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Abstract

This paper models a two-sided matching market where workers can only match

with firms that they are acquainted with. Each worker may conduct searches to

acquaint himself with new firms. Concepts of stability and efficiency are defined.

We use the marginal value theorem of linear programming to show workers never

search too little in the sense that all stable matchings are efficient. We then prove

that in a large market which satisfies some regularity conditions, workers never

search too much, i.e. all efficient matchings can be made stable.

1 Introduction

Traditional matching models assume that there is no search friction, so that every agent

knows all of his potential partners and can freely match with any one of them. This may be

true of matching markets with a small number of participants. However, in decentralized

matching among a large number of agents costly searching is often unavoidable. It is

unlikely that a man looking for a wife knows all single women in his city, let alone his

country. With a limited number of female acquaintances, he either marries a woman he

already knows or searches for someone he does not yet know. Similarly, a worker looking

for a job often has to search long and hard for a satisfactory position.

This paper considers a two-sided matching market of workers and firms, and relaxes

the standard assumption that any worker-firm pair can match. Agents are allowed to

match only with those they are acquainted with. Workers but not firms are able to
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conduct searches and enlarge their set of acquainted agents. A natural question to ask is

whether workers search in socially optimal ways. This is not obvious because an agent

does not take into account other agents that are affected by his search. For example, say

that a worker searches for and finds a desirable job opening. If the worker joins the firm,

the latter enjoys the surplus of the match without incurring any search effort. Hence there

is a reason for workers to search too little unless they can internalize the firms’ benefit.

On the other hand, if the worker leaves his old job to work at the newly found firm, or

the firm discharges incumbent workers to hire the new worker, the displaced agents are

likely to be worse off. This implies that excessive searching is also possible.

Our first result is that workers never search too little (no under-search). We then

show that when the market is large and satisfies some regularity conditions, workers never

search too much (no over-search).

We use the concepts of stability and efficiency to establish these results. A matching is

stable if no worker wishes to deviate, either by matching with a different firm he already

knows or by conducting searches to find other firms. A matching is efficient if no such

deviations can benefit all agents as a whole. If all stable matchings are efficient, by

contraposition, whenever there is room for enhancing efficiency at least one agent wishes

to deviate. It is in this sense that we claim no under-search. Conversely, we will say that

no over-search holds when all efficient matchings can be made stable. This means that

when there is no need for further search, we can always find a surplus allocation that

leaves every agent satisfied with status quo.

This paper is a natural extension of the classical treatment of assignment games by

Shapley and Shubik (1971). To our knowledge, this is the first paper to directly incorporate

searching frictions into a matching model and introduce adequate notions of stability and

efficiency. A related work is Liu et al. (2014), in which agents have incomplete information

about others’ types.

The job search literature of labor economics Mortensen and Pissarides (1999) considers

a similar topic as ours, albeit with exogenous matching or searching rules. Wu (2015)

examines whether a random pairwise meeting can lead to stable matchings.

2 The Model

2.1 The Economy

There is a set of workers, I, and a set of firms, J . A match between worker i ∈ I and

firm j ∈ J produces joint surplus of v(i, j) ∈ R+ ∪ {0}. Utility is fully transferable so

that the joint surplus is divided into worker’s wage and firm’s profit. To this standard

matching environment, we add the restriction that a worker and a firm must be acquainted
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in order to match. This is represented by the acquaintance function q : I × J → {0, 1},
where q(i, j) = 1 if worker i and firm j are acquainted and q(i, j) = 0 if they are not.

Worker i’s acquaintance set is defined as Qq(i) = {j | q(i, j) = 1}. An acquainted pair of a

worker and a firm may match without cost. Note that classical matching models assumes

q(i, j) = 1 for all workers i and firms j.

Workers have the option to increase their acquaintance set by searching. Define worker

i’s search pool as the set of firms yet unknown to him, or Sq(i) = J −Qq(i). When worker

i conducts a search, he randomly finds a firm in his search pool, i.e. the acquaintance

function changes to q′ where q′(i, j) = 1 for some j ∈ Sq(i) and q′ = q everywhere else.

Let fi(j; q) be the probability that i finds j, given acquaintance q, and let f = (fi). We

allow workers to search multiple times until they are satisfied with their acquaintance set.

Worker i’s k’th search costs him c(i, k). A matching problem is defined by the 6-tuple

(I, J, v, q, f, c).

Before proceeding, we note some assumptions implicit in our setting. Acquaintance is

always mutual in that if a worker knows a firm, the firm knows the worker. The agents

know the exact distribution of all agents in the market, but must still make a costly search

to actually locate a partner, which is a standard assumption in searching models.

Assumptions on the searching technology are as follows.

• Searching is one-sided, i.e. firms cannot search for workers.

• Searching is independent, i.e. a worker’s search does not affect the search of other

workers. For example, workers cannot share search results.

• On-the-job search is allowed. A worker can search without giving up his currently

matched firm.

• There is only one search pool for each worker. In other words, a worker does not

have multiple searching options.

2.1.1 Matching

A matching needs to describe which workers match with which firms, and also how each

matched pair divides its surplus. Define the assignment function a : I × J → {0, 1},
where a(i, j) = 1 if worker i is matched with firm j and q(i, j) = 0 if otherwise. Let

x : I → R+ ∪ {0} and p : J → R+ ∪ {0} denote workers’ and firms’ utilities, respectively.

These three functions define a matching M = (a, x, p). Let m(i) (m(j)) denote the

firm(worker) that is matched with worker i (firm j) under matching M .

Assignment a is feasible if for each i, a(i, j) = 1 for at most one j, and for each j,

a(i, j) = 1 for at most 1 i. Matching M = (q, a, x, p) is feasible if assignment a is feasible

and satisfies a ≤ q, and x(i) + p(j) ≤ v(i, j) for all pairs (i, j) such that a(i, j)=1.
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2.1.2 Searching Scheme

I allow workers to search in groups and therefore define searching schemes.

Definition 1. Let q0 be the initial acquaintance and let G ⊂ I be a subset of workers. A

searching scheme by G is a function sG : H → G ∪ {0} that specifies which worker

will search after each realized history h = (q0, (i1, j1), (i2, j2), · · · ) of search results, with

sG(h∗) = 0 meaning that search ends at h∗.

When G = {i}, we write sG = si and call this worker i’s individual searching

scheme. When we restrict attention to a particular worker and his individual searching

scheme, we may write the scheme’s history as a string of acquainted firms, (q0, j1, j2, · · · ).
Let s∅ denote the searching scheme that does not conduct any search.

2.2 Stability and Efficiency

First recall the standard notion of stability.

Definition 2. A feasible assignment a is rematch stable if no acquainted worker-firm

pair can form a blocking pair, i.e. x(i) + p(j) ≥ v(i, j) for all i ∈ I and j ∈ J such that

q(i, j) = 1.

To this standard definition we add the requirement that no individual worker wishes

to conduct a search. It is thus necessary to pin down a worker’s benefit from a search

scheme. As is the case with rematch stability, we assume that workers see firms’ surplus p

as if they are posted prices. Whenever worker i finds a new firm j, he is able to match

with the firm, pay the firm p(j), and receive v(i, j)− p(j) himself. If worker i searches k

times and acquaintance q′ is realized, worker i’s surplus equals

ui(q
′) = sup

j∈Qq′ (i)
{v(i, j)− p(j)} −

k∑
t=1

c(i, t). (1)

Each individual searching scheme si induces a probability measure on the set of all

acquaintances q′ that can be reached from q0, and, equivalently, on the set of worker i’s

surplus ui(q
′) from these acquaintances. Denote worker i’s expected surplus from scheme

si by Πi(si) ≡ E[ui(q
k) | si], and let s∗i ≡ arg maxsi 6=s∅ Πi(si) be i’s optimal individual

search scheme.

Definition 3. A feasible matching M = (a, x, p) is stable if it is rematch stable and no

worker strictly wishes to search, i.e. maxsi Πi(si) ≤ x(i) for all i ∈ I.
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Workers are fully myopic because they only look at the posted prices when deciding

whether to search. Therefore I do not have to assume that agents have complete information

regarding the parameter functions, including v, q, f , or c. All an agent needs to know is

his joint surplus with potential partners, his acquaintance set, his searching technology,

and the posted price.

Efficiency, unlike stability, is defined for assignments not matchings since the total

surplus is determined only by how agents match, and not by how they divide the gains.

An assignment is efficient if no rematching among acquainted agents, nor any searching

scheme, can increase total surplus.

Definition 4. A feasible assignment a is rematch-efficient if no rematch among ac-

quainted agents can increase total surplus, i.e. a maximizes
∑

i,j v(i, j)a(i, j) among all

feasible assignments.

Define the value V (q) of an acquaintance q as

V (q) = max
a(i,j)
{
∑
i,j

v(i, j)a(i, j) |a is feasible under q}. (2)

Given an initial acquaintance q, suppose that a search scheme sG results in a new

acquaintance q. Define B(q0, q) = V (q)− V (q0), and let C(q0, q) denote the realized sum

of search costs.1 Then B(q0, q)−C(q0, q) represents the net social benefit from moving to

q from q0. Define

Φ(sG) = E[B(q0, q)− C(q0, q) | sG] (3)

as the expected value of search scheme sG.

Definition 5. A feasible assignment a is efficient if it is rematch efficient and no search

scheme can improve efficiency, i.e. Φ(sG) ≤ 0 for any sG.

3 Efficiency of Stable Matchings

Our first result is that under-search never happens. Agents never search too little in the

sense that if any matching has room to improve efficiency, it is necessarily unstable. In

particular, if there is a search scheme that improves efficiency, at least one agent that

participates in this search scheme wishes to conduct an individual search.

Proposition 1. All stable matchings are efficient.

1Note that C is well-defined.
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Proof. It is well known from Shapley and Shubik (1971) that the classical matching

problem can be understood as a linear program. Our key insight is to express the

acquaintance restriction as linear constraints and then view searching as a relaxation of

these constraints.2

Consider the classical model with no search friction, q(i, j) = 1 for all i and j. We

can find an efficient assignment a by maximizing the total surplus, subject to the linear

constraints that each agent can match with at most one other agent. This is written as

follows.

max
a(i,j)∈R

∑
i,j

v(i, j)a(i, j)

s.t. a(i,j) ≥ 0 ∀i, j∑
j
a(i,j) ≤ 1 ∀i x(i)∑
i
a(i,j) ≤ 1 ∀j p(j)

The above program does not explicitly account for the fact that a(i, j) can only take

values of 0 or 1. However, it is known that because the constraint matrix is totally

unimodular (TUM)3 and has integral entries, the linear program has an integral

solution.

This paper adds the restriction that only acquainted pairs may match. We then obtain

the following linear program, which we call P .

max
a(i,j)

∑
i,j

v(i, j)a(i, j) (P)

s.t. a(i,j) ≥ 0 ∀i, j∑
j
a(i,j) ≤ 1 ∀i x(i)∑
i
a(i,j) ≤ 1 ∀j p(j)

a(i,j) ≤ 0 ∀(i, j) s.t. q(i, j) = 0 t(i, j)

The above program also has integer solutions. To see why, note that there is another

way to incorporate the acquaintance constraint; we may set v(i, j) = 0 for any i, j that

2This section uses ideas from linear programming, including total unimodularity, duality, and the

marginal value theorem. See Vohra (2004) for a treatment of these concepts.
3
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are unacquainted. In this alternative but equivalent program the constraints are the same

as in the classical program without search frictions, so the constraint matrix is still TUM

and thus the program has an integer solution. This solution clearly solves P .

Any linear program with a finite optimal solution has a dual program with the same

optimized solution. The dual of P , denoted by D, can be written as follows.

max
x(i),p(j)

∑
i

x(i) +
∑
j

p(j) (D)

s.t. x(i) ≥ 0, p(j) ≥ 0 ∀i, j
x(i) + p(j) ≥ v(i, j) ∀i, j s.t. q(i, j) = 1

t(i, j) + x(i) + p(j) ≥ v(i, j) ∀i, j s.t. q(i, j) = 0

Note that the constraint for any acquainted pair is the same as the classical stability

condition. Also note that because the dual variables t(i, j) are not part of the maximand,

the last group of constraints have no bite per se. However, we will use t to characterize

the effects of searching.

Assume that a matching M = (a, x, p) is inefficient but rematch-stable. Rematch

stability means x(i) + p(j) ≥ v(i, j) for any i, j with q(i, j) = 1, so with appropriate

choices of t, (t, x, p) is a solution to D. In fact, we may choose t0 in the following way. If

x(i) + p(j) < v(i, j), let t0(i, j) = v(i, j)− x(i)− p(j), and if x(i) + p(j) ≥ v(i, j), then let

t0(i, j) = 0. Observe that t0(i, j) is precisely the benefit to worker i of becoming newly

acquainted with firm j, taking the price p(j) as given.

What, then, is the social benefit from a new acquaintance? When worker i and firm j

are newly acquainted, this is equivalent to relaxing the constraint a(i, j) ≤ 0 to a(i, j) ≤ 1.

The marginal value theorem states that the increase in total surplus from this relaxation

is weakly smaller than the least possible value of the corresponding dual variable, t(i, j),

which solves the dual program D. Since t0 was a solution to D, the increase in total

surplus is weakly smaller than t0(i, j).

Note that t0(i, j) was the personal benefit to worker i. Essentially, the personal gain

from acquaintance is always weakly greater than the social gain, so whenever a matching

has room for surplus increase, workers will take advantage of the opportunity.

Since a was assumed to be inefficient but rematch-stable, there exists a search scheme

sG such that

E[B(q0, q) | sG] > E[C(q0, q) | sG].

A particular realization q is obtained by relaxing some of the acquaintance constraints.

Since an agent can match with at most one other agent, only some of these relaxed
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constraints will actually be consummated.4 Let L(q, q0) be the set of (i, j) pairs whose

acquaintance and assignment both change from 0 to 1. Then the benefit from moving to

q is less than the least value of
∑

(i,j)∈L t(i, j) such that t solves D. Denote such t by tl.

The individual benefit t0 is clearly larger than tl. Also, each worker is able to mimic

his behavior in sG to achieve the same linear combinatino of t0. Therefore at least one

worker must strictly wish to search.

Note that Propostion 1 does not depend on the search technology.

4 Stability of Efficient Matchings

We now consider whether workers may search excessively. We say workers search too

much if an efficient assignment does not allow a stable surplus division, since this means

that no matter how surplus is divided there is always some worker that wishes to search,

even though no searching scheme can increase total surplus.

This section shows that any efficient assignment can be made stable if search cost is

non-increasing and the market is large enough that “loops” are unlikely to exist. Though

we do not claim that these are necessary conditions, increasing search cost (Appendix

A) or existence of loops (Appendix B) may make prevent an efficient assignment from

becoming stable. We first define

Definition 6. For N ∈ N, an N-economy is a matching market (I, J, v, q, f, c) with N

workers and N firms, I = J = {1, 2, · · · , N}.

We also define an approximate notion of stability. A pairwise rematch is ε-profitable

for worker i and firm j if v(i, j)− ε > x(i) + p(j). Worker i and firm j are ε-indifferent

to the rematch if v(i, j)− ε = x(i) + p(j). An individual search scheme si is ε-profitable

if Πi(si) > ε, and ε-indifferent if Πi(si) = ε.

Definition 7. Let ε > 0. A feasible matching M = (a, x, p) is ε-stable if no pairwise

rematch or individual search scheme is ε-profitable.

Alternatively, we say that a is ε-stable under surplus division (x, p). Assume the

following regularity conditions hold for a family of economies F ⊂ {(I, J, v, q, f, c)}N∈N.

(R1) There exists v∞ > 0 such that v(i, j) ≤ v∞ for all i, j ∈ N.

(R2) For all i, k ∈ N, c(i, k) ≥ c(i, k + 1).

(R3) There exists c∞ > 0 such that c(i, k) ≥ c∞ for all i, k ∈ N.

(R4) There exists q∞ ∈ N such that |Qq(i)| ≤ q∞ for all i ∈ N.

4Recall that at any acquaintance, we always have integer solutions to the primal linear program.
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(R5) Search probability is uniform, i.e. for any worker i and firm j, j′ /∈ Qi,

fi(j;Qi) = fi(j
′;Qi).

(R6) (No Bunching) Consider a graph with workers as nodes, where workers i1 and i2

are connected iff q(i1,m(i2)) = 1. For any N ∈ N, the number of workers in any connected

component of any N -economy cannot exceed l.

Condition (R1) means that joint surplus v is bounded above. (R2) and (R3) imply

that cost c is non-increasing but bounded away from 0. (R4) says there is an upper

bound on the number of firms that any worker is originally acquainted with.

Intuitively, (R6) means we can always divide the workers into small mutually unac-

quainted groups even as the market grows large. Two workers are connected if and only if

one worker is acquainted with the firm that is matched with the other worker. A subset

of workers constitute a connected component if all workers in the set are connected, either

directly or via a path of connections. The assumption states that as the market grows

large, the size of any connected component is bounded. For example, this is trivially

satisfied if all workers have zero acquaintance and hence must search for a new firm in

order to deviate from a match.

In this section, we restrict attention to F ⊂ {(I, J, v, q, f, c)}N∈N that satisfies regularity

conditions (R1) to (R6).

Recall that in an individual search scheme si, at every history h the worker decides

whether to continue searching or stop. A firm is satisfactory to a worker if the worker stops

searching when he finds the firm. Formally, firm j is satisfactory for worker i at a

non-terminal history h if s∗i (h) = i and s∗i (h
′) = 0, where h′ = (h, (i, j)). Equivalently,

we say that worker i was successful at h′. The following lemmas hold in F .

Our first lemma says that satisfactory workers are indeed “satisfactory”.

Lemma 1. Whenever an optimal individual search scheme ends, the worker maximizes

his surplus by matching with the firm found at the last search.

Proof. Assume to the contrary that an optimal individual search scheme has ended with

terminal history h, and the worker’s surplus is maximized by matching with a firm that

was found at h′ < h. Consider the worker’s decision at h′. If he stops, he receives the

same surplus as when stopping at h. If he searches, his expected surplus is lower than the

expected surplus from searching at h. This is because there is the possibility of finding

firms that he is acquainted with at h but not at h′, which are “useless” firms because the

worker prefers the firm he found at h′. We thus have a contradiction, since if the worker

stopped searching at h, he must have already stopped at h′.
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Lemma 1 implies that a worker never “gives up” in the middle of a search to return to

a previously acquainted firm. We therefore have the following corollary.

Corollary 1. If a worker has an optimal individual search scheme, the expected benefit of

this scheme does not change when the worker is dismissed by his currently matched firm.

Lemma 2 can be shown with a logic similar to that of Lemma 1.

Lemma 2. In any optimal individual search scheme, the set of satisfactory firms weakly

decreases, in set inclusion, as the search scheme progresses.

Proof. Assume otherwise. Then for some economy, and some worker i and firm j in this

economy, there exists history h resulting from i’s optimal individual search scheme such

that j is unsatisfactory to i at h, but satisfactory at h′ = (h, j′) for some j′ 6= j. This

implies three things about i’s searching decision; he searches at both (h, j) and (h, j′), but

not at (h, j′, j). Worker i’s wage at (h, j′, j)5 must equal his wage at either (h, j) or (h, j′).

Assume without loss of generality that i ’s wage is the same in (h, j′, j) and (h, j), which

means that acquaintance with j′ brings no extra benefit. But then, searching at (h, j′, j)

must be more profitable than searching at (h, j) because at (h, j), there is a possibility

of finding j′, a firm without any worth. Hence i must wish to search even at (h, j′, j), a

contradiction.

The next lemma says that after any non-terminal history in any optimal individual

searching scheme, there exists a family-wide lower bound on the proportion of satisfactory

firms.

Lemma 3. There exists k ∈ (0, 1] such that, for any non-terminal history in any optimal

individual scheme in any economy in F , the proportion of satisfactory workers in the

searching pool is greater than k.

Proof. Assume for the moment that the set of unsatisfactory firms stays the same through-

out an optimal individual search scheme, and that the number of unsatisfactory firms

is F . Then the number of unsatisfactory firms found before the search terminates,

which equals the number of searches conducted minus one, follows the negative hyper-

geometric distribution. Hence the expected number of searches in the scheme equals
F

N−F+1
+1 = F/N

1−F/N+1/N
+1. In general, since the set of satisfactory firms weakly decreases

(Lemma 2), if there are F (h) unsatisfactory firms at a non-terminal history h, then the

expected number of future searches is bounded below by F (h)/N
1−F (h)/N+1/N

+ 1. This means the

expected search cost cannot be lower than
( F (h)/N
1−F (h)/N+1/N

+ 1
)
c∞. Assume that F (h)/N

5As explained in Section 2.2., this is calculated as supj∈Qq(i){v(i, j)−p(j)}, where q is the acquaintance

obtained after (h, j′, j).
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can become arbitrarily close to 1. As both F (h) and N are positive integers, N →∞ as

F (h)/N → 1. Thus the expected cost becomes arbitrarily large, and since the value of a

search scheme cannot exceed v∞, at some history where expected cost is large enough,

it is better for the worker to stop searching. This contradicts our assumption that h

was non-terminal. Therefore, the proportion of unsatisfactory workers at a non-terminal

history must be bounded away from 1, which means the proportion of satisfactory workers

at a non-terminal history is bounded away from 0.

Lemma 3 says that workers never search when the probability of finding attractive firms

is sufficiently low. This may seem incompatible with the so called “limited acceptability”

condition, widely assumed in the literature (Kojima (2015)). If, as the condition states,

agents find as acceptable only a limited number of partners even as the market grows

large, then Lemma 3 precludes any searching in a large enough market. However, the

empirical observations of limited acceptability may well be driven by the fact that agents’

acquaintance is bounded. Even though there are many partners that an agent would

potentially be willing to match, he is only able to report a few of them as acceptable

because he does not know who they are.

We are now ready to prove our second proposition.

Proposition 2 (No Over-Search). Let F be a family of economies satisfying (R1) - (R6).

Then for any ε > 0, there exists N ∈ N such that for any economy in F that is larger than

N , any efficient assignment can be made ε-stable by an appropriate choice of wage vector

x.

To prove Proposition 2, we define a procedure, or an algorithm, which we call A.

Given an assignment a, A starts from all workers receiving 0 surplus, x0 = 0. Then we

raise the surplus of each worker who wishes to deviate, just until he is ε-indifferent, to get

x1. Again, increase the surplus of any worker who wishes to deviate from x1 to obtain

x2. Repeating this leads to one out of three outcomes. First, xt may become ε-stable at

some t.6 Second, A may go on forever, i.e. < xt > is an infinite sequence. In this case, we

show that the limit of the sequence x∞ is ε-stable. Third, A may fail at some t, which

can happen when a worker’s incentive to deviate is so large that it is impossible to make

him indifferent. This actually implies that a can never be made ε-stable, regardless of how

surplus is divided. However, we show that in any large enough market, a is necessarily

inefficient whenever A fails. Therefore, in the large market, A gives an ε-stable surplus

division for any efficient assignment. Below is a formal proof.

Proof of Proposition 2. Procedure A works as follows. Given an economy (I, J, v, q, f, c)

and an assignment a, start with zero wage for all workers, x0 = 0. Note that specifying x

6Since a is given, we say that a wage vector x is ε-stable to mean that the matching (a, x, p) is ε-stable.
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also pins down p. Under this surplus division, a worker wishes to deviate by rematching

or searching when his wage is low and the price of firms is low. For any worker i that has

an ε-profitable deviation under x0 = 0, increase his wage just until he is ε-indifferent to

deviating, under his new wage and the original price vector he faced, p0−i. Replacing the

components of x0 with the increased wages gives us a new surplus division x1.

Of course, x1 is not necessarily stable since increasing a worker’s wage, or decreasing

the corresponding firm’s price, always makes other workers weakly more prone to deviation.

In general, A constructs xt+1 from xt in the following way. For any worker i that has an

ε-profitable deviation under xt, let his new wage xt+1(i) be such that he is ε-indifferent to

deviation under xt+1(i) and pt−i.

As we follow A to recursively define xt, one of three things can occur.

1. At some xt, no worker has an ε-profitable deviation.

Then we immediately have an ε-stable matching.

2. The algorithm goes on forever.

Consider the infinite sequence < xt > and its limit x∞. This limit exists since xt is

component-wise increasing and bounded above by the joint surplus v(i,m(i)). Then the

matching M(q, a, x∞, p∞) is ε-stable. To see why, assume that some worker can deviate

from x∞ and benefit by an amount strictly greater than ε. Consider a wage vector xT in

the sequence that is arbitrarily close to the limit.7 For this wage, all workers either do

not have an ε-profitable deviation or can be made ε-indifferent by an arbitrarily small

increase in their surplus, which means their gain from deviation is arbitrarily close to ε.

At the same time, xT is arbitrarily close to x∞, so for any worker, the difference between

the deviation profits in the two vectors must be arbitrarily small. This contradicts the

assumption.

3. For some xt, it is impossible to construct xt+1.

This happens when at some step t of procedure A, a worker wishing to deviate cannot

be made ε-indifferent even if he is given all of the joint surplus with his matched firm.8 In

this case, we can find a search scheme that increases expected total surplus and conclude

7Formally, if some worker can deviate from x∞ to gain ε + δ, consider a wage vector where each

component is lesser than x∞ by at most δ
3 .

8Although not strictly relevant to our proof, a stable matching cannot exist in this case because each

step of the procedure is a necessary condition for stability.
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that a is inefficient.

Pick some worker that has an ε-profitable deviation even if he receives all of the joint

surplus with his matched firm, and call him worker 1. Modify xt by actually giving worker

1 all of the joint surplus and call this allocation x̄t. We consider a deviation scheme S
starting from M = (a, x̄t).

9

Intuitively, a deviation scheme is a concatenated chain of optimal individual search

schemes and rematchings, along with a surplus allocation rule. After each worker finds

a satisfactory firm, the pair matches and the displaced worker conducts his optimal

deviation. The scheme ends when no worker is displaced, a displaced worker wishes to

stay unmatched, or a single firm is found twice, i.e. a loop occurs.

Formally, a history η ∈ H is a finite sequence of worker-firm pairs, < (i1, j1), · · · , (in, jn) >.

Denote the initial history by η0. Given a non-initial history η 6= η0, write η − 1 to denote

the immediate predecessor of η. Write η′ ≺ η to mean η′ precedes η, immediately or

otherwise. Let (iη, jη) be the last component of history η.10 Worker i’s sub-history ηi

lists, in identical order, the terms in η that contain worker i. Recall that s∗i is the optimal

individual search scheme of worker i given M = (a, x̄t).

Our deviation scheme S is an algorithm that consists of a function d : H→ I and two

other functions, aη : I × J → {0, 1} and xη : I → R+ ∪ {0}. Each history η results in a

new assignment aη and a new surplus division xη. The algorithm is defined as

1. d(η0) = 1.

2. For d(η) = i,

(a) If xη(i) 6= 0 and v(i, j)− p(j) > xη(i) + ε for some j ∈ Qqη(i), set η ← (η, (i, j))

and say that a rematch occurs at η.

(b) If xη(i) 6= 0 and v(i, j)− p(j) ≤ xη(i) + ε for all j ∈ Qqη(i), worker i conducts

a search. When firm j is found, set η ← (η, (i, j)).

3. If a rematch did not occur at η, and jη was unsatisfactory for iη at η − 1, then take

d(η) = iη, aη = aη−1, and xη = xη−1. Return to 2-(b).

4. If a rematch occurred in 2-(a) or a satisfactory worker was found in 2-(b), consider

jη. If there exists η′ ≺ η such that jη′−1 = jη and iη′−1 6= iη′ , say that a loop

occurs at η. Take aη = aη−1 and xη = xη−1. End algorithm.

9In principle, we need only look at changes in the assignment a to determine changes in total surplus.

Hence we only need to find a search scheme to show the inefficiency of a. However, also considering the

initial surplus allocation x̄t simplifies the argument, so we introduce the idea of a deviation scheme which

specifies surplus changes for individual agents.
10For any η 6= η0, we have η = (η − 1, (iη, jη)).
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5. For η 6= η0, if a rematch occurred at η − 1 or if jη was satisfactory for iη at η − 1,

and no loop occurred at η, then make the following updates.

(a) aη(iη, jη) = 1. If m(jη) 6= 0, then aη(m(jη),m(m(jη))) = 0. Otherwise,

aη = aη−1.

(b) xη(iη) = v(iη, jη)− p(jη) and xη(m(jη)) = 0. Otherwise, xη = xη−1.

If m(jη) = 0, or m(jη) 6= 0 and x(m(jη)) = 0, end algorithm. If m(jη) 6= 0 and

x(m(jη)) 6= 0, take d(η) = m(jη) and return to 2-(a).

This algorithm induces a random terminal history, where the randomness is from

the searching technology. Denote the realized terminal history by ηter. We claim that

the above deviation scheme is welfare-improving. Precisely, the assignment that we

obtain when the algorithm ends gives a larger total surplus than the initial assignment

a, in expectation, after taking into account the search costs. To show this, we compare

M = (a, x̄t) with Mηter = (aηter , xηter).

First note that all firms are indifferent because their surplus never changes even when

they match with different workers. In particular, worker 1’s original partner m(1) is at

least indifferent as he was receiving 0 in M .

Second, consider workers who take actions in the algorithm. Because of how we have

constructed M , any worker that is receiving a positive wage in M is ε-indifferent and can

thus increase his expected surplus by at least ε, by either rematching or conducting his

optimal individual search. Moreover, this statement holds even after the said worker loses

his currently matched firm because, according to Corollary 1, the expected surplus from a

profitable search scheme does not depend on a worker’s current match.

It is therefore clear that the deviation scheme increases expected surplus as long as all

workers match with their new partners. This is true when the algorithm ends without a

loop, but when there is a loop the two workers whose new partner firm coincides cannot

both match with the firm. Our algorithm specifies that the worker who came first matches

with the firm, while the second worker is left unmatched. However, the following lemma

shows that the probability of the algorithm ending in a loop is sufficiently small in a large

market.

Assume that a loop occurs at ηter. Let η be the last history preceding ηter such that a

search occurs at η − 1, with η = η0 if no search occurs. In other words, d(η − 1) searches,

and d(η′) searches in the algorithm only if η′ � η − 1. Intuitively, η is the last history

that is brought about by a search. Let m be the number of different workers who appear

up to η:

m =
∣∣{i|i = iη′ for some η′ � η}

∣∣ (4)
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We say that the loop occurred for the m-th worker, as even if there were other workers

afterwards in the deviation scheme, they only rematched and the loop was inevitable once

the m-th worker made his search. We may assume that m ≥ 2.11

Lemma 4 (Loops). Let F be a family of economies satisfying (R1) - (R6). For any ε > 0,

there exists N ∈ N and a constant δ > 0 such that for any economy larger than N , given

any initial assignment a that leads to (4.2), the probability of a loop occurring for the m-th

worker of the deviation scheme is less than δ(m− 2) for m ≥ 2.

Proof. Consider a N + q∞ economy, and send N →∞. Let k be the upper bound on the

proportion of unsatisfactory firms in any optimal individual search. Then the expected

loss from a loop that occurs for the m-th worker is less than

LN(m) = v∞

[ l(m− 2)

N
+ k

l(m− 2)

N − 1
+ k2

l(m− 2)

N − 2
+ · · ·

]
(5)

which, for given m, goes to 0 as N →∞. For ε that we used to define ε-stability, take

N large enough such that LN(3) < ε. Then LN(m) < (m− 2)ε for all m ≥ 3.

As the deviation scheme progresses, a searching worker becomes more likely to en-

counter a loop because there are more firms that have been already switched partners. The

lemma says that this increase is linearly bounded. This is enough because the expected

increase in total surplus increases linearly. When a loop occurs at the m-th worker,

the expected gain from the deviation scheme is at least ε(m− 1), since all but the last

worker of the deviation scheme, in which at leastm workers participate, benefit by at least ε.

To sum up, we have shown that if an assignment a is efficient, the above procedure

results in either case 1 or 2. Hence we can always find a stable matching.

5 Conclusion

This paper establishes two results for a matching market with search friction. Stability

always implies efficiency, while efficient matchings can be made stable in a large market

with regularity assumptions.

11If a m = 0 or m = 1, we are naturally given a rematching that increases total surplus.
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Appendix A: Over-Search Due to Increasing Cost

2 2 2 0

2

2 2 0

x2

p1

x′2

p′1

Figure 1

We now demonstrate that agents may search when they should not. Consider a

matching market that consists of three workers and six firms. Figure 1 depicts the agents,

their acquaintances and searching technologies, and joint surplus values. Workers are

represented by circles and firms by squares. The joint surplus from each worker-firm

match is depicted next to the line that connects the pair. A solid line between a worker

and a firm means that they are already acquainted with each other. Dotted lines represent

the workers’ searching technology; when a worker makes a search, he gains knowledge

of one firm, uniformly chosen among those that are connected to him via dotted lines.

For example, if worker 2, currently matched with firm 1, makes a search, then he will

find firm 2 with probability 1/2 and firm 3 with probability 1/2. Note that the market is

symmetric around worker 1.

We also assume that searching more than once is prohibitively expensive, so workers

either search once or do not search at all. Denote worker i’s search cost by ci, and assume

c′2 = c2.

Without any searching, the unique rematch stable matching is one where the two

acquainted pairs match, i.e. worker 2 matches with firm 2 and worker 2’ matches with

firm 2’. Let the surplus division be given by x(i) = xi and p(j) = pj.

With appropriate choice of c1 and c2, we can make the matching efficient but unstable.

Efficiency requires that

1

2
(4− c1 − c2) +

1

2
(6− c1 − c2) ≤ 4,
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which can be rearranged as

c1 + c2 ≥ 1. (6)

On the other hand, conditions for stability are

1

2
(2− p1) +

1

2
(2− p′1)− c1 ≤ 0

1

2
· 2 +

1

2
x2 − c2 ≤ x2

1

2
· 2 +

1

2
x′2 − c2 ≤ x′2,

which implies

c1 + 2c2 ≥ 2. (7)

It is clear that equation (4) does not imply (5). For instance, for c1 = 1 and c2 = 1
2
− ε

efficiency is satisfied by stability is not. For these values of searching cost, even though

the initial matching is efficient, there is no way to stop all workers from making searches.

Two things deserve attention in the above example. First, there is no natural search

order. It would be desirable in terms of efficiency if worker 1 could search after worker 2

or 2’ has been successful in searching, and worker 2 and 2’ could search after being located

by worker 1. But these two are mutually exclusive, and thus the optimal (non-zero) search

is not good enough. This is why the efficiency condition is not strong enough to imply

stability.

Second, search cost is increasing. In fact, it is increasing quite rapidly that all workers

only consider searching once. At this moment it may not be clear to the reader how this

property derives the results. We will show in the next section that even if there is no

natural searching order, there is a way to achieve stability if search cost is non-increasing.

Appendix B: Over-Search Due to Loops

References

Kojima, F. (2015). Recent developments in matching theory and its practical applications.

Liu, Q., Mailath, G. J., Postlewaite, A. and Samuelson, L. (2014). Stable

matching with incomplete information. Econometrica, 82 (2), 541–587.

Mortensen, D. T. and Pissarides, C. A. (1999). New developments in models of

search in the labor market. Handbook of labor economics 3, pp. 2567–2627.

17



Shapley, L. S. and Shubik, M. (1971). The assignment game i: The core. International

Journal of Game Theory, 1.1, 111–130.

Vohra, R. V. (2004). Advanced mathematical economics. Routledge.

Wu, Q. (2015). A finite decentralized marriage market with bilateral search. Journal of

Economic Theory, 160, 216–242.

18


