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Abstract

We propose an econometric procedure to test for the presence of overconfidence
using data collected by ranking experiments. Our approach applies the techniques
from the moment inequality literature. Although a ranking experiment is a typical
way to collect data for the analysis of overconfidence, Benôıt and Dubra (2011) show
that a ranking experiment may generate data that indicate overconfidence even if
participants are purely rational Bayesian updaters. Instead, the authors provide a
set of inequalities that are consistent with purely rational Bayesian updaters. We
propose the application of the tests of moment inequalities developed by Romano
et al. (2014) to test such a set of inequalities. Then, we examine the data from
Svenson (1981) on driving safety. Our results indicate the presence of overconfidence
with respect to safety among US subjects tested by Svenson. However, other cases
tested do not show evidence of overconfidence. We also apply our method to re-
examine and confirm the results of Benôıt et al. (2015).

Keywords: overconfidence; ranking experiments; moment inequality; driving safety.

JEL Classification: C12; D03; D81; R41.

1 Introduction

In this paper, we propose an econometric procedure to test for the presence of overcon-

fidence. We consider settings for which data are obtained from ranking experiments.
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Our procedure is based on tests for moment inequalities. As an example of ranking ex-

periments, we reexamine the data of Svenson (1981) and find that although we confirm

the presence of overconfidence concerning driving safety among US subjects tested by

Svenson, we cannot reject the null hypothesis of no overconfidence in the other cases

tested. We also re-examine the data of Benôıt et al. (2015) and confirm the presence of

overconfidence.

A large body of studies shows that people tend to overestimate their capabilities and

that overconfidence is a common phenomenon.1 Examples include Mobius et al. (2011)

and many others regarding intelligence, Barber and Odean (2001) regarding investment

skills, Klar and Giladi (1999) regarding happiness, and Zuckerman and Jost (2001) re-

garding popularity. Alicke and Govorun (2005) collect many other examples.

However, a recent study by Benôıt and Dubra (2011) advocates caution when inter-

preting these empirical results. The authors argue that a typical research design used in

the overconfidence literature—the ranking experiment—may generate data that mislead-

ingly indicates overconfidence even if respondents follow purely Bayesian updating. We

call this the apparent overconfidence problem after the title of Benôıt and Dubra (2011).

In a ranking experiment, we ask participants to rank themselves according to their

beliefs about their skills relative to other members of the groups under question. In the

experiment conducted by Svenson (1981) (details of the research design will be presented

in Section 4), participants were asked to indicate one of 10 equally sized intervals of

a distribution of participants’ driving abilities to which they considered they belonged.

Two abilities were examined in this research: driving safety and driving skills. Svenson

conducted this experiment in the United States and Sweden and obtained the data shown

in Table 1. Among the 40 US participants who were tested on driving safety, 22.5%

responded that they belonged in the top 10% of participants for driving safety. At first

glance, the data imply the existence of substantial overconfidence.

Benôıt and Dubra (2011) argue that data obtained from a ranking experiment cannot

be directly used to investigate the presence of overconfidence. Nonetheless, they derive

a set of inequalities that must be satisfied by responses from purely rational Bayesian

updaters. For example, in the data from Svenson (1981), 51.4% of the Swedish subjects

considered that they belonged in the top 30% for driving safety. However, this result can

be consistent with purely rational Bayesian updating. Benôıt and Dubra (2011) show

that a fraction under 60% can be consonant with the absence of overconfidence. On the

other hand, 46.3% of US subjects considered that they belonged in the top 20% for skill.

This result indicates overconfidence, according to Benôıt and Dubra (2011); however, the

threshold above which overconfidence can be inferred is 40%, not 20%. The question that

1For example, Taylor and Brown (1988) argue that “considerable research evidence suggests that
overly positive self-evaluations, exaggerated perceptions of control or mastery, and unrealistic optimism
are characteristics of normal human thought.”
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Table 1: The Svenson (1981) data

decile 1 2 3 4 5 6 7 8 9 10 N

Safety
US 2.5 0.0 5.0 0.0 5.0 2.5 2.5 22.5 37.5 22.5 40

Sweden 0.0 5.7 0.0 14.3 2.9 11.4 14.3 28.6 17.1 5.7 35
Skill
US 0.0 2.4 2.4 2.4 0.0 12.2 22.0 12.2 26.8 19.5 41

Sweden 2.2 6.7 2.2 4.4 15.5 17.7 11.1 24.4 13.3 2.2 45

Note: Reformatted version of Table 1 in Svenson (1981). The numbers in the cells in
columns 1 to 10 are percentages. N is the number of observations. For example, 2.5% of
the 40 US participants ranked themselves in the first decile of the distribution for driving
safety. Note that there was no overlap among participants between the safety experiment
and the skills experiment.

we wish to address in this paper is whether the 6.3% difference observed in the data is a

statistically significant difference.

We construct a null hypothesis with a set of moment inequalities according to the

theory of Benôıt and Dubra (2011) and apply recently developed methods in the moment

inequality literature to conduct the test. In particular, we use the tests of Romano et al.

(2014). We employ the approach by Romano et al. (2014) for the following two reasons.

First, the authors tests are relatively powerful because they involve moment recentering.

The null hypothesis of moment inequalities testing does not uniquely specify the values

of moments. If we consider the null distribution in which all moment inequalities are

binding, the test may not be powerful. The moment recentering approach of Romano

et al. (2014) allows us to consider a null distribution in which some moments are negative,

which enhances the testing power. Second, the authors approach allows us to compute

p-values relatively easily. Other approaches with good power properties (e.g., Andrews

and Barwick, 2012) require nontrivial amounts of computation to examine many different

sizes other than 0.05, and the computation of p-values is not convenient.

Using state–of–the–art techniques is important in testing a set of moment inequalities.

Note that testing a single inequality restriction is an easy one-sided testing problem and

is explained in most elementary statistics textbooks. However, testing multiple inequality

restrictions is a non-trivial task. It is possible to test for each restriction separately, but

a multiple testing problem could arise: The null hypothesis may be rejected more often

than the specified size (for example, if we test two hypotheses, rejecting at least one of the

two is more likely than rejecting a single hypothesis when only one hypothesis is tested).2

A simple solution to this problem is to apply the Bonferroni adjustment. For this, when

the size is 5%, we use a 5/q% critical value where q is the number of restrictions. However,

2Multiple testing problems have caught attention from experimental economists recently. See, e.g.,
List et al. (2019).
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such an approach tends to make the test unnecessarily conservative. Our approach enables

us to conduct a test of multiple inequality restrictions simultaneously with good power

properties.

Our reexamination of Svenson (1981) indicates the presence of overconfidence among

the US subjects in Svenson’s experiment on safety, but overconfidence is not indicated

for the skill experiment. Recall that the result for the US subjects on driving skill

is only slightly above the theoretical threshold. We find that this deviation from the

threshold is not statistically significant; that is, there is no statistical evidence that the

US subjects exhibit overconfidence concerning skill. However, we do obtain statistical

evidence that the US subjects are overconfident in relation to their driving safety. This

result is important because Svenson (1981) is one of the first to provide evidence of the

presence of overconfidence based on a relatively clean and credible research design, and

it has been cited frequently as evidence of overconfidence in driving safety.

We also apply our method to test the data used in Benôıt et al. (2015). The authors

extend the theory of Benôıt and Dubra (2011) and develop testable restrictions for over-

confidence that consider the apparent overconfidence problem discussed in Benôıt and

Dubra (2011). The two new sets of restrictions provide more powerful tests but require

more data, namely, the type of each subject. The authors designed and conducted ex-

periments to meet this data requirement and found the presence of overconfidence using

the new tests although the test given in Benôıt and Dubra (2011) failed to find the same.

Here, we consider the new set of inequality restrictions (the other concerns an equality

restriction, and we do not consider it in the present paper). In Benôıt et al. (2015), each

inequality is examined separately. Our method examines all the inequalities simultane-

ously and avoids the multiple hypothesis testing problem. Our testing results confirm

the authors findings and provide evidence of the presence of overconfidence.

This study contributes to the literature on behavioral economics by providing a statis-

tical procedure to test for overconfidence and by reexamining the data from the seminal

paper on this subject (Svenson, 1981). Moreover, we demonstrate that our statistical

approach is useful when examining data from more recent studies (Benôıt et al., 2015).

As we noted above, many studies use ranking experiments to investigate and detect over-

confidence. The theoretical implications of Benôıt and Dubra (2011) and Benôıt et al.

(2015) apply in this case, as does our proposed procedure.

As we noted previously, the body of research on overconfidence is growing. The

main argument is that overconfidence can explain a wide range of economic problems

and that it has many important policy implications. For example, Camerer and Lovallo

(1999) find that most subjects who enter an industry consider that the total profit earned

by all entrants will be negative, but that their own profit will be positive, which leads

to excessive business entry. Gervais and Goldstein (2007) show that in firms, the bias

generated by an agent’s over-estimation of the marginal product of his or her effort, and

4



thus works harder, makes all agents more productive, including the overconfident agents.

Dubra (2004) studies the conditions under which unbiased job searchers whose beliefs

about a first offer are correct have higher welfare than overconfident decision makers

who believe that the distribution that generates the offers is better than it really is. A

symposium of the Journal of Economic Perspectives, Volume 29, Number 4 collected

review papers on overconfidence and its practical and policy implications (Daniel and

Hirshleifer, 2015; Grubb, 2015; Malmendier and Taylor, 2015; Malmendier and Tate,

2015). For these implications to be useful, valid statistical evidence of overconfidence is

essential. This study considers the fundamental question of how to test for the presence

of overconfidence.

This paper also contributes to the literature on moment inequalities. Although the

literature on moment inequalities is voluminous, most of the applications relate to empir-

ical industrial organization (e.g., Ciliberto and Tamer, 2009). This paper demonstrates

that statistical techniques developed for moment inequalities are useful in behavioral

economics. Another paper that uses methods for moment inequalities in behavioral eco-

nomics is Montiel Olea and Strzalecki (2014), who estimate partially identified distribu-

tions of the discount rate and hyperbolic parameters.

The reminder of the paper is organized as follows. Section 2 explains the theory of

apparent overconfidence. Section 3 describes methods of moment inequality testing. In

Section 4, we reexamine the Svenson (1981) data and find the presence of overconfidence

concerning driving safety among US subjects but not in the other cases examined by

Svenson. In Section 5, we reexamine the Benôıt et al. (2015) data and find evidence of

the presence of overconfidence. Section 6 concludes.

2 Theory of apparent overconfidence

In this section, we provide a brief explanation of the theory of apparent overconfidence

by Benôıt and Dubra (2011). We provide an intuitive outline of the theory and present

the formal statement of the theoretical result.

The theory of apparent overconfidence states that, for example, even when the data

indicate that the number of people who consider themselves good drivers is greater than

the number of people who actually possess good driving skills, the outcome remains

consistent with purely rational Bayesian updating.

Central to this theory is that, typically, people’s beliefs about their abilities are not

degenerate. This is the case because events that cause people to update their beliefs are

not frequent enough to achieve a convergence of belief for most people. Rational Bayesian

updating requires only that the average of beliefs weighted by their strength be correct.

Suppose that people express that their abilities are in the top half when their beliefs of

this event are larger than 0.5 (we call it median rationalizability). In this case, Bayesian
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rationality implies that the fraction of people who think they are in the top half weighted

by the strength of belief (in this case, 0.5) should be less than the fraction of people who

are actually in the top half (by definition, it is 0.5). This demonstrates that Bayesian

rationality cannot be refuted even if everyone in the population thinks that they are in

the top half if they express it for the case where their belief of being in the top half is

more than 0.5.

For example, suppose that we are interested in overconfidence with respect to driving

skill, and car accidents are the events that update peoples beliefs regarding driving skills.

A car accident is relatively rare. If an individual has not experienced a car accident, the

individual may consider their driving skills to be relatively good, but that person does

not possess a strong degree of certainty regarding this belief. On the other hand, if the

individual does experience an accident, they may acquire a strong belief that their driving

skills are poor. In this example, there are a small number of people who confidently

consider their driving skills poor and a large number of people whose beliefs cause them

to place a slightly higher likelihood on the possibility that their skills are good.

Now, we introduce the following setting to describe the results of Benôıt and Dubra

(2011). A rationalizing model is (Θ, p, S, {fθ}θ∈Θ), where Θ ⊂ R is a type space, p is

a prior distribution over Θ, S is a set of signals, and fθ is a distribution over S. In

our application, θ ∈ Θ represents driving skill, s ∈ S indicates whether a participant

has experienced a car accident, and fθ is the probability of experiencing a car accident

that depends on driving skill θ. Prior p is equal to the true distribution of skill levels,

and it is known to the drivers. However, in the initial stages, none of the drivers have

information on their own particular skill levels, and their beliefs about their own skill

levels are the same as p. We divide Θ into K-deciles. Let Θk be the k-th K-cile; that

is, Θk = {θ ∈ Θ | (k − K)/K ≤ p(θ′ < θ) < k/K} for k ≤ K − 1 and ΘK = {θ ∈ Θ |
(K − 1)/K ≤ p(θ′ < θ)}. Let p(· | s) be the posterior over Θ conditional on s ∈ S: for a

measurable A ∈ Θ, p(A | s) =
󰁕
θ∈A fθ(s)dp(θ)/

󰁕
θ∈Θ fθ(s)dp(θ). After the first stage, each

participant drives and learns about their skill level from the driving experience. Then,

the participants evaluate their skills using Bayes’ rule. p(· | s) describes the subjective

belief about driving skills.

Next, we define the median rationalizability of data. Note that the data from ranking

experiments can be represented as x ∈ ∆K , where ∆K = {x = (x1, . . . , xK) ∈ [0, 1]K |
󰁓K

k=1 xk = 1} and where xk, k = 1, . . . , K is the fraction of people who rank themselves

in the kth K-cile. Let

Sk =

󰀫
s ∈ S | p

󰀣
K󰁞

n=k

Θn | s
󰀤

≥ 1

2
and p

󰀣
k󰁞

n=1

Θn | s
󰀤

≥ 1

2

󰀬
.

Sk is the set of signals that make the median of the posterior belong to Θk. Let F (·) be
the marginal distribution of S so that F (Sk) is the population fraction of participants for
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whom the medians of the posteriors are in Θk. We say that x ∈ ∆K is median rationalized

for (Θ, p) if there exists a rationalizing model (Θ, p, S, {fθ}θ∈Θ) such that xk = F (Sk) for

k = 1, . . . , K, this means that every driver places themselves in a certain K-cile if they

believe that their actual skill places them in that K-cile or above with a probability of

at least 1/2 and that it also places them in that K-cile or below with a probability of at

least 1/2.

The following theorem states that a wide range of data from ranking experiments

can be median rationalized even if the data show apparent overconfidence (or undercon-

fidence).

Theorem 1 (Theorem 1 of Benôıt and Dubra (2011)). Suppose that Θ ⊆ R and p is a

distribution over Θ such that p(Θk) = 1/K for all k. Then, the population ranking data

x ∈ ∆K can be median rationalized for (Θ, p) if and only if for i = k, . . . , K:

K󰁛

j=k

xj <
2

k
(K − k + 1)

and

k󰁛

j=1

xj <
2

K
k.

In our application, we have K = 10, and xk is the fraction of subjects who place them-

selves in the k-th decile. After eliminating the redundant items, we have the following

eight inequalities:

x1 < 0.2, x1 + x2 < 0.4,

x1 + x2 + x3 < 0.6, x1 + x2 + x3 + x4 < 0.8,

x7 + x8 + x9 + x10 < 0.8, x8 + x9 + x10 < 0.6,

x9 + x10 < 0.4, x10 < 0.2.

3 Test for moment inequalities

In this section, we describe the tests for moment inequalities developed by Romano et al.

(2014). Here, we present the procedure only. For the theoretical arguments underlying

this testing procedure, refer to Romano et al. (2014).

We describe the tests in a general setting. Let Wi = (Wi1, . . . ,WiJ)
′, i = 1, . . . , N be

an i.i.d. sequence of random vectors with mean µ ∈ Rk. For 1 ≤ j ≤ J , let µj be the j-th

component of µ. Romano et al. (2014) consider the following testing problem:

H0 : µj ≤ 0, for all j = 1, . . . , J, (1)
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against the alternative:

H1 : µj > 0, for some j = 1, . . . , J.

(1) is the hypothesis that all J moment inequalities are satisfied. When J = 1—that

is, when there is only one moment inequality to test—a standard one-sided t test may

be used. For multidimensional inequality hypotheses, the testing problem becomes more

complicated.

We define some notations. Let W̄ =
󰁓N

i=1 Wi/N be the sample average of Wi, and

let Σ̂ =
󰁓N

i=1(Wi − W̄ )(Wi − W̄ )′/N be the sample variance covariance matrix of Wi.

However, in what follows, we use a regularized version Σ̃ such that Σ̃ is always invertible:

Σ̃ = Σ̂+max{󰂃− det(Ω̂), 0}D̂,

where D̂ = Diag(Σ̂), Ω̂ = D̂−1/2Σ̂D̂−1/2, and 󰂃 = 0.012. The presence of 󰂃 guarantees

that Σ̃ is invertible.3 For j = 1, . . . , J , let W̄j and σ̂j denote the sample mean and

sample standard deviation of W1j, . . . ,WNj, respectively; that is, W̄j =
󰁓N

i=1 Wij/N ,

σ̂j =
󰀓󰁓N

i=1(Wij − W̄j)
2/N

󰀔1/2

.

We consider the following three test statistics.

TMAX = max
1≤j≤J

√
NW̄j

σ̂j

(2)

TQLR = inf
t∈RJ :t≤0

(
√
NW̄ − t)′Σ̃−1(

√
NW̄ − t) (3)

TMMM =
J󰁛

j=1

󰀣√
NW̄j

σ̂j

󰀤2

1{W̄j > 0} (4)

The MAX statistic, (2), is given by the maximum over J t- statistics. The QLR statistic

in (3) is of quadratic form and measures the distance to the region that satisfies the

inequalities. The MMM statistic in (4) may be considered a special case of QLR, but it

ignores the correlation across the elements of W̄ .

Next, we discuss how to obtain critical values. The critical values are computed by

bootstrap, but this involves moment recentering. That is, we can improve the power

of a test by adjusting the bootstrap distribution of moments for which the associated

inequalities are obviously satisfied.4 Let α be the nominal size of the test. In principal,

we can compute critical values based on a distribution that satisfies E(Wi) = 0 (this is

called the least favorable distribution approach). However, when the number of moment

3The choice of the value of 󰂃 is somewhat arbitrary. 󰂃 = 0.012 is used in Andrews and Barwick (2012)
and Romano et al. (2014). We confirm that our results are robust to smaller values of 󰂃.

4The literature also considers an alternative approachmoment selection, which drops moment inequal-
ities that are obviously satisfied. See Allen (2018) for the difference between moment recentering and
moment selection. The author argues that moment recentering provides a more powerful test. We adopt
the term moment recentering from Allen (2018).
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inequalities increases, so does the critical value, which causes the test to lose its power.

To improve the power of the test, we consider the test incorporating moment recentering

procedures. We allow some of the moments to be negative when we compute the distri-

bution of the test statistics under the null hypothesis. This has a noticeable effect on the

power of the test. Romano et al. (2014) provides a two-step method for achieving this

goal. Note that this constitutes the main contribution of Romano et al. (2014).

First, we construct a confidence interval for each E(Wij) at a confidence level (1− β)

where β = α/10 in our application. If the upper bound of the confidence set is below

zero, the moment inequality may be considered satisfied. The confidence set is obtained

by bootstrap. Let W
(b)
i , i = 1, . . . , N be a sample from the bootstrap distribution in

the b-th nonparametric bootstrap repetition, where b = 1, . . . , B, and B is the number

of bootstrap repetitions. We compute W̄
(b)
j and σ̂

(b)
j , j = 1, . . . , J , for each bootstrap

repetition. Then, we obtain the empirical distribution of max1≤j≤J(
√
N(W̄j−W̄

(b)
j )/σ̂

(b)
j ).

Let L̂−1(1− β) be the (1− β) quantile of this empirical distribution. The confidence set

is:

M̂(1− β) =

󰀫
µ ∈ RJ : max

1≤j≤J

√
N(µj − W̄j)

σ̂j

≤ L̂−1(1− β)

󰀬
,

=

󰀫
µ ∈ RJ : µj ≤ W̄j +

σ̂jL̂
−1(1− β)√

N
, for all 1 ≤ j ≤ k

󰀬
.

Then, we form the upper confidence bound for each µj by W̄j + σ̂jL̂
−1(1− β)/

√
N .

We then compute the bootstrap distributions of the test statistics. Roughly speaking,

we adjust the means of moment inequalities for which the upper confidence bounds are

below 0. Let:

λ∗
j = min

󰀫
W̄j +

σ̂jL̂
−1(1− β)√

N
, 0

󰀬
.

and λ∗ = (λ∗
1, . . . ,λ

∗
J)

′. We substitute the mean value µj under the bootstrap distribution,

which is W̄j with W̄j−λ∗
j . For example, for TMAX, we compute the empirical distribution

of:

TMAX,(b) = max
1≤j≤J

√
N(W̄

(b)
j − W̄j + λ∗

j)

σ̂
(b)
j

.

Similarly, for TQLR and TMMM, we compute the empirical distributions of:

TQLR,(b) = inf
t∈RJ :t≤0

(
√
N(W̄ (b) − W̄ + λ∗)− t)′(Σ̃(b))−1(

√
N(W̄ (b) − W̄ + λ∗)− t),

TMMM,(b) =
J󰁛

j=1

󰀣√
N(W̄

(b)
j − W̄j + λ∗

j)

σ̂
(b)
j

󰀤2

· 1{W̄ (b)
j − W̄j + λ∗

j > 0},
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where Σ̃(b) is the bootstrap version of Σ̃. Note that when λ∗
j < 0, W̄

(b)
j − W̄j + λ∗ =

W̄
(b)
j + σ̂jL̂

−1(1 − β)/
√
N . Because L̂−1(1 − β) is the (1 − β) quantile of the bootstrap

distribution of max1≤j≤J(
√
N(µj − W̄j)/σ̂j), it is unlikely that the moment with λ∗

j < 0

affects the bootstrap distribution of a test statistic. In this way, we do not use the least

favorable null distribution, and we allow some moments to be negative.

The critical values are computed using the bootstrap distributions, but we also need

to consider the effects of moment recentering. In particular, we use the (1 − α + β)

quantile of the bootstrap distribution rather than the (1−α) quantile. For example, the

critical value for TMAX is the (1−α+β) quantile of the empirical distribution of TMAX,(b).

Roughly speaking, because we use the (1 − β) confidence bound for moment selection,

the probability of making a mistake in moment recentering is β, and we need to use a

slightly higher critical value than the (1− α) quantile.

A test rejects the null hypothesis if the upper confidence bound is above 0 and if the

statistic exceeds the critical value. Let T be one of TMAX, TQLR, and TMMM, and let

ĉ(1 − α + β) be the corresponding critical value. The null hypothesis H0 is rejected at

size α when {M̂(1− β) ⊈ RJ
−} and when T > ĉ(1− α + β).

4 Reexamination of Svenson’s (1981) data

This section presents the results of our reexamination of Svenson’s (1981) data. First, we

review the data. Then, we present the results of our tests. We find that the US subjects

are overconfident regarding their driving safety, but we find no statistical evidence for

the presence of overconfidence in the other cases tested by Svenson.

4.1 Data

We reexamine the data provided in Svenson (1981), which Svenson collected in the United

States and Sweden. In each country, the author gathered two collections of data. For

each collection, he gathered participants in a room and asked them to respond to the

following questionnaire:

Svenson’s (1981, page 144) questionnaire.

We would like to know about what you think about how safely you drive

an automobile. All drivers are not equally safe drivers. We want you to

compare your own skill to the skills of the other people in this experiment.

By definition, there is a least safe and a most safe driver in this room. We

want you to indicate your own estimated position in this experimental group

(and not, e.g., in Eugene, Oregon, or in the US) (or (and not, e.g., people in

Stockholm or in Sweden)). Of course, this is a difficult question because you
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do not know all of the people gathered here today, much less how safely they

drive. But please make the most accurate estimate you can.

Each participant was asked to mark one of the deciles that they considered corresponded

with their position in the distribution of participants’ safety (or skill) levels. Note that

there were different participants involved in the two data collections related to driving

skills and safety in each country. Thus, Svenson obtained four sets of data, which we

label as follows: US safety data, US skill data, Sweden safety data, and Sweden skill data.

The data are documented in Table 1.

In view of the theory of apparent overconfidence by Benôıt and Dubra (2011), our

null hypothesis is composed of the following moment inequalities. Let D(j)i denote the

dummy variable, which takes a value of one if subject i places themselves in the j-th

decile. The set of moment inequalities is:5

E(D(1)i − 0.2) < 0, (5)

E(D(1)i +D(2)i − 0.4) < 0, (6)

E(D(1)i +D(2)i +D(3)i − 0.6) < 0, (7)

E(D(1)i +D(2)i +D(3)i +D(4)i − 0.8) < 0, (8)

E(D(7)i +D(8)i +D(9)i +D(10)i − 0.8) < 0, (9)

E(D(8)i +D(9)i +D(10)i − 0.6) < 0, (10)

E(D(9)i +D(10)i − 0.4) < 0, (11)

E(D(10)i − 0.2) < 0. (12)

The number of bootstrap replications is 5,000.6 The procedure is implemented by R

3.3.0 (R Core Team, 2016) with Mac OS 10.10.5.

4.2 Results

Table 2 summarizes the results of the overconfidence test for US and Swedish drivers’

driving safety and skill levels. The table lists three test statistics and their corresponding

critical values and p-values. All three different test statistics lead to the same test results

for each ability for each country at the 5% significance level. We reject the null hypothesis

that US drivers have no overconfidence regarding their driving safety. However, in the

other three cases, we do not find statistical evidence to disprove the hypothesis of no

overconfidence. For example, from Svenson’s (1981) data, we can see that 46% of US

5In Svenson’s sample, no US drivers placed their driving skills in the lowest decile, and no Swedish
drivers placed their safety in the lowest decile; that is, we do not need to test for the corresponding
inequality in these two cases.

6As D(j)i takes only a value of zero or one when computing the standard deviation, σ̂
(b)
j may turn

out to be 0 in some bootstrap repetitions. In those cases, we take S̃
(b)
j = max(󰂃b, σ̂

(b)
j ) where 󰂃b = 0.001.

Different values of 󰂃b do not affect the results as long as they are sufficiently small.
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Table 2: Test results for null hypothesis of no overconfidence

Version Reject Statistics Crit.val. p-value Not-recentered

US safety (N = 40)
MMM Yes 21.08 14.32 0.03 (9)-(12)
QLR Yes 13.85 8.22 0.019 (9)-(12)
MAX Yes 3.698 2.865 0.015 (9)-(12)

US skill (N = 41)
MMM No 0.653 10.53 0.58 (9)-(12)
QLR No 0.647 6.615 0.55 (9)-(12)
MAX No 0.804 2.514 0.54 (9)-(12)

Sweden safety (N = 35)
MMM No 0 8.075 0.86 (9)-(11)
QLR No 0 4.669 1.00 (9)-(11)
MAX No -1 2.082 1.00 (9)-(11)

Sweden skill (N = 45)
MMM No 0 3.267 0.82 (10)
QLR No 0 3.106 0.96 (10)
MAX No -2.708 1.773 1.00 (10)

Notes: Results of the Romano et al. (2014) tests. MMM, QLR, and MAX correspond
to the three versions of the Romano et al. (2014) tests. Reject gives the test results
at the 5% significance level. Statistics gives the value of the test statistics. Crit.val
denotes the critical value computed by bootstrap. P -value gives the p-value of the test.
Not-recentered gives the list of moment inequalities that are not affected by moment
recentering.

drivers placed themselves in the top 20% of the distribution for skill, which is 6% larger

than the 40% threshold. However, our tests show that there is no statistical evidence of

the presence of overconfidence. To illustrate the effect of moment recentering, Table 2

documents the moments for which we need to set population values equal to zero when

we generate the distribution under the null hypothesis. These moment inequalities are

not affected by moment recentering. We can see that in most tests, the latter half of the

inequalities are selected. In fact, the data indicate that the recorded fractions of the top

deciles are less likely to satisfy the inequalities.

Table 3 illustrates the effects of moment recentering. We provide the results of testing

for US driving safety and skill levels with (i) eight (or seven) moment inequalities with

recentering (the same as the Table 2), (ii) eight (or seven) moment inequalities without

recentering, and (iii) four moment inequalities that are selected in Table 2 ((9)-(12)). The

critical values in panel (ii) are larger than those in panel (iii) because of the increased

number of moment inequalities. Comparing tests (i) and (ii), we find that the tests with

test statistics QLR and MAX have smaller critical values when moment recentering is

implemented. In particular, for US safety, the QLR test does not reject the null hypothesis

at the 5% level without moment recentering.
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Table 3: Effects of moment recentering

Version Reject Statistics Crit.val. p-value Not-recentered

US safety (N = 40)
(i): Eight moment inequalities with recentering

MMM Yes 21.08 14.32 0.03 (9)-(12)
QLR Yes 13.85 8.22 0.019 (9)-(12)
MAX Yes 3.698 2.865 0.015 (9)-(12)

(ii): Eight moment inequalities without recentering
MMM Yes 21.08 13.83 0.027
QLR No 13.85 24.25 0.064
MAX Yes 3.698 2.865 0.014
(iii): Four moment inequalities (9)-(12) without recentering

MMM Yes 21.08 13.47 0.027
QLR Yes 13.85 8.211 0.017
MAX Yes 3.698 2.865 0.014

US skill (N = 41)
(i): Seven moment inequalities with recentering

MMM No 0.653 10.53 0.58 (9)-(12)
QLR No 0.647 6.615 0.55 (9)-(12)
MAX No 0.804 2.514 0.54 (9)-(12)

(ii): Seven moment inequalities without recentering
MMM No 0.653 10.42 0.75
QLR No 0.647 10.44 0.73
MAX No 0.804 2.242 0.67
(iii): Four moment inequalities (9)-(12) without recentering

MMM No 0.653 9.863 0.52
QLR No 0.647 6.323 0.52
MAX No 0.804 2.242 0.52

Note: Results of the Romano et al. (2014) tests with or without moment recentering.
MMM, QLR, and MAX correspond to the three versions of the Romano et al. (2014)
tests. Reject gives the test results at the 5% significance level. Statistics gives the value
of the test statistics. Crit.val denotes the critical value computed by bootstrap. P -value
gives the p-value of the test. Not-recentered gives the list of moment inequalities that are
not affected by moment recentering.

5 Re-examination of Benôıt et al.’s (2015) data

Benôıt et al. (2015) present the results of experiments that are also ranking experiments

but provide better data in the sense that the information on the strength of beliefs

and actual types is available. In the theory part of Benôıt et al. (2015), the authors

derive an additional set of inequalities that can be used to test data for the presence of

overconfidence. In this section, we demonstrate that our moment inequality approach is

useful in re-examining the results from Benôıt et al. (2015). Our tests provide evidence
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of the presence of overconfidence.7

5.1 Theoretical framework

We examine the implication of Theorem 2 in Benôıt et al. (2015) and provide a set

of testable inequalities describing the relationship between subjects’ actual ability and

their beliefs. Note that Benôıt et al. (2015) present three theoretical results that extend

Benôıt and Dubra (2011) and provide testable implications of no overconfidence. Here, we

consider their second result (Theorem 2) only. Their first result is a direct generalization

of Theorem 1 in Benôıt and Dubra (2011) (it is a slight modification of Theorem 4 in the

appendix of Benôıt and Dubra (2011)). Note that these restrictions indicated by this first

result are satisfied in the data used in Benôıt et al. (2015), and our moment inequality

approach yields the same results. The authors third result yields an equality restriction

and is beyond the scope of the present paper although it would provide the most powerful

test among those discussed in Benôıt et al. (2015). Note that Benôıt et al. (2015) find

the evidence for the presence of overconfidence bias from the test based on this equality

restriction.

The following theorem, which is Theorem 2 of Benôıt et al. (2015), provides a set of

inequality restrictions that need to be satisfied in the absence of overconfidence.

Theorem 2 (Theorem 2 in Benôıt et al. (2015)). Suppose that a fraction x of the popu-

lation believe that there is a probability of at least q that their types are in the top y < q

of the population. Let x̃ be the fraction of people who have those beliefs and whose actual

type is in the top y of the population. These data can be rationalized if and only if xq ≤ x̃.

This theorem states that, in a large population, at least a fraction q of those who

think that they are in the top y with probability at least q must actually be in the top

y. The inequality given in this theorem is more restrictive than that in Theorem 1 in

Benôıt et al. (2015) because x̃ ≤ y and, thus, yields a more powerful test. However, the

test requires data on actual types. For example, this theorem cannot be used to test the

data set in Svenson (1981) because it does not provide the data on actual types. Benôıt

et al. (2015) designed and conducted experiments that generate data on actual types.

Theorem 2 corresponds to the following moment inequality.

E[qD(y, q)− D̃(y, q)] ≤ 0, (13)

where D(y, q) is a binary variable indicating whether a subject believes that their type

is in the top y < q of the population with a probability of at least q, and D̃(y, q) denotes

whether or not a subject believes that their type is in the top y < q of the population

with a probability of at least q.

7We use the data set available at http://learnmoore.org/mooredata/OJD/.
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Benôıt et al. (2015) report the results of two experiments, Experiment I and Experi-

ment II. Below, we discuss these two experiments and their results separately. We briefly

discuss the designs; see Benôıt et al. (2015) for details.

5.2 Experiment I

In Experiment I, subjects took a quiz composed of 20 questions. The subjects types were

defined as the number of questions they answered correctly in the quiz and ranged from 0

to 20. Each subject then made three decisions. Each decision corresponded to the elicita-

tion of their belief that their types were in the top y with a probability of at least q. The

three decisions correspond to (y, q) = (0.5, 0.5), (0.6, 0.5), and (0.5, 0.3). Note that the

experimental design enables us to specify the value of q, and we do not need to assume me-

dian rationalizability, which is made to examine Svenson’s data. The number of observa-

tions is 129. We observe {(Di(y, q), D̃i(y, q) | (y, q) ∈ {(0.5, 0.5), (0.6, 0.5), (0.5, 0.3)}}129i=1

where Di(y, q) is a binary variable indicating whether subject i believes that his type is

in the top y with a probability of at least q, and D̃i(y, q) denotes whether the subject

believes the same and their type is actually in the top y.8 Table 6 in the Appendix, which

provides a subset of the information in Table 3 of Benôıt et al. (2015), reports a summary

of the data.

Benôıt et al. (2015) examine each decision separately. We look at all three decisions

altogether. This is important because these three decisions are made by the same set of

subjects, and they are likely to be correlated. In Benôıt et al. (2015), the authors find

that the test on the third decision rejects the null hypothesis. We formally test whether

it comes from sampling error while taking care of the correlation across inequalities and

considering all three simultaneously to avoid the multiple testing problem.

Table 4 summarizes the test results. The null hypothesis is rejected regardless of the

choice of test statistic. The p-values are low, and we find strong evidence of the presence

of overconfidence.

5.3 Experiment II

Experiment II is similar to Experiment I, but the elicitation of subjects’ beliefs uses a

different method. There is only one decision with y = 0.5, and the subjects themselves

specify the probability that their types are in the top half. The quiz is similar to the quiz

8Note that the score is a discrete variable, and there are multiple ways of defining percentiles (that is,
what the top y means). Here we define D̃i(y, q) in the following way; 21, 33, and 18 subjects scored 20,
19, and 18, respectively. For y = 0.5, if the score is 19 or 20, D̃i(0.5, q) = Di(0.5, q). If the score is 18,
then D̃i(0.5, q) = Di(0.5, q)× 5/9 where 5/9 = 10/18 comes from the condition that the top 50% should
consist of 64 subjects (the total number of subjects is 129) and 64− 21− 33 = 10. Similarly, for y = 0.3,
D̃i(0.3, q) = Di(0.3, q) for those whose score is 20 and D̃i(0.3, q) = Di(0.3, q) × 17/33. This definition
makes the average values of D̃i(y, q) equal to those reported in Benôıt et al. (2015).
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Table 4: Tests for Theorem 2 in Benôıt et al. (2015) with data from Experiment I

Version Reject Statistics Crit.val. p-value λ∗

α = 0.05, β = α/10, N = 129
MMM Yes 13.414 7.053 0.008 0, 0, 0
QLR Yes 11.965 4.344 0.001 0, 0, 0
MAX Yes 3.459 2.035 0.000 0, 0, 0

Notes: Results of the Romano et al. (2014) tests. MMM, QLR, and MAX correspond to
the three versions of the Romano et al. (2014) tests. Reject gives the test results at the
5% significance level. Statistics gives the value of the test statistics. Crit.val denotes the
critical value computed by bootstrap. P -value gives the p-value of the test. λ∗ denotes
the values of the re-centering parameters for each of the three inequalities.

Table 5: Tests for Theorem 2 in Benôıt et al. (2015) with data from Experiment II

Version Reject Statistics Crit.val. p-value Not-recentered

α = 0.05, β = α/10, N = 74
MMM Yes 43.421 21.302 0.018 all
QLR Yes 6.491 3.640 0.017 all
MAX Yes 2.360 1.771 0.018 all

Notes: Results of the Romano et al. (2014) tests. MMM, QLR, and MAX correspond
to the three versions of the Romano et al. (2014) tests. Reject gives the test results
at the 5% significance level. Statistics gives the value of the test statistics. Crit.val
denotes the critical value computed by bootstrap. P -value gives the p-value of the test.
Not-recentered gives the list of moment inequalities that are not affected by moment
recentering.

in Experiment I and has 20 questions. The types are the scores of the quiz. Seventy-four

subjects participated.

We test Theorem 2 for the following 19 values of q: q = 0.58, 0.60, 0.66, 0.68,

0.70, 0.72, 0.74, 0.76, 0.78, 0.80, 0.84, 0.86, 0.88, 0.90, 0.92, 0.94, 0.96, 0.98, 1.00.

This set of values is also used in Benôıt et al. (2015). The original data set contains

(Scorei, qi) for each i where Scorei is subject i’s score (type), and qi is the probability

at which subject i believes that their type is in the top half. To test (13), we con-

struct Di(0.5, q) and D̃i(0.5, q) by setting Di(0.5, q) = 1(qi ≥ q) and D̃i(0.5, q) = 1(qi ≥
q) × P (i is in the top half).9 Table 7 in the appendix, which provides a subset of the

information in Table C.1 of Benôıt et al. (2015), reports a summary of the data.

Table 5 summarizes the results. All tests reject the null hypothesis, and we find

evidence of the presence of overconfidence. Note that Benôıt et al. (2015) examine each

9As in Experiment I, the score is a discrete variable, and there is ambiguity as to how to define the
top 50%. Note that the median score is 18. In the data, there are 34 subjects whose score is less than
or equal to 17 and, for them, P (i is in the top half) = 0. For 27 subjects whose scores are more than or
equal to 19, P (i is in the top half) = 1. For 13 subjects whose score is 18, P (i is in the top half) = 3/13.
This definition yields the average values of D̃i(0.5, q) corresponding to those reported in Benôıt et al.
(2015).
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of 19 restrictions separately. Here, we consider all 19 inequalities simultaneously and

still find the rejection of the null hypothesis. Our result confirms the finding of Benôıt

et al. (2015) while taking the multiplicity of restrictions into consideration. We also find

that none of the moment inequalities is re-centered. Thus, in this data, no restriction is

obviously satisfied.

6 Conclusion

In this paper, we show that tests for moment inequalities can be used to examine the

presence of overconfidence using data from ranking experiments. The absence of over-

confidence does not yield a null hypothesis with a set of equalities. Rather, it yields a

set of inequalities if the data are collected by ranking experiments (Benôıt and Dubra,

2011). We use state-of-the-art econometric techniques for moment inequalities to test the

set of inequalities implied by the absence of overconfidence. Our reexamination of the

Svenson (1981) data reveals that although we can confirm the presence of overconfidence

among US subjects with respect to driving safety, we cannot reject the null hypothesis

of no overconfidence in the other three cases examined. We also reexamine the data of

Benôıt et al. (2015) and confirm their findings.

The proposed method is useful in two ways. First, it provides a statistical tool to

detect the presence of overconfidence. Overconfidence has several policy implications.

However, valid statistical evidence of overconfidence is essential for these policy impli-

cations to be useful. Second, the proposed statistical procedure would be useful in ad-

dressing other problems that may use ranking experiments. This study analyzes data on

driving abilites and intelligence; however, overconfidence has important implications in

other aspects of human life, such as happiness and health. Researchers can investigate

these using ranking experiments (see, for example, Klar and Giladi, 1999, on happiness)

and the proposed method for the analysis.
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A Appendix: Additional Tables

Table 6: Summary statistics for Experiment I

y q x y/q xq x̃

0.5 0.5 0.74 1.00 0.370 0.394
0.6 0.5 0.64 0.83 0.384 0.347
0.5 0.3 0.52 0.60 0.260 0.169

Notes: This table is a reproduction of part of Table 3 in Benôıt et al. (2015). The
variables are defined as follows: A fraction x of subjects believe that they are in the top
y with a probability of at least q, and a fraction x̃ of subjects believe the same and are,
in fact, in the top y.
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Table 7: Summary statistics for Experiment II

y q x xq x̃

0.5 0.5 0.905 0.453 0.473
0.5 0.58 0.730 0.423 0.439
0.5 0.60 0.716 0.430 0.425
0.5 0.66 0.608 0.401 0.358
0.5 0.68 0.595 0.401 0.344
0.5 0.70 0.554 0.388 0.320
0.5 0.72 0.432 0.311 0.238
0.5 0.74 0.419 0.310 0.238
0.5 0.76 0.405 0.308 0.228
0.5 0.78 0.365 0.285 0.214
0.5 0.80 0.351 0.281 0.201
0.5 0.84 0.230 0.193 0.150
0.5 0.86 0.203 0.174 0.150
0.5 0.88 0.189 0.166 0.136
0.5 0.90 0.176 0.158 0.126
0.5 0.92 0.081 0.075 0.048
0.5 0.94 0.068 0.064 0.048
0.5 0.96 0.054 0.052 0.037
0.5 0.98 0.041 0.040 0.037
0.5 1 0.027 0.027 0.027

Notes: This table is a reproduction of part of Table C.1 in Benôıt et al. (2015). The
variables are defined as follows: A fraction x of subjects believe that they are in the top
y with a probability of at least q, and a fraction x̃ of subjects believe the same and are,
in fact, in the top y.
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