∈ [v0, vU)∩EU that is ex-post dominated by b′ = vU > b

for type U . The reason is that by bidding b′ instead of b, a type-U bidder can increase the

probability of earning positive payoff against the same type rival while his winning status—

and thus his payoff—against other types does not change. The argument so far establishes

[v00, vU)∩EU = ∅. Given this, we must b0 = v00 since any bid b ∈ (v00, v01]∩E0 can be shown

to be ex-post dominated by v00 for type-0 bidder, using an argument similar to the above.

1Our argument below establishes this result in all three possible cases: πU = 0 so Ω = {U}; πU = 1 so
Ω = {0, 1}; and πU ∈ (0, 1) so Ω = {U, 0, 1}.

2If his rival is of type 0 (resp., type U), then this negative payoff amounts to v00 − b (resp., v0 − b),
multiplied by the probability that the rival’s bid is between b and b′, which is strictly positive for type-0
bidder because of the assumption that b ∈ (v0, v01] ∩ E0.
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In sum, we must have E0 = {v00} and EU ∩ [v00, vU) = ∅. An analogous argument can be

used to establish E1 = {v11} and (vU , v11]∩EU = ∅. That EU ∩ [v00, vU) = EU ∩ (vU , v11] = ∅
means EU = {vU}, as desired.

Let us now show that πU 6= 0, 1 in any symmetric equilibrium. Suppose for a contradiction

that πU = 0, in which case the equilibrium payoff is equal to 0 since both bidders bid vU .

Now consider bidder i deviating to learn si. Since bidder j is uninformed and thus bids

vU , bidder i’s optimal response is to bid any b < vU and lose if si = 0, and to bid any

b > vU and win if si = 1, which results in the expected payoff equal to 1
2
(v1 − vU). This

payoff is smaller than the learning cost c since c < c = v1−vU
2

, so the deviation is profitable.

Suppose for another contradiction that πU = 1, in which case the equilibrium payoff is equal

to 1
2
(1−α)(v10−v00)−c.3 Now consider bidder i deviating not to learn si. Being uninformed

of si, bidder i’s optimal bid is any b ∈ (v00, v11) such that he wins against the rival of tj = 0

(who bids v00) while losing against the rival of type tj = 1 (who bids v11), which results in

the expected payoff equal to 1
2

(
v(U, 0) − v00

)
. This is greater than the equilibrium payoff

since 1
2

(
v(U, 0)− v00

)
= 1

2
(1− α)β = 1

2
(1− α)(v10 − v00). �

We are now ready to prove Proposition 1.

Proof of Parts (i) and (ii). By Lemma S1, we must have πU ∈ (0, 1) and Ω = {U, 0, 1}.
Also, each type t = U , 0, and 1 must bid vU , v00, and v11 with probability 1, respectively.

Let us now consider each bidder i’s incentive to learn si, provided that his rival learns sj

with probability πU and follows the bidding strategy given above. If bidder i is uninformed

of si, then his expected payoff is ΓU = 1
2
πU(vU0 − v00), since he obtains a positive payoff

vU0− v00 only when his rival learns sj = 0 and bids v00. If bidder i is informed of si, then he

obtains a positive payoff only when he learns si = 1 while his rival either remains uninformed

and bids vU , or learns sj = 0 and bids v00. The resulting expected payoff is

1
2
Γ1 − c = 1

2
(1− πU)(v1 − vU) + 1

2
πU(1− α)(v10 − v00)− c.

It is straightforward to show that if c ∈ (0, c), then there exists πU ∈ (0, 1) such that

ΓU = 1
2
Γ1 − c, so each bidder is indifferent between learning and not learning. Also, solving

this equation and substituting vU0 = β(1−α), v10 = β, and v00 = 0 yield πU = v1−vU−2c
v1−vU

. �

3This is because, with πU = 1, each bidder i obtains a positive payoff only when (si, sj) = (1, 0) so he
wins and pays v00.
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Proof of Part (iii). Since πU ∈ (0, 1), each bidder must be indifferent between learning

and not learning. Hence, each bidder’s (ex-ante) payoff is ΓU = 1
2
πU(vU0 − v00), which is

decreasing in c as πU = v1−vU−2c
v1−vU

is decreasing in c. �

S1.2 Proof of Proposition 2

Let πiU be bidder i’s learning probability and Ei
t be the support of equilibrium bid distribution

of bidder i with type t ∈ Ω, where i = 1, 2. Also, let Γit(b) denote the payoff of bidder i

with type t from bidding b ∈ Ei
t , given that the other bidder employs an equilibrium bidding

strategy. We first establish a series of lemmas.

Lemma S2. In any equilibrium with π1
U , π

2
U ∈ (0, 1), the following results hold:

(i) E := ∪t∈ΩE
1
t = ∪t∈ΩE

2
t , while E is a connected interval.

(ii) Ei
t is a connected interval for all i = 1, 2.

(iii) b ≤ b′ ≤ b′′ for any b ∈ Ei
0, b′ ∈ Ei

U and b′′ ∈ Ei
1 for all i = 1, 2.

(iv) b1
0 = b2

0 while Γ1
0 = Γ2

0 = 0.

(v) Ei
1 = Ej

1 and b
i

U = b
j

U .

Proof. Since the proof of Part (i) is standard, we omit it. To prove Part (iii) first, let us

write the payoff for bidder i = 1, 2 of type U and type 0 from bidding b ∈ E as

ΓiU(b) = (1− πjU)Hj
U(b)(vU − b) + 1

2
πjUH

j
0(b)(vU0 − b) + 1

2
πjUH

j
1(b)(vU1 − b) and

Γi0(b) = (1− πjU)Hj
U(b)(v0 − b) + απjUH

j
0(b)(v00 − b) + (1− α)πjUH

j
1(b)(v01 − b),

where j 6= i and j = 1, 2. We then have

(1− α)ΓiU(b)− 1
2
Γi0(b)

= (1− πjU)Hj
U(b)

(
(1− α)vU − 1

2
v0 + (α− 1

2
)b
)

+ πjUH
j
0(b)

(
1
2
1− α)vU0 − 1

2
αv00 + (α− 1

2
)b
)

+ πjUH
j
1(b)

(
1
2
(1− α)vU1 − 1

2
(1− α)v01

)
= (1− πjU)Hj

U(b)
(

1
2
(1− α)β + (α− 1

2
)b
)

+ πjUH
j
0(b)

(
1
2
(1− α)2β + (α− 1

2
)b
)

+ πjUH
j
1(b)1

2
(1− α)αβ,

which is strictly increasing in b, since Hj
U(b), Hj

0(b), or Hj
1(b) is strictly increasing in b ∈ E.

This implies that (a) ΓiU(b) is strictly increasing in b whenever Γi0(b) is weakly increasing.

Similarly, we can also show that 1
2
Γi1(b)−αΓiU(b) is strictly increasing in b, which implies that
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(b) Γi1(b) is strictly increasing in b whenever ΓiU(b) is weakly increasing. It is straightforward

to see that the statement of Part (ii) follows from combining (a) and (b).

To prove Part (ii), note that given Part (iii), each Ei
t must be a connected interval since

otherwise E = ∪t∈ΩE
i
t would not be a connected interval. The proof of Part (iv) follows

from the standard argument and is thus omitted.

To see Part (v), note first that we must have b
i

1 = b
j

1 =: b1, since if b
i

1 > b
j

1, then

bidder i of type 1 could profitably decrease his bid from b
i

1 to some b
i

1 − ε ∈ (b
j

1, b
i

1). We

now argue that bi1 = bj1. Suppose for a contradiction that bi1 < bj1. Observe that since

Γi1 = v1 − b
i

1 = v1 − b
j

1 = Γj1, we have

Γj1(bj1) = (1− πiU)(v1 − bj1) + (1− α)πiU(v10 − bj1) + απiUH
i
1(bj1)(v11 − bj1)

= (1− πjU)(v1 − bj1) + (1− α)πjU(v10 − bj1) = Γi1(bj1).

Rearranging the LHS and RHS of the second equality, we obtain

απiUH
i
1(bj1)(v11 − bj1) = (πiU − π

j
U)
(
v1 − (1− α)v10 − αbj1

)
⇔ απiUH

i
1(bj1)(v11 − bj1) = (πiU − π

j
U)α(v11 − bj1)

⇔ H i
1(bj1) =

πiU − π
j
U

πiU
, (S1)

where the second equivalence holds since v1 = αv11 +(1−α)v10. The fact that πiU , π
j
U ∈ (0, 1)

implies

ΓiU = 1
2
Γi0 + 1

2
Γi1 − c = 1

2
Γi1 − c = 1

2
Γj1 − c = 1

2
Γj0 + 1

2
Γj1 − c = ΓjU , (S2)

where the second and the fourth equalities follow from Part (iv). Recall that 1
2
Γi1(b) −

αΓiU(b) is strictly increasing, which implies that ΓiU(b) is strictly decreasing whenever Γi1(b)

is constant. Given this and b
i

U = bi1 < bjU = b
j

U , we must have Γi1(bj1) = Γi1(bi1) = Γi1 and

ΓiU(bj1) < Γ(bi1) = ΓiU . Combining this with (S2), we obtain

ΓiU(bj1) = (1− πjU)(vU − bj1) + 1
2
πjU(vU0 − bj1)

< ΓiU = ΓjU = ΓjU(bj1)

= (1− πiU)(vU − bj1) + πiU
1
2
(vU0 − bj1) + 1

2
πiUH

i
1(bj1)(vU1 − bj1)

= (1− πiU)(vU − bj1) + πiU
1
2
(vU0 − bj1) + 1

2
(πiU − π

j
U)(vU1 − bj1),
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where the last equality follows from (S1). This inequality can be written as

(1− πjU)(vU − bj1) + 1
2
πjU(vU0 − bj1) + 1

2
πjU(vU1 − bj1) = vU − bj1

< (1− πiU)(vU − bj1) + 1
2
πiU(vU0 − bj1) + 1

2
πiU(vU1 − bj1) = vU − bj1,

where the equalities hold since 1
2
vU0 + 1

2
vU1 = vU . A desired contradiction thus is obtained.

Lastly, the fact that b
i

U = bi1 for each i = 1, 2 then implies b
i

U = b
j

U . �

Lemma S3. There is no asymmetric equilibrium with πiU = 1 and πjU = 0.

Proof. By Part (v) of Lemma S2, we have bi1 = bj1, which means H i
1(bj1) = 0 (since neither

bidder would put a mass at bi1 = bj1). From this and (S1), we obtain πiU = πjU . This shows

that there is no asymmetric equilibrium with π1
U 6= π2

U and πiU ∈ (0, 1) for all i = 1, 2.

Next, we show that there is no equilibrium with πiU = 1 and πjU = 0. Suppose for a

contradiction that there exists an equilibrium with πiU = 1 and πjU = 0. Using the argument

similar to the proofs of Lemma S2, we can show that Ej
U = Ei

0 ∪ Ei
1 is a connected interval

while Ei
1 lies above Ei

0. Let b := bi0 = bjU .

Note that we must have b0 = b0 = v0. To see this, suppose b0 < v0 to the contrary.

Then, both bidder j (of type U , clearly) and bidder i of type 0 earn a positive payoff since

they can bid some b ∈ (b0, v0). Since ΓjU(b) is the same for all b ∈ Ej
U , this implies that

ΓjU(b) = 1
2
H i

0(b)(vU0 − b) is positive and so is H i
0(b), showing that bidder i of type 0 must

put a mass on b. Similarly, bidder j also puts a mass on b. But then, either bidder j or

bidder i of type 0 can deviate to take a mass from b and bid just above b, since this yields

a discrete jump in the probability of winning with only a slightly higher payment condition

upon winning. For the same reason, we cannot have b0 < v0. Thus, Ei
0 = {v0}, and hence

Ej
U = Ei

1 = [v0, b] for some b ∈ (v0, v1].

Now, bidder i can deviate by not learning sj and bidding b′ ∈ E1 arbitrary close to v0,

say b′ = v0 + ε. To see this, note that bidder i’s expected payoff under such a deviation is

Hj
U(b′)(vU − b′), whereas his expected payoff under the original strategy is

1
2
Γi1 − c = 1

2
Hj
U(b′)(v1 − b′)− c,

since Γi0 = 0 and Γi1 = Γi1(b′). Hence,

Hj
U(b′)(vU − b′)−

(
1
2
Hj
U(b′)(v1 − b′)− c

)
= Hj

U(b′)(vU − 1
2
v1 − 1

2
b′) + c = −1

2
HU(b′)ε+ c > 0,
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where the second equality holds since vU = 1
2
, v0 = 1 − v1 and b′ = v0 + ε, and the last

inequality holds for sufficiently small ε. �

Lemma S4. There is no asymmetric equilibrium.

Proof. Thanks to Lemma S2 and Lemma S3, we must have πiU = πjU = πU in any equilibrium.

We now prove that biU = bjU . Suppose for a contradiction that biU < bjU . Since ΓiU = ΓjU from

the proof of Lemma S2, we must have

ΓiU = ΓiU(bjU) = 1
2
πU(vU0 − bjU) = (1− πU)H i

U(bjU)(vU − bjU) + 1
2
πU(vU0 − bjU) = ΓjU(bjU) = ΓjU ,

which is a contradiction since vU < bjU and H i
U(bjU) > 0. Given biU = bjU , Lemma S2 implies

that Ei
t = Ej

t for all t ∈ Ω while each Ei
t is a connected interval. It follows easily from this

that every equilibrium must be symmetric. �

Lemma S5. Suppose c ∈ (0, c). There is no symmetric equilibrium with πU = 0 or 1.

Proof. Suppose that πU = 0. Then, each uninformed bidder must bid vU in the unique

equilibrium. If bidder i deviates to learn si = 1, then he can bid vU + ε to obtain a payoff

equal to v1 − vU − ε. So his expected payoff from deviation is at least v1−vU−ε
2

, which is

greater than c if ε is sufficiently small, meaning the deviation is profitable.

Suppose that πU = 1. The existing literature, for instance ?, shows that the unique

equilibrium in this case must have each type-0 bidder bidding v00 for sure and each type-1

bidder randomizing over an interval [v00, b] for some b > v00, while the equilibrium payoff

is equal to 1
2
(1 − α)(v10 − v00) − c = (1−α)β

2
− c. Consider a bidder i’s not to learn si and

bid v00 + ε, which yields the expected payoff of vU0−v00−ε
2

= (1−α)β−ε
2

at least. This payoff is

greater than the equilibrium payoff if ε is sufficiently small, so the deviation is profitable. �

Lemma S4 and Lemma S5 show that any equilibrium must be symmetric and πU ∈ (0, 1)

in such an equilibrium. We now prove Part (i) to Part (iii) of Proposition 2.

Proof of Parts (i) and (ii). Since v00 = bU < bU = b1 < b1, we have

ΓU = ΓU(b) = (1− πU)HU(b)(vU − b) + 1
2
πU(vU0 − b) for b ∈ [bU , bU ],

Γ1 = Γ1(b) = (1− πU)(v1 − b) + πU
(
(1− α)(v10 − b) + αH1(b)(v11 − b)

)
for b ∈ [b1, b1].

Since 1
2
Γ1 − c = ΓU , the two equations in (2) are derived by setting 1

2
Γ1(b1) − c = ΓU(v00)

and 1
2
Γ1(b1) − c = ΓU(v00), respectively, and also by substituting v11 = 1 − v00 = 1, vU0 =
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(1 − α)β = (1 − α)v10, and v1 = αv11 + (1 − α)v10. Next, by solving ΓU(v00) = ΓU(b1) and

substituting vU = 1/2 and v00 = 0, we have b1 = 1−πU
2−πU

. Equating this to another expression

for b1 in (2) yields (1).

Now, let f(πU) and g(πU) denote the LHS and RHS of (1). Then,

f(1) = 0 > −2c− β(α− 1
2
) = g(1).

It can be easily checked that g single-crosses f from above in the range (−∞, 1). Thus, a

(unique) solution of (1) exists in (0,1) if and only if f(0) < g(0), which is equivalent to c < c.

Observe that the increase in α or β makes f shift down and g shift up, which implies that

f and g intersect at higher value of πU , given the aforementioned single-crossing property.

Likewise, as c increases, g shifts down and thus intersects with f at lower value of πU . �

Proof of Part (iii). The indifference between learning and not learning means that the

equilibrium payoff for each bidder equals ΓU = ΓU(v00) = 1
2
πU(vU0−v00), which is decreasing

in c as πU is decreasing in c. �

We complete the proof of Proposition 2 by showing that no type t ∈ Ω has an incentive

to deviate to bid some b ∈ Et′ for some t′ ∈ Ωt\{t}.4 First, consider type t = 1 deviating to

bid b ∈ EU . To use Lemma 4, we check (B.2). To do this, set t = 1 and t′ = U , so Lt′ = {0}
and Ω1 ∩ Ωt′ = {U} (i.e., t′′ = U):

p(Lt′ |t)
p(t′′|t)

=
(1− α)πU

1− πU
<

1
2
πU

1− πU
=
p(Lt′|t′)
p(t′′|t′)

,

and v(t, t′′) = v1 > vU = v(t′, t′′). Thus, (B.2) holds so Γ1(b) is nondecreasing in b ∈ EU ,

meaning that Γ1(b) ≤ Γ1 for any b ∈ EU .

Consider next type t = U . Clearly, it is not optimal to deviate to bid b ∈ E0 = {v00}.
Suppose that t = U deviates to bid b ∈ E1. We check (B.1) to use Lemma 4, again. To

do this, set t = U and t′ = 1, Lt′ = {0, U}, and Ωt ∩ Ωt′ = {1} (i.e., t′′ = 1). Then,

v(t, t′′) = vU1 ≤ v11 = v(t′, t′′). Also,

p(Lt′ |t)
p(t′′|t)

=
1
2
πU + (1− πU)

1
2
πU

>
(1− α)πU + (1− πU)

απU
=
p(Lt′ |t′)
p(t′′|t′)

.

4It is clear that a deviation to any b /∈ ∪t∈ΩEt is unprofitable.
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Thus, (B.1) holds so ΓU(b) is nonincreasing in b ∈ E1 by Lemma 4, meaning that ΓU ≥ ΓU(b)

for b ∈ E1.

Lastly, consider type t = 0. Suppose he deviates to bid in EU . We check (B.1) by setting

t = 0, t′ = U , L′t = {0}, and Ωt ∩ Ωt′ = {U} (i.e., t′′ = U):

p(Lt′|t)
p(t′′|t)

=
1
2
πU

1− πU
=
p(Lt′|t′)
p(t′′|t′)

,

and v(t, t′′) = v(0, U) = v0 < vU = v(U,U) = v(t′, t′′). Thus, (B.1) holds so Γ0(b) is

nonincreasing for any b ∈ EU , meaning that Γ0 ≥ Γ0(b) for any b ∈ EU . Suppose now that

type t = 0 places his bid in E1. We check (B.1) by setting t = 0, t′ = 1, Lt′ = {0, U}, and

Ωt ∩ Ωt′ = {1} (i.e., t′′ = 1):

p(Lt′ |t)
p(t′′|t)

=
απU + (1− πU)

(1− α)πU
>

(1− α)πU + (1− πU)

απU
=
p(Lt′ |t′)
p(t′′|t′)

,

and v(t, t′′) = v01 < v11 = v(t′, t′′). Thus, (B.1) holds so Γ0(b) is nonincreasing for any

b ∈ E1, meaning that Γ0 ≥ Γ0(b′) ≥ Γ0(b) for any b ∈ E1 and b′ ∈ EU . In sum, there is no

profitable deviation.

S1.3 Proof of Proposition 3

Let a = I and a = II respectively denote the first-price auction and the second-price auction.

Recall that πIU satisfies (1) and πIIU = v1−vU−2c
v1−vU

from Proposition 1. Letting f and g denote

the LHS and RHS of (1), observe that for c ∈ (0, c),

f(πIIU )− g(πIIU ) =
2(2α− 1)c(c− c)

(v1 − vU)2
< 0.

Since g single-crosses f from above over the interval [0, 1] if c ≤ c, it follows that πIU > πIIU .

This implies that each bidder’s payoff is higher in the first-price auction is higher than in the

second-price auction, since each bidder’s payoff in each auction a = I, II is 1
2
πaU(vU0 − v00).

Next, the total surplus in auction a = I, II, denoted by TSa, is TSa = ASa − 2πaUc,

where ASa denotes the allocative surplus which is given by

ASa = (πaU)2
(

1
2
αv11 + (1− α)v10 + 1

2
αv00

)
+ πaU(1− πaU) (v1 + vU0) + (1− πaU)2vU

= (πaU)2
(

1
2
α + (1− α)β

)
+ πaU(1− πaU)(α + 2β − 2αβ) + 1

2
(1− πaU)2.
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We thus have

ASI − ASII =
(
πIU − πIIU

)
(1− α)(β − 1

2
)
(
2− (πIU + πIIU )

)
> 0,

where the inequality holds since πIU + πIIU < 2 for c > 0. Using this, we have that

TSII − TSI = (ASII − 2πIIU c)− (ASI − 2πIUc)

=
(
πIU − πIIU

) [
2c− (1− α)(β − 1

2
)
(
2− (πIU + πIIU )

)]
.

To determine the sign of it, let T (c) := l(c)−m(c) denote the terms in the square bracket,

where l(c) = 2c and m(c) = (1 − α)(β − 1
2
)
(
2 − (πIU + πIIU )

)
. Note that both l(c) and m(c)

are increasing in c (since πIU and πIIU are decreasing in c). Suppose that T (ĉ) = 0 for some

ĉ ∈ (0, c), that is, 2ĉ = (1− α)(β − 1
2
)
(
2− (πIU + πIIU )

)
, or equivalently,

πIU + πIIU = 2− 2c

(1− α)(β − 1
2
)
. (S3)

We then have that

T ′(ĉ) = l′(ĉ)−m′(ĉ) = 2 + 2(1− α)(β − 1
2
)
∂(πIU + πIIU )

∂c

∣∣∣∣
c=ĉ

= −2 < 0,

where the last equality holds since
∂(πIU+πIIU )

∂c

∣∣∣
c=ĉ

= − 2

(1−α)(β−1
2

)
from (S3). This shows that

m crosses l from below at c = ĉ. But then, we reach a contradiction since l(0) = m(0) = 0

(because πIU = πIIU = 1 at c = 0) and l(c) = 2c = β + (1− β)α− 1
2
> m(c) = 2(1−α)(β− 1

2
)

(because πIU = πIIU = 0 at c = c). Therefore, T (c) = 0 only when c = 0 and T (c) > 0 for all

c ∈ (0, c). We thus have that TSII > TSI for c ∈ (0, c).

Lastly, note that the seller’s revenue is the same as the total surplus minus the sum of the

two bidders’ payoffs. Since the total payoff and each bidder’s payoff are respectively higher

and lower in the second-price auction than in the first-price auction, it follows immediately

that the seller’s revenue is higher in the second-price auction than in the first-price auction.
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S2 Omitted Proofs

S2.1 Proof of Lemma 1

Note that if t ∈ Ω ∩ {U, 0, 1}, then t ∈ Ωt. Suppose for a contradiction that bt > v(t), and

consider any b̃ ∈ (v(t), bt]. Since v(t) is the highest value that type-t bidder can obtain,

facing any possible rival’s type in Ωt, it is clear that bidding v(t) can do as well as bidding

b̃ (given the second-price auction rule). Moreover, v(t) does better than b̃ when the rival is

of the same type t since then the type-t bidder would incur a lower loss with v(t) than with

b̃. One can use a similar argument to prove that bt ≥ v(t).

S2.2 Proof of Lemma 2

Proof of Part (i). We prove that bt = bt = vt for t = mm ∈ Ω. Note first that if

t = mm ∈ Ω, then t ∈ Ωt in any symmetric equilibrium. If bt < vt, then type t bidder,

when his rival has the same type t, can increase the probability of earning a positive payoff

by bidding vt instead of some equilibrium bid b̃ ∈ Et ∩ [bt, vt), which means vt ex-post

dominates b̃ for t = mm (since vt is also a weakly dominant strategy), a contradiction. A

similar contradiction arises in the case bt > vt. �

Proof of Part (ii). Suppose for a contradiction that π0 = 0 or π0 > 0 while b01 ≤ v01.

Then, all type t′ that the type t = 1 can face will be bidding at most v(t′, 1), which is

(weakly) smaller than v(1, t′)—the expected value of type t = 1 facing type t′. So bidding

v11 is clearly optimal for each bidder i informed of si = 1, whether he learns sj. By not

learning, however, he can save the learning cost, k, so π1 > 0 cannot be true. Also, if some

type t′ ∈ Ω01 were to place bids (with positive probability) between v01 and b01, then some

equilibrium bid b̃ ∈ E01 ∩ (v01, b01) would be ex-post dominated by v01 for t = 01 since

bidding v01 is weakly dominant for t = 01 and the type t = 01 facing t′ will incur a loss by

bidding b̃. �

Proof of Part (iii). Suppose not. Then, there must be at least two equilibrium bids

b, b′ ∈ E1 ∩ [b01, v11) for t = 1 such that H1(b′) > H1(b) since the type t = 1 cannot put a

mass at any bid in E1 ∩ [b01, v11) in equilibrium. Given that all types t′, except t′ = 01, that

the type t = 1 can face will be bidding at most v(1, t′), b′ is better than b for the type t = 1

since it gives him a higher probability of winning and obtaining positive payoffs against the

same rival type. �
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Proof of Part (iv). First, note that Ω0 can possibly include 0, 1, and 00. From Lemma 1,

b1 ≥ v(1) = v(1, 0) = v10 while E00 = {v00} by Part (i). These facts imply that the type

t = 0, whatever amount he bids, can never obtain a positive payoff when facing the rival

type t′ = 1, 00. On the other hand, if b0 > v00, then the type t = 0, bidding some equilibrium

bid b̃ > v00, will incur a loss when facing the same rival type. So v00 is the only optimal bid

available for t = 0 in any symmetric equilibrium. �

S2.3 Proof of Lemma 3

Suppose to the contrary that Γt > 0 for all t ∈ Ω′. Consider types t ∈ Ω′ for which

bt = b := mint′∈Ω′ bt′ . In order for these types to have positive payoffs, there must be some

type that puts a mass at b. (Otherwise, one of the types bidding b must earn zero payoff.)

Then, such a type can deviate to bid slight above b and increase its payoff by a discrete

amount.

S2.4 Proof of Lemma 4

We only prove the first statement since then the second statement follows immediately from

reversing the inequalities. Note first that for b ∈ Et′ , we can write

Γt′(b) = p(t′′|t′)Ht′′(b)(v(t′, t′′)− b) +
∑
t̂∈Lt′

p(t̂|t′)(v(t′, t̂)− b),

Γt(b) = p(t′′|t)Ht′′(b)(v(t, t′′)− b) +
∑
t̂∈Lt′

p(t̂|t)(v(t, t̂)− b).

If (B.1) holds, then Γt(b) is nonincreasing since

dΓt(b)

db
= p(t′′|t)ht′′(b)(v(t, t′′)− b)− p(t′′|t)Ht′′(b)− p(Lt′|t)

= p(t′′|t)
(
ht′′(b)(v(t, t′′)− b)−Ht′′(b)−

p(Lt′ |t)
p(t′′|t)

)
≤ p(t′′|t)

(
ht′′(b)(v(t′, t′′)− b)−Ht′′(b)−

p(Lt′ |t′)
p(t′′|t′)

)
=
p(t′′|t)
p(t′′|t′)

(
p(t′′|t′)ht′′(b)(v(t′, t′′)− b)− p(t′′|t′)Ht′′(b)− p(Lt′|t′)

)
=
p(t′′|t)
p(t′′|t′)

dΓt′(b)

db
= 0,
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where the last equality holds since Γt′(b) is constant over Et′ .

S2.5 Proof of Lemma 5

The proof of Part (i) is standard and thus omitted. The proofs of the remaining statements

are given in the order.

Proof of Part (ii). We only prove the statement for the case m = 1, since the argument

is similar for the case m = 0. Suppose E10 ∩ E11 6= ∅ to the contrary. Consider any

b ∈ E10∩E11 and the expected payoff of each bidder i with si = 1 from bidding b+ ε without

learning sj. With ε > 0 being very small, the payoff from bidding b+ ε will be close to Γ1m′

when sj = m′. So the expected payoff is close to αΓ11 + (1 − α)Γ10, which is greater than

αΓ11 + (1− α)Γ10 − k (i.e. the payoff from incurring the cost k and learning sj), leading to

a contradiction. �

Proof of Part (iii). We first make a couple of observations before giving the proof of the

statements. First, it is clear that Γ00 = 0 since v00 = 0. Second, if Γ1 > 0, then we must also

have Γ11 > 0, because Γ1 > 0 implies that π1 < 1 and b1 < v11, and hence type-11 bidder

can bid some b ∈ (b1, v11) to guarantee at least (1− π1)(v11 − b), a positive payoff.

We now prove that Γt > 0 for t 6= 0, 00. To see this, note that b0 < v01 since the type

t = 0 can only expect the ex-post value to be at most v01 and less than that sometimes.

Then, the types t = 10 and 1 can bid some b ∈ (b0, v10) to guarantee a positive payoff,

which implies Γ10,Γ1 > 0. This in turn implies by the above observation that Γ11 > 0. If

Γ01 = 0, then the expected payoff for bidder i with si = 0 who chooses to learn sj would be

αΓ00 + (1− α)Γ01 − k = −k < 0, which is a contradiction. Thus, Γ01 > 0.

Lastly, to prove Γ0 = 0, let Ω̃ := {t ∈ Ω\{00} | bt = mint′ 6=00 b
′
t}. Then, it must be that

0 ∈ Ω̃, since otherwise some type t ∈ Ω̃ with t 6= 0, 00 would have to earn zero equilibrium

payoff, a contradiction. Also, no other type in Ω̃ than type 0 can put a mass at b0 so the

type t = 0 has to earn zero equilibrium payoff. �

Proof of Part (iv). The statement is trivial if t = m or t = mm with m = 0, 1, since

t ∈ Ωt. So consider type t = mm′ with m 6= m′ and let b := minEt. If, to the contrary,

there is some b ∈ Et\Et, then either b < b or b > b. The former case cannot happen since

the winning probability, and thus payoff, from bidding such b is zero, contradicting Part

(iii). In the latter case, b wins with a positive probability while there is no bid around b

14



belonging to Et. So the type t can (slightly) reduce its bid from b without sacrificing its

winning probability, a contradiction. �

Proof of Part (v). Clearly, b00 = b00 = v00. To show b0 = v00, suppose b0 = mint6=00 bt >

v00 to the contrary.5 We consider two cases: (a) the type t = 0 puts a mass at b0; (b) b0 < bt

for all t 6= 0, 00 with no mass at b0. (Note that we can focus on these two cases since it is

impossible to have bt = b0 for some t 6= 0, 00 without t = 0 placing a mass at b0.) In the

former case, the type ti = 0 would incur a loss by bidding b0 and tying with the rival’s type

tj = 0. In the latter case, the equilibrium payoff of the type ti = 0 bidding b0 + ε for small

ε > 0 is at most α(1− π0)H0(b0 + ε)(v00− b0− ε) < 0 (which realizes when facing the rival’s

type tj = 0). �

Proof of Part (vi). First, if b11 ≤ b1, then the type t = 11 would earn zero equilibrium

payoff since Ω11 = {1, 11}, a contradiction.

To prove b1 > v00, we establish the following Claim first:

Claim S1. There is some b ∈ E1 ∩ E10 with b > v00.

Proof. Suppose not. We argue to draw a contradiction only for the case π0 > 0, since a

similar, in fact simpler, argument applies to the case π0 = 0. Note first that b1 > v00 and

b10 > v00 since otherwise t = 1 or 10 would either earn zero equilibrium payoff or tie with

t = 0 with a positive probability. Provided that the statement of this claim is not true,

there must be some b ∈ E10 such that for small ε > 0, (b − ε, b) ⊆ Ec
1 ∩ Ec

10. We then

argue that (a) (b − ε, b) ⊆ Ec
01 and (b) (b − ε, b) ⊆ Ec

0. If (a) is not true, i.e. there is some

b′ ∈ E01 ∩ (b − ε, b), then the type t = 01 with Ω01 = {1, 10} could profitably deviate to

reduce its bid slightly below b′ and enjoy the same winning probability. If (b) is not true,

i.e. there is some b′′ ∈ E0 ∩ (b− ε, b), then the type t = 0 with Ω0 = {0, 1, 10} could slightly

reduce its bid below b′′ while enjoying the same winning probability against the type t = 1

and t = 10. While this can reduce the winning probability of t = 0 against the same type of

rival, it is only beneficial since the value v00 from both bidders’ type being t = 0 is smaller

than b′′. Given that (a) and (b) hold, the type t = 10 with Ω10 = {0, 01} can now reduce its

bid below b and enjoy the same winning probability. �

Suppose now that b1 = v00 so v00 ∈ E1 for a contradiction. First, v00 ∈ E1 means Γ1 =

Γ1(v00) = (1−α)(1−π0)(v10−v00)H0(v00).6 If t = 10 bids arbitrarily close to v00, its expected

5The fact that b0 = mint6=00 bt follows from the argument in Part (iv) above.
6Note that neither t = 1 nor t = 01 puts a mass at v00 in equilibrium.
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payoff would be (1−π0)(v10−v00)H0(v00), which implies that Γ10 ≥ (1−π0)(v10−v00) = Γ1

1−α

or Γ1 ≤ (1− α)Γ10. Second, consider some b ∈ E1 ∩ E10 with b > v00. Suppose that π0 > 0.

(The argument for the case π0 = 0 is similar and thus omitted.) Then, since Ω10 = {0, 01}
and Ω1 = {0, 1, 01, 11}, we have Γ10 = Γ10(b) = [(1− π0)H0(b) + π0H01(b)](v10 − b) and

Γ1 = Γ1(b) = (1− α)[(1− π0)H0(b) + π0H01(b)](v10 − b) + α[(1− π1)H1(b) + π1H11(b)](v11 − b)

= (1− α)Γ10 + α[(1− π1)H1(b) + π1H11(b)](v11 − b).

Thus,

Γ1 − (1− α)Γ10 = α[(1− π1)H1(b) + π1H11(b)](v11 − b) > 0,

since v11 > b and H1(b) > 0. This contradicts the above observation, Γ1 ≤ (1− α)Γ10. �

Proof of Part (vii). Suppose to the contrary that b0 = v00 so E0 = {v00}. To draw a

contradiction, we consider two cases depending on whether π0 = 0 or π0 > 0. In the case

π0 = 0, the type t = 10 with Ω10 = {0} would like to bid as close to v00 as possible, which

cannot be true in equilibrium. We thus suppose for a contradiction that π0 > 0. Note

first that b01 > v00 due to Parts (ii) and (v) of this lemma. Next, since Ω10 = {0, 01}, we

must have E10 ⊂ E01.7 Then, v00 < b01 ≤ b10. Also, b1 < b01 since, if b01 ≤ b1, the type

t = 01 with Ω01 = {1, 10} could reduce its bid from b01 while enjoying the same winning

probability. Given that E0 = {v00}, b1 < b01, and b1 > v00 (by Part (v)), the type t = 1 with

Ω1 = {0, 1, 01} can reduce its bid below b1 while enjoying the same winning probability, a

contradiction. �

Proof of Part (viii). Let us first suppose to the contrary that b10 > v00, which, by Part

(iv) of this lemma, means that min{b1, b10} > v00. Given this, neither t = 0 nor t = 01 has any

incentive to place a bid in the interval (v00,min{b1, b10}) since it would be profitable to lower

any bid belong to that interval, which means that no type places a bid in (v00,min{b1, b10}),
contradicting with Part (i) of this lemma. So we must have b10 = v00. Also, if b10 < b1, then

there would be no bid placed in (b10, b1) for the same reason as above, a contradiction.

We now show that it is not possible to have b10 > b1, which will lead us to conclude

b10 = b1. First, we must have b1 ∈ E10 since otherwise either t = 0 or t = 01 would

7If E10 * E01, then the fact that E10 ⊆ E0 ∪ E01 (due to Part (iii)) and E0 ∩ E01 = E00 ∩ E01 = ∅ (due
to Part (ii)) implies that the type t = 10 puts a mass at v00, which cannot happen in equilibrium.
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profitably reduce its bid below b1 so no type would place a bid slightly below b1. This means

Γ1 = Γ1(b1) = (1−α)[(1−π0)H0(b1)+π0H01(b1)](v10−b1) = (1−α)Γ10(b1) = (1−α)Γ10. (S4)

Second, it is clear that there must be some b ∈ (b1, b10) with b ∈ E1 ∩ E10. For such b,

Γ1 = Γ1(b) = (1− α)[(1− π0)H0(b) + π0H01(b)](v10 − b) + α[(1− π1)H1(b) + π1H11(b)](v11 − b)

= (1− α)Γ10 + α[(1− π1)H1(b) + π1H11(b)](v11 − b),

which implies by (S4) that α[(1− π1)H1(b) + π1H11(b)](v11 − b) = 0, a contradiction

Lastly, if E10 is not a connected interval, then either t = 0 or type t = 01 could profitably

reduce its bid somewhere in Ec
10 ∩ [b10, b10]. �

Proof of Part (ix). With π1 ∈ (0, 1), each bidder i with si = 1 must be indifference

between learning and not learning sj, so

Γ1 = αΓ11 + (1− α)Γ10 − k. (S5)

Note also that since b10 = b1 ∈ E1,we have

Γ1 = Γ1(b10) = (1− α)
[
(1− π0) + π0H01(b10)

]
(v10 − b10) = (1− α)Γ10(b10) = (1− α)Γ10.

Substituting this into (S5) yields k = αΓ11. �

S2.6 Proof of Lemma 6

Proof of Part (i). Since we already know b10 = b1 from Part (viii) of Lemma 5, sup-

pose for a contradiction that b0 > b10 = b1. Then, there must be some interval (b′, b′′) ⊆
(b10,min{b0, b11}) and (b′, b′′) ⊆ E0 ∩ E1.8 For any b ∈ (b′, b′′),

Γ1(b) = (1− α)H0(b)(v10 − b) + α(1− π1)H1(b)(v11 − b), (S6)

Γ0(b) = αH0(b)(v00 − b) + (1− α)[π1 + (1− π1)H1(b)](v01 − b). (S7)

8Recall from (vi) and (viii) of Lemma 5 that b10 = b1 < b11.
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Multiply 1−α and α to (S6) and (S7), respectively, and subtract the latter from the former

to obtain

(1− α)Γ1(b)− αΓ0(b) = (1− α)2H0(b)v10 + α(1− α)[π1(b− v01) + (1− π1)H1(b)(v11 − v01)].

A contradiction arises since the LHS is constant on E0∩E1 whereas the RHS is increasing in

b, which follows from the facts that (1−α)2v10−α2v00 = (1−α)2β > 0 and v11−v01 = β > 0.

It is straightforward that E0 and E10 have to be connected intervals, since otherwise

either t = 0 or t = 10 could profitably deviate by reducing its bid. �

Proof of Part (ii). Clearly, we must have b1 ≥ b11 since otherwise the type t = 11 can

reduce its bid below b1 without decreasing the winning probability. The desired result will

follow if we show that Γ11(b) is strictly increasing at any b ∈ E1, since it means that the

support of the bid distribution of type t = 11 must lie above that of type t = 1. To show it,

note that at any b ∈ E1

Γ1 = Γ1(b) = (1−α)(v10−b)+α[π1H1(b)+(1−π1)H11(b)](v11−b) = (1−α)(v10−b)+αΓ11(b).

Then, Γ1(b) being constant implies that Γ11(b) is increasing in b, since the first term of the

RHS of the last equality is decreasing in b. It is straightforward to show that E1 and E11

are connected intervals. �

S2.7 Proof of Lemma 7

Proof of Part (i). First, we claim that E0 ∪ E01 must be a connected interval. That is,

letting b = max{b0, b01}, E0 ∪ E01 = [v00, b]. Suppose to the contrary that there is some

interval (b, b′) ⊆ [v00, b] ∩ (E0 ∪ E01)c. This means that neither t = 1 nor t = 10 has an

incentive to place a bid in (b, b′) so no type places a bid in that interval, contradicting Part

(i) of Lemma 5.

Now, the desired result will follow if we show that Γ01(b) is strictly increasing whenever

b ∈ E0 so Γ0(b) is constant, since it means that the support of t = 01 should lie above that

of t = 0. To show this, note first

Γ0(b) = α[(1− π0)H0(b) + π0](v00 − b) + (1− α)[(1− π1)H1(b) + π1H10(b)](v01 − b)

= α[(1− π0)H0(b) + π0](v00 − b) + (1− α)Γ01(b).
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From this, Γ0(b) being constant implies that Γ01(b) is increasing in b, since the first term of

the RHS of the second equality is decreasing in b (for b > v00). �

Proof of Part (ii). First note that t = 01 or t = 11 must put no mass at any b ∈ E01∪E11

in equilibrium, as can be shown in a straightforward manner, using the fact that Γ01 and Γ11

are both positive. We next show that int(E01) ∩ int(E11) = ∅. If not, there is some interval

(b′, b′′) ⊆ E01 ∩ E11 so for any b ∈ (b′, b′′)

Γ11(b) = [(1− π1)H1(b) + π1H11(b)](v11 − b),

Γ01(b) = [(1− π1)H1(b) + π1H10(b)](v01 − b).

Note that H10(b) = 1 since Ω01 = {1, 10} and b10 = b1 < b11 by Parts (vi) and (viii) of

Lemma 5. Thus,

Γ11(b)− Γ01(b) = (1− π1)H1(b)(v11 − v01) + π1[H11(b)(v01 − b)− v01 + b],

which cannot hold true since the LHS is constant while the RHS is increasing with b.9

We now show that Γ11(b) is strictly increasing at any b ∈ E1 ∩ (int(E01))c, which will

imply (given the above finding, int(E01) ∩ int(E11) = ∅) that the bid support of t = 11 lies

above that of t = 1. To do so, one can write for any b ∈ E1 ∩ (int(E01))c

Γ1 = Γ1(b) =(1− α)[1− π0 + π0H01(b)](v10 − b) + α[π1H1(b) + (1− π1)H11(b)](v11 − b)

=(1− α)[1− π0 + π0H01(b)](v10 − b) + αΓ11(b). (S8)

Since H01(b) is constant in E1 ∩ (int(E01))c, the first term in (S8) is decreasing with b so the

second term, and thus Γ11(b), must be increasing. Given this, we must have b1 ≤ b11 and

thus b1 = b11 since if b1 < b11, then t = 11 could profitably reduce its bid below b11. �

Proof of Part (iii). Suppose for a contradiction that b0 > b1. Then, there must be an

interval (b′, b′′) such that (b′, b′′) ⊂ (b1,min{b0, b11}) and (b′, b′′) ⊂ E0 ∩ E1. The payoffs for

type t = 1 and t = 0 from any b ∈ (b′, b′′) are respectively

Γ1(b) = (1− α) [π0H01(b) + (1− π0)H0(b)] (v10 − b) + α(1− π1)H1(b)(v11 − b),

Γ0(b) = α [π0 + (1− π0)H0(b)] (v00 − b) + (1− α) [π1H10(b) + (1− π1)H1(b)] (v01 − b).

9Differentiate the RHS with b to obtain (1− π1)h1(b)(v11 − v01) + π1[h11(b)(v01 − b) + 1−H11(b)] > 0.
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Then, we have H01(b) = 0 and H10(b) = 1 since b10 = b1 < b < b01 = b0 by Part (viii) of

Lemma 5 and Part (i) of Lemma 7. We substitute these into the above payoffs and obtain

(1− α)Γ1(b)− αΓ0(b)

=(1− α)2(1− π0)H0(b)v10 + α2π0b+ α(1− α)[π1(b− v01) + (1− π1)H1(b)(v11 − v01)],

from which a contradiction arises since the LHS is constant over (b′, b′′) ⊂ E0 ∩E1 while the

RHS is increasing in b. �

Proof of Part (iv). If b01 < b1, t = 10 could profitably reduce its bid below b10 = b1. If

b01 > b1, t = 01 could profitably reduce its bid below b01. Also, if E01 is not a connected

interval, either t = 1 or t = 10 could profitably reduce its bid somewhere in Ec
01. �

Proof of Part (v). With π0 ∈ (0, 1), each bidder i with si = 0 must be indifferent between

learning and not learning, which implies that

0 = Γ0 = αΓ00 + (1− α)Γ01 − k = (1− α)Γ01 − k,

and so k = (1− α)Γ01. �

S2.8 Proof of Lemma 8

To prove this lemma and other results later, we first establish the following result:

Lemma S6. Suppose that b10 = b01 (that is, H01(b10) = 1). If k = k0, then the solution

π1 of (7) coincides with that of (3) while π0 defined in (8) is equal to zero. Moreover, if

k = k0, then b0 = b01 in (9), which is in turn equal to b0 in (4).

Proof. Note first that if b01 = b10 or H01(b10) = 1, then the equilibrium conditions produce

the system of equations in (B.11) to (B.17) in the proof of Part (ii) of Proposition 6, whose

solution is given by (7), (8), and (9). Recall that k0 defined by (5) satisfies

k0 = (1− α)π1(v01 − b0) = (1− α)π1

(
v01 − v11 +

k0

(1− π1)α
+

k0

1− α

)
,

where the second equality follows from substituting b0 defined in (9). Rearranging this yields

the same equation as (7) with k = k0, which means that if k = k0, the same π1 solves both
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Figure 1: Bid supports for an alternative equilibrium with π1, π0 > 0

(3) and (7). Given this, by substituting (B.10), (5) can be written as

k0 = (1− α)π1(v01 − b0) = (1− α)

(
v01 −

(1− α)π1v01

α + (1− α)π1

)
=

v01

1
(1−α)π1

+ 1
α

, (S9)

which means that π0 given in (8) is equal to zero with k = k0.

Next, from (9), b0 = k
α

and b01 = v01 − k
(1−α)π1

. Note that b0 is increasing in k and

∂b0

∂k
= −

π1 − k ∂π1∂k
(1− α)π2

1

< 0,

where the inequality holds since π1 is decreasing in k. Now, observe that

b01 = v01 −
k0

(1− α)π1

= v01 −
(1− α)π1(v01 − b0)

(1− α)π1

= b0,

where the second equality follows from (5), and b0 in the RHS of the last equality is given

by (4). Lastly, substituting k = k0 given by (S9) into b0 and b01, we have

b0 =
v01(1− α)π1

α + (1− α)π1

= b01.

�

To prove Lemma 8, suppose for contradiction that k ≥ k0 but π0 > 0. Note that by

Lemma 5 and Lemma 7, the supports of the equilibrium bid distributions must look like

those in Figure 1.

First, Part (ix) of Lemma 5 implies k = (1−α)Γ01(b10) = (1−α)(v01− b10), which yields

after rearrangement

b10 = v01 −
k

(1− α)π1

. (S10)
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Next, Part (v) of Lemma 7 implies

k = αΓ11(b1) = α(1− π1)(v11 − b1). (S11)

Letting z := (1− π0) + π0H01(b10), the equilibrium payoff for type t = 1 from bidding b10

is equal to

Γ1(b10) = (1−α)[(1−π0)+π0H01(b10)](v10−b10) = (1−α)z

(
v10 − v01 +

k

(1− α)π1

)
, (S12)

where the last equality follows from (S10). Also,

Γ1(b1) = (1− α)(v10 − b1) + α(1− π1)(v11 − b1) = (1− α)(v10 − b1) + k, (S13)

where the second equality follows from (S11). Then, we equate the RHS of (S12) and (S13)

to obtain

b1 = v10 − z
(
v10 − v01 +

k

(1− α)π1

)
+

k

1− α
.

Also, from (S11), we have

b1 = v11 −
k

α(1− π1)
.

Equating these two expressions for b1, we obtain

v11 − v10 + z(v10 − v01)

k
=

1

1− α
+

1

α(1− π1)
− z

(1− α)π1

. (S14)

Now let π1(z) denote the solution of (S14) and π0(z) denote the corresponding equilibrium

value of π0. Clearly, π1(z) is decreasing in z since the LHS of (S14) is increasing in z while

the RHS is decreasing in z and increasing in π1. Note also that π1(1) is the solution of (7).

Claim S2. π0(z) =
v01− k

(1−α)π1(z)
− k
α

v10− kα
while π0(1) is decreasing in k.

Proof. Let us use Lemma 5 and Lemma 7 to write some equilibrium conditions as follows:

0 = Γ0(b0) = α(v00 − b0) + (1− α)π1(z)H10(b0)(v01 − b0) (S15)

π1(z)H10(b01)(v01 − b01) = Γ01(b01) = Γ01(b10) = π1(z)(v01 − b10) (S16)

(v10 − b10) = Γ10(b10) = Γ10(b0) = (1− π0(z))(v10 − b0) (S17)

k = (1− α)Γ01(b10) = (1− α)π1(z)(v01 − b10). (S18)
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Rearranging (S15) and (S18) yields

b0 =
αv00 + (1− α)π1(z)H10(b0)v01

α + (1− α)π1(z)H10(b0)
and b10 = v01 −

k

(1− α)π1(z)
, (S19)

respectively. Note that

H10(b0) = H10(b01) =
v01 − b01

v01 − b0

=
k

(1− α)π1(z)(v01 − b0)
, (S20)

where the first equality follows from the fact that b0 = b10, the second from (S16), and the

third from substituting the expression for b01 in (S19). We can substitute (S20) into the

expression for b0 in (S19) and solve for b0 to obtain b0 = k
α

. Next, rearranging (S17) yields

π0(z) = b10−b0
v10−b0

. Substituting b10 = v01 − k
(1−α)π1(z)

and b0 = k
α

into this equation yields the

desired expression for π0(z).

The monotonicity of π0(1) with respect to k is established in Part (iii) of Proposition 6,

where π0 defined in (8) corresponds to π0(1). �

Using the result in Claim S2, we obtain for any k ≥ k0

π0(z) =
v01 − k

(1−α)π1(z)
− k

α

v10 − k
α

≤
v01 − k

(1−α)π1(1)
− k

α

v10 − k
α

= π0(1) ≤ 0,

where the first inequality holds since π1(z) ≤ π1(1). The second inequality holds since z = 1

means H01(b10) = 1 and thus π0(1) = 0 at k = k0 by Lemma S6, while π0(1) decreases in k.

S2.9 Proof of Lemma 9

We prove H01(b10) = 1 since it is equivalent to b01 = b10.10 Suppose for a contradiction that

H01(b10) < 1, which means that z = (1 − π0) + π0H01(b10) < 1. Given the supports of the

equilibrium bid distributions as in Figure 1, we have

Γ1(b01) = (1− α)(v10 − b01) + α(1− π1)H1(b01)(v11 − b01)

= (1− α)(v10 − b01) + α(1− π1)H1(b01)(v11 − b1 + b1 − b01)

= (1− α)(v10 − b01) + kH1(b01) + α(1− π1)H1(b01)(v11 − b01), (S21)

10Note that there is no atom except at v00.
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where the last equality follows from (S11). Equating the RHS of (S21) with the RHS of

(S13), we obtain

b1 −
k(1−H1(b01))

1− α + α(1−H1(b01))
= v11 −

k

α(1− π1)
− k(1−H1(b01))

1− α + αH1(b01)
. (S22)

Also, k = (1− α)Γ01 = (1− α)Γ01(b01) = (1− α)
[
π1(z) + (1− π1(z))H1(b01)

]
, which yields

b01 = v01 −
k

(1− α)[π1(z) + (1− π1(z))H1(b01)]
.

Equating the RHS of this equation with that of (S22) and letting H1 := H1(b01), we obtain

v11 − v01

k
=

1−H1

1− α + α(1− π1(z))H1

+
1

α(1− π1(z))
− 1

(1− α)[π1(z) + (1− π1(z))H1]
.

(S23)

Recall the definition of π1(z), i.e, the solution to (S14). Thus, π1(z) must solve (S14)

and (S23) simultaneously. However, this cannot be true since

v11 − v01

k
=

1−H1

1− α + α(1− π1(z))H1

+
1

α(1− π1(z))
− 1

(1− α)[π1(z) + (1− π1(z))H1]

<
1−H1

1− α + α(1− π1(1))H1

+
1

α(1− π1(1))
− 1

(1− α)[π1(1) + (1− π1(1))H1]

<
1−H1

1− α
+

1

α(1− π1(1))
− 1

(1− α)[π1(1) + (1− π1(1))H1]
(S24)

<
1

1− α
+

1

α(1− π1(1))
− 1

(1− α)π1(1)
=
v11 − v01

k
, (S25)

where the first inequality holds since the RHS of (S23) is strictly increasing in π1, π1(z) is

decreasing in z, and z < 1. The last equality follows from the fact that π1(1) solves (S14)

with z = 1. The last inequality follows from the fact that the expression in (S24) is strictly

decreasing in H1 whenever π1(1) >
√

5−1
2

. The proof is then completed by showing that if

k ≤ k0, then π1(1) >
√

5−1
2

.

Claim S3. If k ≤ k0, then π1(1), which solves (7) (or solves (S24) with z = 1), is greater

than
√

5−1
2

.

Proof. We prove that if π1(1) ≤
√

5−1
2

, then (a) the RHS of the equation in (S25) is no greater

than 4 and (b) the LHS of the equation in (S25) is greater than 4, which means that the
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equation in (S25) cannot hold, a contradiction. To show (a) first, substitute π1(1) =
√

5−1
2

into the RHS of the equation in (S25) to obtain −2
√

5α−2α+
√

5+3
2α−2α2 and note that this expression

is maximized and becomes equal to 4 at α = 1/2, which implies that if π1(1) ≤
√

5−1
2

, then

the RHS of the equation in (S25) is no greater than 4. To prove (b), we show that the

statement holds for k = k0 so it holds for any k < k0 as well. Solve first (5) to obtain

k0 =
(1− α)α

(
3− α− 2β + αβ −

√
(αβ + α− 2β + 1)2 + 4α(β − α)

)
2 (α2 − 2α + 2)

.

Substitute this and v11 − v01 = β to obtain

v11 − v01

k0

=
1

α(1− α)

[
2 (α2 − 2α + 2) β

3− α− 2β + αβ −
√

(αβ + α− 2β + 1)2 + 4α(β − α)

]
≥ 4,

where the inequality holds since α ∈ (1/2, 1) and so 1
α(1−α)

> 4, and the fact that the term

in the square bracket is minimized and equal to 1 at (α, β) = (1, 1
2
). �

S2.10 Proof of Claim 1

Let us first obtain H1(·), H0(·), and H10(·) by using the equilibrium conditions. For b ∈
[b1, b1],

(1− α)(v10 − b1) = Γ1 = (1− α)(v10 − b) + α(1− π1)H1(b)(v11 − b),

so we have

H1(b) =
(1− α)(b− b1)

α(1− π1)(v11 − b)
. (S26)

Next, for b ∈ (b0, b0], Γ10 = H0(b)(v10 − b) so H0(b) = Γ10

v10−b . Also,

0 = Γ0 = αH0(b)(v00 − b) + (1− α)π1H10(b)(v01 − b).

We thus have

H10(b) =
αH0(b)(b− v00)

(1− α)π1(v01 − b)
=

α(b− v00)Γ10

(1− α)π1(v01 − b)(v10 − b)
,
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where the second equality follows from substituting H0(b) = Γ10

v10−b . Then, an optimal bid for

ti = 01 cannot be smaller than b0, since if bidding b ∈ (b0, b0), ti = 01 would obtain

Γ01(b) = π1H10(b)(v10 − b) =
α(b− v00)Γ10

(1− α)(v01 − b)
,

which is strictly increasing in b ∈ (b0, b0) ⊆ [v00, v01]. Thus,

Γ∗01(k) = max
b≥b0

Γ01(b) = [π1+(1−π1)H1(b)](v01−b) =

[
π1 +

(1− α)(b− b1)

α(v11 − b)

]
(v01−b), (S27)

where the last equality follows from (S26). Let b∗ denote a maximizer of (S27). If b∗ = b0,

then Γ∗01(k) = π1(v01−b0) = 1−α
α

(b0−v00), where the second equality follows from rearranging

(B.6). This payoff is decreasing in k since b0 is decreasing in k, as shown in the proof of

Part (iv) of Proposition 5. So assume from now that b∗ > b0—i.e., (S27) has an interior

solution—, and apply the envelope theorem to (S27) to obtain

dΓ∗01(k)

dk
=

[
∂π1

∂k
− (1− α)

α(v11 − b∗)

(
∂b1

∂k

)]
(v01 − b∗). (S28)

To show that this expression is negative, let us first differentiate (B.6) with k to get

0 = −α∂b0

∂k
+ (1− α)

∂π1

∂k
(v01 − b0)− (1− α)π1

∂b0

∂k

⇔ ∂π1

∂k
=

α + (1− α)π1

(1− α)(v01 − b0)

(
∂b0

∂k

)
=

α + (1− α)π1

(1− α)(v01 − b0)

(
∂b1

∂k

)
.

This can be plugged into (S28) to yield after rearrangement

dΓ∗01(k)

dk
=

[
(α + (1− α)π1)α(v11 − b∗)− (1− α)2(v01 − b0)

α(v11 − b∗)

](
∂b1

∂k

)
(v01 − b∗) < 0,

where the inequality holds since
∂b1
∂k

= ∂b0
∂k

< 0, b∗ ∈ (v00, v01), and

(α + (1− α)π1)α(v11 − b∗)− (1− α)2(v01 − b0) >α2(v11 − v01)− (1− α)2(v01 − v00)

=α2β − (1− α)2(1− β) > 0.
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S2.11 Proof of Claim 2

We show that the optimum for the maximization problem in (S27) is b = b0 if k = k0, which

will imply that (1−α)Γ∗01(k0) = (1−α)π1(v01− b0) = k0 by the definition of k0 given in (5).

To show this, we first differentiate the maximand of (S27) to obtain for b ∈ [b1, b1]

dΓ01(b)

db
= −π1 +

1− α
α

[
1− (v11 − b0)(v11 − v01)

(v11 − b)2

]
.

This is a decreasing function of b, meaning that Γ01(b) is concave over [b1, b1]. Thus, the

optimum will be b1 = b0 if

dΓ01(b0)

db
= −π1 +

(1− α)(v01 − b0)

α(v11 − b0)
≤ 0. (S29)

To check this inequality, recall that (v01− b0) = k0
(1−α)π1

from (5) and v11− b0 = k
(1−π1)α

+ k
1−α

from Proposition 5. With k = k0,

(1− α)(v01 − b0)

α(v11 − b0)
=

(1− α) k0
(1−α)π1

α
(

k0
(1−π1)α

+ k0
1−α

) =
(1− α)(1− π1)

π1(1− απ1)

and thus

dΓ01(b0)

db
= −π1 +

(1− α)(1− π1)

π1(1− απ1)
=

1− π1 − π2
1 − α(1− π1 − π3

1)

π1(1− απ1)
.

So, dΓ01(b0)
db

≤ 0 if and only if 1− π1 − π2
1 − α(1− π1 − π3

1) ≤ 0. Note first that

1− π1 − π2
1 − α(1− π1 − π3

1) ≤ 1− π1 − π2
1 − α(1− π1 − π2

1).

Note also that if 1 − π1 − π2
1 ≤ 0, then we have 1 − π1 − π2

1 − α(1 − π1 − π2
1) ≤ 0 since

α ≤ 1. Thus, it suffices to show that 1− π1 − π2
1 ≤ 0, which is equivalent to π1 ≥

√
5−1
2

. For

this, observe that with k = k0, the solution of (3) coincides with that of (7) according to

Lemma S6, and that the former is greater than
√

5−1
2

according to Claim S3.
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S2.12 Proof of Claim 3

Using (7) and v11 − v01 = β, define

F1 :=
β

k
− 1

1− α
− 1

α(1− π1)
+

1

(1− α)π1

.

Since π1 solves F1 = 0, we have that

∂π1

∂α
= −

∂F1

∂α
∂F1

∂π1

= −
1

α2(1−π1)
+ 1

(1−α)2
1−π1
π1

− 1
α(1−π1)2

− 1
(1−α)π2

1

=
π1(1− π1)[(1− α)2π1 + α2(1− π1)2]

α(1− α)[(1− α)π2
1 + α(1− π1)2]

> 0, (S30)

∂π1

∂β
= −

∂F1

∂β

∂F1

∂π1

= −
1
k

− 1
α(1−π1)2

− 1
(1−α)π2

1

=
α(1− α)π2

1(1− π1)2

k[(1− α)π2
1 + α(1− π1)2]

> 0. (S31)

Next, using (8) and the facts that v10 = β and v01 = 1− β, define

F0 :=

(
β − k

α

)
π0 −

(
1− β − k

(1− α)π1

− k

α

)
,

Since π0 solves F0 = 0, we have that

∂π0

∂α
= −

∂F0

∂α
∂F0

∂π0

= −
k
α2π0 + k

(1−α)2π2
1

(
π1 − (1− α)∂π1

∂α

)
β − k

α

< 0.

To see the inequality, note that the denominator is positive since β − k
α

= v10 − b0 > 0, and

the second term in the numerator is

k

(1− α)π2
1

(
π1

1− α
− ∂π1

∂α

)
=

k

(1− α)π2
1

(
π1

1− α
− π1(1− π1)[(1− α)2π1 + α2(1− π1)2]

α(1− α)[(1− α)π2
1 + α(1− π1)2]

)
=

k

(1− α)π2
1

(
π2

1[α2(1− π1)2 − (1− α)(1− α− π1)]

(1− α)α[(1− α)π2
1 + α(1− π1)2]

)
> 0,

where the first equality follows from (S30) and the inequality holds since π1 >
√

5−1
2

> 1
2

by

Claim S3 in the proof of Lemma 9, and thus (1−α)(1−α−π1) < 0 for α ∈ (1
2
, 1). Similarly,

we have that

∂π0

∂β
= −

∂F0

∂β

∂F0

∂π0

= −
π0 + 1− k

(1−α)π2
1

∂π1
∂β

β − k
α

= −
π0 +

(1−α)π2
1

(1−α)π2
1+α(1−π1)2

β − k
α

< 0,

where the last equality follows from (S31).
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S2.13 Proof of Claim 4

Suppose type t = 0 deviates to bid some b ∈ E10\E0 = E01. Then, Γ0(b) = p(0|0)(v00 − b) +

p(1|0)H10(b)(v10 − b). Observe that

Γ′0(b) = −p(0|0) + [p(10|0)h10(b)(v10 − b)− p(10|0)H10(b)]

= −p(0|0) +
p(10|0)

p(10|01)
[p(10|01)h10(b)(v10 − b)− p(10|01)H10(b)]

= −p(0|0) +
p(10|0)

p(10|01)
Γ′01(b) = −p(0|0),

where the penultimate equality holds since Γ01(b) = p(10|01)H10(v10 − b) for b ∈ E01.

Next, suppose type t = 1 deviates to bid some b ∈ E10 = E0∪E10. First, for b ∈ E0 ⊂ E10,

Γ1(b) = p(0|1)H0(b)(v10 − b) =
p(0|1)

p(0|10)
[p(0|10)H0(b)(v10 − b)] =

p(0|1)

p(0|10)
Γ10(b).

As the last term is constant in b ∈ E10, so is Γ1(b). Second, for b ∈ E01 = E10\E0,

Γ1(b) = [p(0|1) + p(01|1)H01(b)] (v10 − b) = (1− α) [p(0|10) +H01(b)] (v10 − b) =
Γ10(b)

(1− α)
,

where the second equality holds since p(0|1) = (1−α)(1−π0) = (1−α)p(0|10) and p(01|1) =

(1− α)π0 = (1− α)p(01|10). As the last terms is constant in b ∈ E10, so is Γ1(b).

Lastly, suppose type t = 01 deviates to bid some b ∈ E0 = E10\E01. Note that

Γ0(b) = α [π0 + (1− π0)H0(b)] (v00 − b) + (1− α)π1H10(b)(v01 − b)

is constant across the interval E0, which implies that the second term H10(b)(v01 − b) is

increasing in b ∈ E0 since the first term is decreasing. Thus, Γ01(b) = π1H10(b)(v01 − b) is

also increasing in b ∈ E0.

S2.14 Proof of Claim 5

Note that since π1 solve (3) for k ∈ [k0, k1], we have from (3) that

∂π1

∂α
=
k(1− π1)(α + (1− α)π1)2

[
(1− α)2 − α2(1− π1)

]
+ π1(1− π1)2v01α

2(1− α)2

α(1− α)2[k(α + (1− α)π1)2 + α2(1− α)(1− π1)2v01]
.

(S32)
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Next, rearrange (3) to obtain

v11 − v01

k
=

1

1− α
+

1

(1− π1)α
− αv01

k(α + (1− α)π1)

⇔ v11 −
k

(1− π1)α
− k

1− α
= v01 −

αv01

α + (1− α)π1

⇔ b0 = v01 −
αv01

α + (1− α)π1

. (S33)

We thus have

∂b0

∂α
= −

v01

(
π1 − α(1− α)∂π1

∂α

)
(α + (1− α)π1)2

= − v01k[(1− α)π1 + α2(1− π1)2 − (1− α)2(1− π1)]

(1− α)(α + (1− α)π1)[k(α + (1− α)π1)2 + α2(1− α)(1− π1)2v01]
, (S34)

where the second equality follows from (S32). Using this,

∂(1− α)(v10 − b0)

∂α

=− v10 + v01 −
αv01

α + (1− α)π1

+
v01k

(
(1− α)π1 + α2(1− π1)2 − (1− α)2(1− π1)

)
(α + (1− α)π1)

(
k(α + (1− α)π1)2 + α2(1− α)(1− π1)2v01

)
=− β +

1− β
α + (1− α)π1

[
(1− α)π1 +

k
(
(1− α)π1 + α2(1− π1)2 − (1− α)2(1− π1)

)
k(α + (1− α)π1)2 + α2(1− α)(1− π1)2(1− β)

]
.

It is straightforward to see that the last expression is decreasing in β and increasing in

k. Thus, plugging β = 1
2

and k = k1 = α(1 − α) into that expression, we obtain after

rearrangement

∂(1− α)(v10 − b0)

∂α

<− 1

2
+

1

2(α + (1− α)π1)

[
(1− α)π1 +

2
(
(1− α)π1 + α2(1− π1)2 − (1− α)2(1− π1)

)
2(α + (1− α)π1)2 + α(1− π1)2

]

=
−2 + 4α− α2 − 2α3 − (−4 + 6α + 4α2 − 4α3)π1 + (2− α)(2α− 1)π2

1

2 (α + (1− α)π1)
(
2(α + (1− α)π1)2 + α(1− π1)2

) . (S35)

Letting κ(π1, α) denote the numerator of (S35), it is a convex, quadratic function of π1,

which is thus maximized when π1 is either 0 or 1. Since κ(1, α) = 2− 4α ≤ 0 and κ(0, α) =

−2 + 4α − α2 − 2α3 ≤ 0 for any α ∈ [1/2, 1], the expression in (S35) is nonpositive, which

means ∂(1−α)(v10−b0)
∂α

< 0, as desired.
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S2.15 Proof of Claim 6

Consider any k ∈ [k0, k1). First, note that b0 = (1−α)π1v01
α+(1−α)π1

from rearranging (B.6), implying

that b0 is decreasing in k since π1 is decreasing in k. Second, since b10 = b0, ∂b10
∂α

is given by

(S34). Note that the expression within the square bracket of the numerator is

(1− α)π1 + α2(1− π)2 − (1− α)2(1− π1) > (1− α)π1 + (1− α)2
[
(1− π1)2 − (1− π1)

]
= (1− α)π1(1− (1− α)(1− π1)) > 0,

and hence ∂b10
∂α

< 0. Lastly, from the expression of b0 in (4) and the fact that π1 is increasing

in β by Part (ii) of Theorem 2, it is clear that b0 is decreasing in β, and so is b10.

Now consider any k < k0. Note that b10 = v01 − k
(1−α)π1

is decreasing in k since π1 is

decreasing in k. Next,

∂b10

∂α
= −

k[π1 − (1− α)∂π1
∂α

]

(1− α)2π2
1

= −kπ
2
1[α2π2

1 − (2α2 + α− 1)π1 + 2α− 1]

(1− α)2π2
1α[(1− α)π2

1 + α(1− π1)2]
,

where the second equality follows from (S30). Observe that the terms in the square bracket

in the numerator of the RHS of the last equality is a convex and quadratic function of π1,

so it is minimized when π1 = 2α2+α−1
2α2 . Thus,

α2π2
1 − (2α2 + α− 1)π1 + 2α− 1 ≥ (1− α)(2α− 1)(2α2 + α + 1)

4α2
≥ 0,

where the first inequality holds by substituting π1 = 2α2+α−1
2α2 and after some rearrangement.

This shows that ∂b10
∂α

< 0. Lastly, note that b10 = b01 and

∂b01

∂β
=

∂

∂β

(
v01 −

k

(1− α)π1

)
= −1 +

k

(1− α)π2
1

∂π1

∂β
= − (1− α)π2

1

(1− α)π2
1 + α(1− π1)2

< 0,

where the last equality follows from substituting (S31).
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