

Discussion Papers
in Economics

A Graph Theoretic Approach to the
Slot Allocation Problem

by

Youngsub Chun and Boram Park

Discussion Paper No. 92
October, 2014

Institute of Economic Research
Seoul National University

A Graph Theoretic Approach to the Slot Allocation Problem∗

Youngsub Chun† and Boram Park‡

October 25, 2014

Abstract

We consider a problem of assigning slots to a group of agents. Each slot can serve only
one agent at a time and it is located along a line. Each agent has a most preferred slot
and incurs disutility when she is assigned away from the most preferred slot. Furthermore,
we assume that each agent’s utility is equal to the amount of monetary transfer minus the
distance from the peak to her assigned slot. In this paper, we investigate how to assign slots
to agents in an efficient and fair way. First, by using a bipartite graph of the slot allocation
problem, we present a simple way of identifying all efficient assignments. Next, we introduce
two allocation rules for the problem, the leximin and the leximax rules, and discuss their
properties.

1 Introduction

We consider the following class of slot allocation problems. There is a group of agents who must

be served in a slot. Each slot can handle only one agent at a time and it is located along a

line.1 Each agent’s utility is equal to the amount of monetary transfer minus the distance from

the peak to her assigned slot. We assume that agents differ in their most preferred slots. We

are interested in deciding an efficient and fair way of assigning slots to agents and the monetary

compensations they receive.2

This slot allocation problem is motivated by practical concerns arising in the real life. For

example, the problem arises when golfers want to make a reservation to play a golf on a nice

weekend. Each golfer has a most preferred starting time which can be different across golfers.

∗Chun’s work was supported by the National Research Foundation of Korea Grant funded by the Korean
Government (NRF-2013S1A3A2055391). Park’s work was (partially) supported by the new faculty research fund
of Ajou University.

†Department of Economics, Seoul National University, Seoul 151-746, Korea. E-mail: ychun@snu.ac.kr
‡Department of Mathematics, Ajou University, Suwon 443-749, Korea. E-mail: borampark@ajou.ac.kr
1In the literature, it is common to discuss how to assign objects (or slots) when agents have general preferences

(see for example Bogomolnaia and Heo (2012), Bogomolnaia and Moulin (2001, 2004), Kasajima (2014), Katta
and Sethuraman (2006), Yilmaz (2009), and others). However, in this paper, we restrict the preference domain
by assuming an additional structure on slots.

2The problem of allocating infinitely divisible commodity among a group of agents with single-peaked prefer-
ences has been introduced in Sprumont (1991) and discussed widely in the literature. See Thomson (2006) for a
survey.

1

What will be an efficient and fair way of assigning time slots to golfers? Also, the problem arises

when students are supposed to be interviewed by their professor for scholarship. Each student

has a most preferred time slot which is different across students. What will be an efficient and

fair way of assigning time slots to students? An ordinal version of this model, which assumes that

agents have ordinal preferences over the slots, has been studied by Hougaard et al. (2014). Also,

related problems of assigning landing slots to airlines have been studied recently by Schummer

and Vohra (2013) and Schummer and Abizada (2013).3

In this paper, we also assume that each agent has quasi-linear preferences over the slot and

the money. An assignment is a vector of assigned slots to agents and it is feasible if no two

agents have the same slot and all slots are assigned to agents. A feasible assignment is efficient

if it minimizes the disutilities of agents among all feasible assignments. An allocation consists

of an assignment and monetary transfers to agents. An allocation is feasible it an assignment

is feasible and the sum of monetary transfers is not positive. An allocation rule assigns to each

problem a nonempty subset of feasible allocations.

First, we characterize all efficient assignments of a problem by using a bipartite graph. We

identify slots depending on their demands and make a proposal on how to form the links. We

show that the resulting edge set coincides with the union of edges of all efficient assignments.

We also show that choosing an efficient assignment is equivalent to selecting a feasible subgraph

from the edge set. By assuming a simple preference, we can easily characterize all efficient

assignments by checking the bipartite graph.

We next introduce two allocation rules for the problem, the leximin rule and the leximax

rule, and investigate their properties. For the leximin rule, first, we select an efficient assignment

with a zero monetary transfer in which the maximal dissatisfaction of agents is lexicographically

minimized. The utility of each agent is the average of her utilities at all such assignments.

For the leximax rule, we select an efficient assignment with a zero monetary transfer in which

the number of agents with the smallest distance between her peak and her assigned slot is

lexicographically maximized. Once again, each agent receives her average utility of all such

assignments.

Golf is very popular in Korea, but it is very difficult to reserve a slot in the weekend. A

private membership which allows a member to book once a month costs around $100,000. If

a member can book all weekends, then its membership will cost around $1,000,000. Therefore,

it is common for each golf club to ask its members when to play. Moreover, to minimize the

complaint from the members, it is a common practice to use the leximin rule. On the other

hand, for some clubs owned by the private companies, the booking is hierarchically confirmed

3These papers investigate a strategyproof way of assigning landing slots to airlines when the original schedule
needs to be revised due to a bad weather.

2

from top to bottom which results in an assignment similar to the leximax assignment.

The paper is organized as follows. Section 2 contains some preliminaries including graph

theoretic definitions. Section 3 characterizes all efficient assignments by using a bipartite graph.

Section 4 introduces two allocation rules for the problem and discusses their properties.

2 Preliminaries

2.1 The problem

Let N = {1, . . . , n} be the set of agents and S = {1, . . . , s} be the set of slots. Each agent

wants to have a slot to get a service and each slot can accommodate only one agent. Moreover,

we assume that the slots are located along a line and each agent i ∈ N has a single-peaked

preference Ri defined over S, which means that there is a peak p(Ri) ∈ S such that for all j,

j′ ∈ S, if j < j′ ≤ p(Ri) or p(Ri) ≤ j′ < j, then j′ ≻i j. Furthermore, we assume that the utility

decreases by a constant as she moves away from the peak. If agent i’s slot position is σi, then she

incurs a decrease in her utility by the amount of |σi − p(Ri)|. Since each agent’s preference can

completely be determined by her peak, for simplicity of notation, we denote agent i’s preference

by her peak pi ≡ p(Ri) ∈ S and the profile of agents’ preferences by p = (pi)i∈N .

A slot allocation problem (or simply a problem) is defined as a tuple (S, p), where S is the

set of slots and p is the vector of peaks. Let SN be the class of all problems with the set of

agents N . Throughout this paper, we assume that N = S = {1, 2, . . . , n} if there is no explicit

mention.

An assignment for (S, p) ∈ SN is a vector σ = (σi)i∈N , where for each i ∈ N, σi denotes

agent i’s slot. An assignment σ is feasible if no two agents are assigned the same slot, that is,

for all i, i′ ∈ N, i 6= i′ implies σi 6= σi′ . Let Σ(S, p) be the set of all feasible assignments for

(S, p). For all (S, p) ∈ SN , all i ∈ N, and all σ ∈ Σ(S, p), let |σi − pi| be the dissatisfaction

of agent i in σ, which is the disutility of agent i from the assignment of slot σi while having

her peak pi. Given (S, p) ∈ SN , let TD(σ) =
∑

i∈N |σi − pi| be the total dissatisfaction of σ,

which is the sum of the dissatisfactions of all agents. An assignment σ ∈ Σ(S, p) is efficient if

it minimizes the total dissatisfaction, that is, σ ∈ argmin{TD(σ′) | σ′ ∈ Σ(S, p)}. Let ΣEff(S, p)

be the set of all efficient assignments for (S, p). An assignment σ is order-preserving if for any

two agents i, i′ ∈ N , pi < pi′ implies σi < σi′ . As shown in Hougaard et al. (2014, Lemma 1),

any order-preserving assignment is efficient.4

An allocation for (S, p) ∈ SN is a pair (σ, t), where for each i ∈ N, σi denotes agent i’s slot

and ti the monetary transfer to her. An allocation (σ, t) is feasible if σ is feasible and the sum of

4In Hougaard et al. (2014), our efficiency corresponds to their “constrained aggregate gap minimizing” and
our order-preserving to their “ordered like targets.”

3

monetary transfers is not positive. Thus, the set of all feasible allocations Z(S, p) consists of all

pairs (σ, t) such that σ ∈ Σ(S, p) and
∑

i∈N ti ≤ 0. We assume that preferences are quasi-linear,

that is, for all i ∈ N and all (σ, t) ∈ Z(S, p), ui(σi, ti; pi) = −|σi − pi|+ ti.

An allocation rule, or a rule, is a mapping ϕ which associates to each (S, p) ∈ SN , a non-

empty subset of feasible allocations. The pair (σi, ti) ∈ ϕi(S, p) represents agent i’s slot and her

transfer in (S, p). From now on, we denote the agents by i, i′, and the slots by j, j′.

2.2 A component

For all (S, p) ∈ SN and all j ∈ S, let Lj(S, p) = {i ∈ N | pi ≤ j} be the set of agents whose

peaks are less than or equal to j. If there is no danger of confusion, we denote Lj(S, p) by Lj.

Also, for each j ∈ S,

(i) slot j is over-demanded from left (OD for short) if |Lj | > j;

(ii) slot j is under-demanded from left (UD for short) if |Lj| < j;

(iii) slot j is critically over-demanded (COD for short) if |Lj | > j and |Lj−1| ≤ j − 1.5

From the above definition, it is clear that slot j is COD if and only if slot j is OD and slot j− 1

is not OD.

Let j1, j2, . . . , jk be the slots such that j1 < j2 < · · · < jk and |Lja | = ja. Since |Ln| = n,

jk = n. Let j0 = 0. For each a ∈ {1, 2, . . . , k}, the set of slots {ja−1 + 1, ja−1 + 2, . . . , ja} is

a component of S. In each component, the number of slots is equal to the number of agents.

Note that for each a ∈ {1, . . . , k − 1}, slots ja and ja + 1 belong to two different components.

Therefore, for each j ∈ S,

(iv) slot j is a component divisor if |Lj | = j. 6

For two slots j, j′ ∈ S, if they belong to the same component, we denote by j ∼C j′.

Example 1: Let (S, p) ∈ SN be such that S = {1, 2, 3, 4, 5, 6, 7, 8} and p = (3, 3, 3, 3, 4, 5, 7, 7).

Then L3 = {1, 2, 3, 4} and L6 = {1, 2, 3, 4, 5, 6}, etc. The following table counts the elements of

Lj.

Slot j 1 2 3 4 5 6 7 8

|Lj | 0 0 4 5 6 6 8 8
.

Therefore, slots 6 and 8 are component divisors, and so {1, 2, 3, 4, 5, 6} and {7, 8} are components.

Slots 1 and 2 are UD, and the others are OD. Note that slots 3 and 7 are COD.

5For slot 1, it is COD if |L1| > 1.
6Since slot j + 1 is also on the boundary of two components, j + 1 might be chosen as a component divisor.

In this paper, we choose j to include n as a component divisor.

4

2.3 A bipartite graph

A bipartite graph associated with a problem can be used to characterize all efficient assignments.

To define such a bipartite graph, we first introduce basic notation and terminology of graph

theory. A graph is an ordered pair (V,E) of a nonempty finite set V and a family E of 2-subsets

of V . An element of V is called a vertex and an element of E an edge. Also, the set V is the

vertex set and E the edge set. For a graph G, V (G) and E(G) denote the vertex set and the

edge set of G. A graph G is a bipartite graph if there exists a partition {X,Y } of V (G) such

that X 6= ∅, Y 6= ∅, and there is no edge joining two vertices in the same partite set. We denote

by (X,Y) the bipartition of a bipartite graph G, and by (x, y) an edge of a bipartite graph

with bipartition (X,Y) where x ∈ X and y ∈ Y . For graphs G and H, H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G).

For all (S, p) ∈ SN and all j ∈ S, we define a set Sj ⊆ S by 7

Sj =

{j′ ∈ S | j′ ∼C j} if j is COD or a component divisor;
{j′ ∈ S | j′ ≥ j, j′ ∼C j} if j is not COD but OD;
{j′ ∈ S | j′ ≤ j, j′ ∼C j} if j is a UD.

In Example 1, slot 3 is COD, so that S3 = {j′ ∈ S | 3 ∼C j′} = {1, 2, 3, 4, 5, 6}. On the other

hand, slot 5 is not COD but OD, so that S5 = {j′ ∈ S | j′ ≥ 5, j′ ∼C 5} = {5, 6}.

Let P be the set of all possible peaks, which is equal to the set of slots S. Let B(S, p) be the

bipartite graph with bipartition (P, S) defined as follows:

P = S = {1, 2, . . . , n}

E(B(S, p)) =
⋃

i∈N

{(pi, j) ∈ P × S | j ∈ Spi}.

As shown in Figure 1, an edge of B(S, p) connects a peak pi ∈ P of agent i ∈ N with each

element of Spi ⊆ S.

For all (S, p) ∈ SN and all σ ∈ Σ(S, p), as shown in Figure 2, a bipartite graph B(σ) with

bipartition (P, S) is defined as follows:

P = S = {1, 2, . . . , n}

E(B(σ)) = {(pi, σi) ∈ P × S | i ∈ N}.

A bipartite graph g with bipartition (P, S) is feasible in (S, p) if there is a feasible assignment

σ ∈ Σ(S, p) such that g = B(σ). Note that for a feasible bipartite graph g in (S, p), the degree

of pi ∈ P in g is equal to the number of agents whose peaks are pi, and the degree of j ∈ S is

exactly equal to one.

7In the following, Sj is considered when there is an agent i ∈ N such that pi = j.

5

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

P

S

B(S, p)

Figure 1: The bipartite graph B(S, p) in Example 1 where S = {1, 2, 3, 4, 5, 6, 7, 8}, p =
(3, 3, 3, 3, 4, 5, 7, 7).

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

P

S

B(σ)

Figure 2: The bipartite graph B(σ) in Example 1 where S = {1, 2, 3, 4, 5, 6, 7, 8}, p =
(3, 3, 3, 3, 4, 5, 7, 7), and σ = (1, 2, 3, 5, 4, 6, 7, 8). Since this bipartite graph has no crossing edges,
σ is efficient by Theorem 1. Alternatively, the efficiency can be established by Theorem 7, since
it is a subgraph of B(S, p) in Figure 1.

For all (S, p) ∈ SN , all σ ∈ Σ(S, p), and all i, i′ ∈ N , two edges (pi, σi) and (pi′ , σi′) of B(σ)

are crossing if and only if

pi′ < pi, (1)

σi < σi′ , (2)

pi′ < σi′ , (3)

σi < pi. (4)

We establish the equivalence between the efficiency of an assignment and the condition of

no crossing edges for B(σ), whose proof is given in Appendix I.8

8Once again, we note that Hougaard et al. (2014) assume that each agent has ordinal preferences. They
first discuss the ordinal efficiency of assignments and then introduce a constrained aggregate gap minimizing
assignment. They show that an assignment is constrained aggregate gap minimizing if and only if switching
the assigned slots of two agents does not reduce the total dissatisfaction. Although it is the same notion as
our efficiency, we can go one step further by presenting a simple graphical way of checking the efficiency of an

6

Theorem 1. For all (S, p) ∈ SN and all σ ∈ Σ(S, p), σ is efficient if and only if B(σ) has no

crossing edges.

It is easy to see that for any two order-preserving assignments σ, σ′ ∈ Σ(S, p), B(σ) = B(σ′).

2.4 Useful observations

We present several observations.

Lemma 2. For all (S, p) ∈ SN and all j ∈ S,

(i) if slot j is OD, then slot j + 1 is either OD or a component divisor,

(ii) if slot j is UD, then slot j − 1 is either UD or a component divisor,

(iii) in each component, there exists at most one COD slot; moreover, if a component does not

have a COD slot, then it does not have any OD slot.

Proof. If slot j is OD, then |Lj | > j. Since by the definition of |Lj |, |Lj | ≤ |Lj+1|, it follows

that j + 1 ≤ |Lj+1|. If j + 1 < |Lj+1|, then slot j + 1 is OD, and if j + 1 = |Lj+1|, then it is

a component divisor. Therefore, (i) holds. Similarly, we can show (ii) by using the fact that

|Lj−1| ≤ |Lj |.

Now suppose that there exist two COD slots j, j′ ∈ S which belong to the same component.

We assume without loss of generality that j < j′. Note that j and j′ are OD. Since j ≤ j′ − 1

and j and j′ belong to the same component, j′ − 1 is not a component divisor, which implies by

(i) that j′ − 1 is OD. On the other hand, since j′ is COD, by the definition of COD, j′ − 1 is not

OD, a contradiction. In addition, if a component does not have a COD slot, then it is obvious

from (i) that the component does not have any OD slot. Therefore, (iii) holds.

Lemma 3. For all (S, p) ∈ SN and all i ∈ N , there is σ ∈ ΣEff(S, p) such that σi = pi.

Proof. Let σ ∈ ΣEff(S, p) and i ∈ N be given. If σi = pi, then we are done. Now suppose that

σi 6= pi. Let i
′ ∈ N be the agent such that σi′ = pi. Let σ

∗ ∈ Σ(S, p) be the assignment obtained

by switching two slots assigned to agents i and i′. Then,

TD(σ∗) = TD(σ)− |σi′ − pi′ | − |σi − pi|+ |σi − pi′ |+ |σi′ − pi|

= TD(σ)− |pi − pi′ | − |σi − pi|+ |σi − pi′ |+ |pi − pi|

= TD(σ)− |pi − pi′ | − |σi − pi|+ |σi − pi′ |

≤ TD(σ)− |σi − pi′ |+ |σi − pi′ |

= TD(σ),

assignment from the bipartite graph. In fact, this argument becomes possible since we assume that each agent’s
disutility changes by the same amount as moving away from the peak.

7

where the inequality comes from the triangle inequality. Since TD(σ) is the minimum total

dissatisfaction of agents, σ∗ is also efficient.

For all (S, p) ∈ SN , all σ ∈ Σ(S, p), and all M ⊆ N , let σ(M) = {σi | i ∈ M}.

Lemma 4. For all (S, p) ∈ SN , all σ ∈ ΣEff(S, p), and all j ∈ S,

(i) |Lj | ≥ j implies {1, 2, . . . , j} ⊆ σ(Lj) and

(ii) |Lj | ≤ j implies σ(Lj) ⊆ {1, 2, . . . , j}.

Proof. (i) Suppose by way of contradiction that there exists a slot j ∈ S such that |Lj | ≥ j and

{1, 2, . . . , j} 6⊆ σ(Lj). Then there is i ∈ N such that σi ∈ {1, 2, . . . , j} and σi 6∈ σ(Lj). Since

|{1, 2, . . . , j}| = j ≤ |Lj |, there exists i′ ∈ Lj such that σi′ 6∈ {1, 2, . . . , j}. We will show that

(pi, σi) and (pi′ , σi′) satisfy four conditions (1) - (4) in the definition of crossing edges.

Since σi 6∈ σ(Lj), i 6∈ Lj and j < pi. Therefore, σi ≤ j < pi and (4) follows. Since i′ ∈ Lj,

pi′ ≤ j. Therefore, pi′ ≤ j < σi′ and (3) follows. In addition, from two inequalities that

pi′ ≤ j < pi and σi ≤ j < σi′ , (1) and (2) hold. Therefore, (pi, σi) and (pi′ , σi′) are crossing

edges, which by Theorem 1, contradicts to the efficiency of σ.

(ii) Suppose by way of contradiction that there exists a slot j ∈ S such that |Lj | ≤ j and

σ(Lj) 6⊆ {1, 2, . . . , j}. Then there is i′ ∈ N such that i′ ∈ Lj and σi′ 6∈ {1, 2, . . . , j}. Since

|{1, 2, . . . , j}| = j ≥ |Lj |, there exists i ∈ N such that σi ∈ {1, 2, . . . , j} and i 6∈ Lj. Since i 6∈ Lj

and i′ ∈ Lj, it follows that σi ≤ j < pi and pi′ ≤ j < σi′ . Therefore, (1) - (4) hold for agents

i and i′, which implies that (pi, σi) and (pi′ , σi′) are crossing edges. By Theorem 1, we have a

contradiction.

From Lemma 4, at any efficient assignment σ, if |Lj | = j, then σ(Lj) = {1, 2, . . . , j}, which

implies that a slot assigned to an agent must be a slot in the same component.

Corollary 5. For all (S, p) ∈ SN , all σ ∈ ΣEff(S, p), and all components SC of S, the set of

agent having an assigned slot in SC by σ is equal to the set of agents having a peak in SC , that

is,

{i ∈ N | σi ∈ SC} = {i ∈ N | pi ∈ SC}.

3 A characterization of efficient assignments

In this section, we characterize all efficient assignments of a problem by using a bipartite graph

B(S, p) defined in subsection 2.3. Surprisingly, the edge set of the bipartite graph B(S, p) is the

union of the edge set of B(σ) over all efficient assignments σ, which plays an important role in

the proof of our main result.

8

Theorem 6. For all (S, p) ∈ SN ,

E(B(S, p)) =
⋃

σ∈ΣEff(S,p)

E(B(σ)).

Proof. From the definition of Sj and Corollary 5, we may assume that (S, p) has only one

component. Then, n is the only component divisor.

Recall that E(B(S, p)) =
⋃

i∈N{(pi, j) | j ∈ Spi}. First, we will show that

⋃

i∈N

{(pi, j) | j ∈ Spi} ⊆
⋃

σ∈ΣEff(S,p)

E(B(σ)). (5)

Take any (pi, j) ∈
⋃

i∈N{(pi, j) | j ∈ Spi} for some i ∈ N and j ∈ Spi. If pi = j, then by

Lemma 3, (pi, j) is an edge of B(σ) for some efficient assignment σ and so (5) holds.

Now we consider the case when pi 6= j. Since a similar argument can be developed for the

case when pi > j by introducing Rj′ = {i′ ∈ N | pi′ ≥ j′} instead of Lj′, from now on, we

assume that

pi < j. (6)

If pi is UD, by the definition of Spi , j ≤ pi, which implies that pi is either OD or a component

divisor. Since n is the only component divisor and pi < j ≤ n, it follows that pi is OD.

Let σ be an order-preserving assignment. If pi is not COD, then from the order-preserveness

of σ, pi < σi. If pi is COD, then there is i′′ ∈ N such that pi′′ = pi and σi′′ > pi. In addition,

Spi = Spi′′
. Replacing i by i′′ gives pi < σi. Altogether, from now on, we assume that

pi < σi. (7)

Let i′ ∈ N be such that

σi′ = j.

If i = i′, then (pi, j) = (pi, σi) ∈ B(σ), the desired conclusion. Now we consider the case that

i 6= i′, which implies that σi 6= σi′ . We have two cases, σi > σi′ or σi < σi′ .

Case 1: σi > σi′ .

Since σ is order-preserving, pi ≥ pi′ . Let σ
∗ be the assignment obtained from σ by switching

assigned slots of i and i′. Then,

TD(σ∗) = TD(σ)− |σi′ − pi′ | − |σi − pi|+ |σi − pi′ |+ |σi′ − pi|.

By (6) and assumptions,

pi′ ≤ pi < j = σi′ < σi.

9

It follows that

|σi′ − pi′ |+ |σi − pi| = (σi′ − pi′) + (σi − pi) = (σi − pi′) + (σi′ − pi) = |σi − pi′ |+ |σi′ − pi|.

Therefore, TD(σ∗) = TD(σ), which implies by Lemma 1 that σ∗ is an efficient assignment.

Since (pi, j) = (pi, σi′) = (pi, σ
∗
i) ∈ E(B(σ∗)) from the definition of E(B(σ∗)), (5) holds.

Case 2: σi < σi′ .

Since σ is order-preserving, pi ≤ pi′ . Let NA ⊆ N be the set of agents whose assigned slots

in σ are between σi and σi′ , that is, NA = {i′′ ∈ N | σi ≤ σi′′ ≤ σi′}. Note that {i, i′} ⊆ NA.

Since σ is order-preserving, for all i′′ ∈ NA, pi ≤ pi′′ ≤ pi′ . In addition, we may assume without

loss of generality that NA = {i1, i2, . . . , iℓ} satisfies:

• i1 = i and iℓ = i′,

• pia−1
≤ pia for all a ∈ {2, . . . , ℓ},

• σia = σia−1
+ 1 for all a ∈ {2, . . . , ℓ}.

Take any a ∈ {2, . . . , ℓ}. Since pi ≤ pia < n, pia is OD. Moreover, if pia 6= pi, then pi < pia,

which implies that pia is not COD. Since σ is order-preserving, pia < σia . On the other hand,

if pia = pi for some 2 ≤ a ≤ ℓ, then together with (7), pia = pi < σi ≤ σia . Therefore, for all

a ∈ {2, . . . , ℓ},

pia < σia . (8)

Let σ∗ be the assignment obtained from σ by assigning slot σi′ to agent i and moving the

assigned slot of agents in NA \ {i} one slot to the left, that is,

σ∗
i′′ =

σi′′ if i′′ 6∈ NA,

σi′ if i′′ = i,

σia−1
= σia − 1 if i′′ = ia ∈ NA \ {i}.

Together with (8),

TD(σ∗) = TD(σ) +
ℓ

∑

a=1

(−|σia − pia|+ |σ∗
ia
− pia |)

= TD(σ)− |σi − pi|+ |σ∗
i − pi|+

ℓ
∑

a=2

(−|σia − pia |+ |σ∗
ia
− pia |)

= TD(σ)− |σi − pi|+ |σi′ − pi|+
ℓ

∑

a=2

(−|σia − pia|+ |(σia − 1)− pia |)

= TD(σ)− σi + pi + σi′ − pi +
ℓ

∑

a=2

(−σia + pia + σia − 1− pia)

= TD(σ)− σi + σi′ − (ℓ− 1).

10

Since σi′ − σi = ℓ− 1,

TD(σ∗) = TD(σ)− σi + σi′ − (ℓ− 1) = TD(σ).

Therefore, TD(σ∗) = TD(σ). As shown in Hougaard et al. (2014, Lemma 1), an order-

preserving assignment is efficient, and therefore σ∗ is efficient. Since (pi, j) = (pi, σi′) = (pi, σ
∗
i) ∈

E(B(σ∗)), from the definition of E(B(σ∗)), (5) holds.

To show the other direction that

⋃

i∈N

{(pi, j) | j ∈ Spi} ⊇
⋃

σ∈ΣEff(S,p)

E(B(σ)), (9)

take any edge (pi, σi) of B(σ) of an efficient assignment σ for some i ∈ N . It is sufficient to show

that σi ∈ Spi .

As we assume that (S, p) has only one component, it is obvious that pi ∼C σi. Note that if

pi = σi, or pi is a component divisor, or pi is COD, then by the definition of Spi, σi ∈ Spi .

Now we consider the case when pi 6= σi, and pi is either UD or OD (but not COD). First,

suppose that pi < σi. If pi is UD, then |Lpi | < pi. By (ii) of Lemma 4, σi ⊆ {1, 2, . . . , pi}, which

implies σi ≤ pi, a contradiction. Therefore, pi is OD. Since pi < σi, by the definition of Spi,

σi ∈ Spi .

Next, suppose that pi > σi. If pi is OD (but not COD), then pi− 1 is also OD and |Lpi−1| ≥

pi − 1. By (i) of Lemma 4, {1, 2, . . . , pi − 1} ⊆ σ(Lpi−1). Since pi > σi, σi ∈ {1, 2, . . . , pi − 1},

which implies that σi ∈ σ(Lpi−1) and i ∈ Lpi−1. Then, pi ≤ pi − 1, which is a contradiction.

Therefore, pi is UD. Since pi > σi, by the definition of Spi , σi ∈ Spi .

Now we will show that for any σ ∈ Σ(S, p), if B(σ) is a subgraph of B(S, p), then σ is efficient.

Theorem 7. For all (S, p) ∈ SN and all σ ∈ Σ(S, p), B(σ) is a subgraph of B(S, p) if and only

if σ is efficient.

Proof. By Theorem 6, it is shown that if σ is efficient, then B(σ) is a subgraph of B(S, p). To

show the ‘only if’ part, let σ ∈ Σ(S, p) be such that B(σ) is a subgraph of B(S, p). By Theorem 1,

it is sufficient to show that B(σ) does not have crossing edges.

Suppose by way of contradiction that B(σ) has crossing edges (pi, σi) and (pi′ , σi′) such that

pi′ < pi, σi < σi′ , pi′ < σi′ , σi < pi.

Since B(σ) is a subgraph of B(S, p), (pi, σi) and (pi′ , σi′) are edges of B(S, p). In addition,

from the definition of B(S, p), crossing edges occur only when those two edges are in the same

component. Since a component has only one component divisor and pi′ < pi, pi′ cannot be a

11

component divisor. Suppose that pi′ is UD. From the definition of B(S, p) and Spi′
, for any

edge (pi′ , j) of B(S, p), j ≤ pi′ . Since (pi′ , σi′) is an edge of B(S, p), σi′ ≤ pi′ , a contradiction.

Therefore, pi′ is OD.

Since pi′ < pi, by (i) of Lemma 2, pi is also OD. By Lemma 2 again, pi is not COD. From

the definition of B(S, p) and Spi , for any edge (pi, j) of B(S, p), j ≥ pi. Since (pi, σi) is an edge

of B(S, p), σi ≥ pi, a contradiction. Altogether, we conclude that B(σ) does not have crossing

edges.

4 Two rules for the problem

In this section, we introduce two rules for the problem and discuss their properties. The leximin

rule maximizes lexicographically the utility of the worst-off agent. On the other hand, the

leximax rule maximizes lexicographically the utility of the best-off agent.

4.1 The leximin rule

For all (S, p) ∈ SN , all (σ, t) ∈ Z(S, p), and all i ∈ N , the utility of agent i at (σ, t) is defined

to be ui(σi, ti; pi) = −|σi − pi| + ti. If there is no transfer between agents, then t = 0 and

ui(σi, ti; pi) = −|σi − pi|. Given (S, p) ∈ SN , for all σ ∈ Σ(S, p), let u(σ) = (ui(σi))i∈N

be the vector of utilities at σ without any transfer, and ũ(σ) be the corresponding vector of

utilities arranged in the non-decreasing order. For two vectors u(σ) and u(σ′) in R
N , u(σ)

is lexicographically greater than u(σ′) if and only if for some k ∈ {1, . . . , n − 1}, if k′ < k,

then ũk′(σ) = ũk′(σ
′), and if k′ = k, then ũk(σ) > ũk(σ

′), denoted by u(σ) ≻lex u(σ′). If

ũ(σ) = ũ(σ′), then u(σ) ∼lex u(σ′), and u(σ) �lex u(σ′) if and only if either u(σ) ≻lex u(σ′)

or u(σ) ∼lex u(σ′). Let σmin ∈ Σ(S, p) be an assignment which lexicographically maximizes

the utility of the worst-off agent, called a leximin assignment, and Σmin(S, p) be the set of all

leximin assignments.

If |Σmin(S, p)| = 1, then the leximin rule ϕmin chooses the unique leximin assignment without

any transfer. If |Σmin(S, p)| > 1, this rule assigns each agent the average utility that she can

obtain from all leximin assignments. Formally,

Leximin rule, ϕmin: For all (S, p) ∈ SN and all i ∈ N,

umin
i (S, p) =

1

|Σmin(S, p)|

∑

σmin∈Σmin(S,p)

ui(σ
min
i),

and

12

ϕmin(S, p) = {(σmin, tmin) ∈ Z(S, p)| σmin ∈ Σmin(S, p) and

∀i′ ∈ N, tmin
i′ = |σmin

i′ − pi′ |+ umin
i′ (S, p)}.

Note that at any leximin allocation, the leximin rule assigns the same utility to each agent,

that is, for all (σmin, tmin) ∈ ϕmin(S, p) and all i ∈ N, ui(σ
min
i , tmin

i ; pi) = umin
i (S, p). This

rule maximizes lexicographically the utility of the worst-off agent. Equivalently, this rule can be

obtained by lexicographically minimizing the maximum dissatisfaction of agents.

Next, we show that a leximin assignment is order-preserving. For all i, i′ ∈ N, two edges

(pi, σi) and (pi′ , σi′) of B(σ) are weakly crossing if pi′ < pi and σi < σi′ . It is obvious that if

B(σ) has weakly crossing edges, then σ is not an order-preserving assignment. Conversely, if σ

is not an order-preserving assignment, then there are two agents i and i′ such that pi′ < pi and

σi < σi′ , which implies that B(σ) has weakly crossing edges. Altogether, we have the following

lemma.

Lemma 8. For all (S, p) ∈ SN and all σ ∈ Σ(S, p), σ is order-preserving if and only if B(σ)

has no weakly crossing edges.

Next lemma shows that for a leximin assignment σ, B(σ) has no weakly crossing edges.

Lemma 9. For all (S, p) ∈ SN and all σ ∈ Σ(S, p), if σ is a leximin assignment, then B(σ) has

no weakly crossing edges.

Proof. Let σ ∈ Σ(S, p) be a leximin assignment. Suppose by way of contradiction that B(σ) has

weakly crossing edges. Then there are two agents i and i′ ∈ N such that pi′ < pi and σi < σi′ .

Let σ∗ be a feasible assignment such that

σ∗
i′′ =

σi′′ if i′′ 6= i and i′′ 6= i′,

σi if i′′ = i′,

σi′ if i′′ = i.

Then for all i′′ ∈ N \ {i, i′}, the dissatisfactions of the agent i′′ in σ and σ∗ are the same, that

is, |σi′′ − pi′′ | = |σ∗
i′′ − pi′′ |. Note that |σ∗

i − pi| = |σi′ − pi| and |σ∗
i′ − pi′ | = |σi − pi|.

Case 1: σi ≥ pi.

Since pi′ < pi ≤ σi < σi
′, min{−|σi − pi|,−|σi′ − pi′ |} = −|σi′ − pi′ |. In addition,

−|σ∗
i − pi| = −|σi′ − pi| = −σi′ + pi > −σi′ + pi′ = −|σi′ − pi′ |,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = −σi + pi′ > −σi′ + pi′ = −|σi′ − pi′ |.

13

Therefore, u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Case 2: σi′ ≤ pi′ .

Since σi < σi
′ ≤ pi′ < pi, min{−|σi − pi|,−|σi′ − pi′ |} = −|σi − pi|. In addition,

−|σ∗
i − pi| = −|σi′ − pi| = σi′ − pi > σi − pi = −|σi − pi|,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = σi − pi′ > σi − pi = −|σi − pi|.

Therefore, u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Case 3: σi < pi and σi′ > pi′ .

Case 3-1: σi′ ≥ pi and σi < pi′ .

Since σi ≤ pi′ < pi ≤ σi′ ,

−|σ∗
i − pi| = −|σi′ − pi| = −σi′ + pi > −σi′ + pi′ = −|σi′ − pi′ |,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = σi − pi′ > σi − pi = −|σi − pi|.

Therefore, u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Case 3-2: σi′ < pi and σi ≥ pi′ .

Since pi′ ≤ σi < σi′ < pi,

−|σ∗
i − pi| = −|σi′ − pi| = σi′ − pi > σi − pi = −|σi − pi|,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = −σi + pi′ > −σi′ + pi′ = −|σi′ − pi′ |,

u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Case 3-3: σi′ ≥ pi and σi ≥ pi′ .

Since pi′ < σi < pi ≤ σi′ , min{−|σi − pi|,−|σi′ − pi′ |} = −|σi′ − pi′ |. In addition,

−|σ∗
i − pi| = −|σi′ − pi| = −σi′ + pi > −σi′ + pi′ = −|σi′ − pi′ |,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = −σi + pi′ > −σi′ + pi′ = −|σi′ − pi′ |,

u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Case 3-4: σi′ < pi and σi < pi′ .

14

Since σi ≤ pi′ < σi′ < pi, min{−|σi − pi|,−|σi′ − pi′ |} = −|σi − pi|. In addition,

−|σ∗
i − pi| = −|σi′ − pi| = σi′ − pi > σi − pi = −|σi − pi|,

−|σ∗
i′ − pi′ | = −|σi − pi′ | = σi − pi′ > σi − pi = −|σi − pi|,

u(σ∗) ≻lex u(σ), which contradicts to the assumption that σ is a leximin assignment.

Now we show that the set of all leximin assignments is equal to the set of all order-preserving

assignments.

Theorem 10. For all (S, p) ∈ SN and all σ ∈ Σ(S, p), σ is an order-preserving assignment if

and only if σ is a leximin assignment.

Proof. If σ is a leximin assignment, by Lemmas 8 and 9, σ is order-preserving. Conversely, let

σ be an order-preserving assignment. Let σ′ be a leximin assignment among all assignments in

Σ(S, p). Then, by the ‘if’ part, σ′ is order-preserving. Since both σ and σ′ are order-preserving,

B(σ) = B(σ′) and ũ(σ) = ũ(σ′). Therefore, σ is also a leximin assignment.

4.2 The leximax rule

In this subsection, we introduce the leximax rule which lexicographically maximizes the utility

of the best-off agent. Given (S, p) ∈ SN , let σmax ∈ Σ(S, p) be an assignment such that for

all σ ∈ Σ(S, p), −u(σmax) �lex −u(σ), called a leximax assignment, since it lexicographically

maximizes the utility of the best-off agent. Let Σmax(S, p) be the set of all leximax assignments.

If |Σmax(S, p)| = 1, then the leximax rule ϕmax chooses the unique leximax assignment

without any transfer. If |Σmax(S, p)| > 1, this rule assigns each agent the average utility that

she can obtain from all leximax assignments. Formally,

Leximax rule, ϕmax: For all (S, p) ∈ SN and all i ∈ N,

umax
i (S, p) =

1

|Σmax(S, p)|

∑

σmax∈Σmax(S,p)

ui(σ
max
i),

and

ϕmax(S, p) = {(σmax, tmax) ∈ Z(S, p)| σmax ∈ Σmax(S, p) and

∀i′ ∈ N, tmax
i′ = |σmax

i′ − pi′ |+ umax
i′ (S, p)}.

Once again, note that at any leximax allocation, the leximax rule assigns the same utility to each

agent, that is, for all (σmax, tmax) ∈ ϕmax(S, p) and all i ∈ N, ui(σ
max
i , tmax

i ; pi) = umax
i (S, p).

15

This rule maximizes lexicographically the utility of best-off agents. Equivalently, this rule can

be obtained by lexicographically maximizing the minimum dissatisfaction of agents.

Example 2: Let S = {1, 2, 3, 4, 5, 6} and p = (2, 3, 3, 5, 6, 6). The bipartite graph B(S, p) be

illustrated in Figure 3. Let σ be a leximax assignment. Since there are four slots which are

1 2 3 4 5 6

1 2 3 4 5 6

P

S

B(S, p)

Figure 3: The bipartite graph B(S, p) where S = {1, 2, 3, 4, 5, 6}, p = (2, 3, 3, 5, 6, 6).

peaks of some agents, −ũ(σ) starts with four zeros. Suppose that σ = (2, 3, σ3, 5, 6, σ6) and so

{σ3, σ6} = {1, 4}. It can easily be checked that σ = (2, 3, 4, 5, 6, 1). However, σ is not efficient,

since B(σ) is not a subgraph of B(S, p).

As shown in Example 2, a leximax assignment may not be efficient. Therefore, in the choice

of a leximax assignment, we restrict our domain to ΣEff(S, p). For an efficient assignment σ,

σ is an efficient leximax assignment if −u(σ) is a lexicographically minimum in {−u(σ′) | σ′ ∈

ΣEff(S, p)}.

Let (S, p) ∈ SN . As illustrated in Figure 4, at each step, if we select an edge of B(S, p)

to maximize the number of agents receiving the highest available utility among all unassigned

agents, then it will be an efficient leximax assignment. For example, at the first step, maximize

the number of agents with the utility of 0, at the second step, maximize the number of agents

with the utility of -1, and so on. Let g be the output of this algorithm. Then, g = B(σ) for some

feasible assignment σ. Since g is a subgraph of B(S, p), by Theorem 7, σ is efficient. Therefore,

it is obvious that σ is an efficient leximax assignment. In Appendix II, we describe an algorithm

to find a leximax assignment. Note that for some distinct slots j, j′, j′′ such that j′ < j < j′′, it is

impossible to have (j′, j) and (j′′, j) as two edges of B(S, p). Therefore, for two efficient leximax

assignments σ and σ′, B(σ) = B(σ′), which implies that the leximax assignment is unique except

for the agents with the same peak.

16

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6 P

P

P

S

S

S

B(S, p)

Figure 4: For (S, p) ∈ SN where S = {1, 2, 3, 4, 5, 6} and p = (2, 3, 3, 5, 6, 6), the upper graph is
B(S, p), and the lower two graphs show how to obtain a feasible bipartite graph using Algorithm
A in Appendix II. The resulting (feasible) bipartite graph is B(σ) for leximax assignment σ.

REFERENCES

Bogomolnaia, A., and Heo, E.-J., (2012) Probabilistic assignment of objects: characterizing the

serial rule, Journal of Economic Theory 147, 2072-2082.

Bogomolnaia A, Moulin H., (2001) A new solution to the random assignment problem, Journal

of Economic Theory 100, 295-328.

Bogomolnaia A, Moulin H., (2004) Random matching under dichotomous preferences, Econo-

metrica 72, 257-279.

Hougaard, J., Moreno-Ternero, J., and Østerdal, L.P., (2014) Assigning agents to a line, Games

and Economic Behavior 87, 539-553.

Kasajima, Y., (2014) Probabilistic assignment of indivisible goods with single-peaked prefer-

ences, Social Choice and Welfare 41(1), 203-215.

Katta, A.-K., and Sethuraman, J., (2006) A solution to the random assignment problem on the

full preference domain, Journal of Economic Theory 131, 231-250.

Schummer, J., and Abizada, A., (2013) Incentives in landing slot problems, mimeo.

Schummer, J., and Vohra, R., (2013) Assignment of arrival slots, American Economic Journal:

Microeconomics 5(2), 164-185.

Sprumont, Y., (1991) The division problem with single-peaked preferences: a characterization

of the uniform rule, Econometrica 59, 509-519.

Thomson, W., (2006) Fair allocation rules, mimeo.

17

Yilmaz, O., (2009) Random assignment under weak preferences, Games and Economic Behavior

66, 546-558.

Appendix I: Proof of Theorem 1

Suppose that B(σ) has crossing edges (pi, σi) and (pi′ , σi′). Let σ∗ be a feasible assignment

obtained by switching the assigned slots of agents i and i′. That is,

σ∗
i′′ =

σi′′ if i′′ 6= i and i′′ 6= i′,

σi′ if i′′ = i,

σi if i′′ = i′.

Then,

TD(σ) = TD(σ∗) + (|σi − pi|+ |σi′ − pi′ | − |σi′ − pi| − |σi − pi′ |).

Let

α = |σi − pi|+ |σi′ − pi′ | − |σi′ − pi| − |σi − pi′ |.

Suppose that two agents i and i′ in N satisfy (1) - (4). By (3) and (4),

TD(σ) = TD(σ∗) + (−σi + pi + σi′ − pi′ − |σi′ − pi| − |σi − pi′ |).

and α = −σi + pi + σi′ − pi′ − |σi′ − pi| − |σi − pi′ |. Four cases are possible:

(i) If σi′ < pi and σi < pi′ , then

α = −σi + pi + σi′ − pi′ + σi′ − pi + σi − pi′ = 2σi′ − 2pi′ > 0,

where the last inequality comes from (3).

(ii) If σi′ < pi and σi ≥ pi′ , then

α = −σi + pi + σi′ − pi′ + σi′ − pi − σi + pi′ = 2σi′ − 2σi > 0,

where the last inequality comes from (2).

(iii) If σi′ ≥ pi and σi < pi′ , then

α = −σi + pi + σi′ − pi′ − σi′ + pi + σi − pi′ = 2pi − 2pi′ > 0,

where the last inequality comes from (1).

(iv) If σi′ ≥ pi and σi ≥ pi′ , then

α = −σi + pi + σi′ − pi′ − σi′ + pi − σi + pi′ = −2σi + 2pi > 0,

18

where the last inequality comes from (4).

Therefore, α > 0 and TD(σ∗) < TD(σ), which implies that switching the assigned slots of

agents i and i′ reduces the total dissatisfaction. Therefore, σ is not efficient.

To show the converse statement, suppose that B(σ) has no crossing edges. If σ is order-

preserving, then by Hougaard et al. (2014, Lemma 1), it is efficient. Now suppose that σ is not

order-preserving. It is sufficient to show that the total cost of σ is equal to the total cost of some

order-preserving assignment. Since σ is not order-preserving, there are two agents i and i′ ∈ N ,

such that pi′ < pi and σi < σi′ . Since B(σ) has no crossing edges and (pi, σi) and (pi′ , σi′) are its

edges, either pi′ ≥ σi′ or σi ≥ pi. Let σ∗ be the assignment obtained by switching the assigned

slots of agents i and i′. Then,

TD(σ)− TD(σ∗) = |pi − σi|+ |pi′ − σi′ | − |pi − σi′ | − |pi′ − σi|.

If pi′ ≥ σi′ , then σi < σi′ ≤ pi′ < pi, which implies that

TD(σ)− TD(σ∗) = pi − σi − σi′ + pi′ + σi′ − pi + σi − pi′ = 0.

If σi ≥ pi, then pi′ < pi ≤ σi < σi′ , which implies that

TD(σ)− TD(σ∗) = σi − pi + σi′ − pi′ − σi′ + pi − σi + pi′ = 0.

Therefore, TD(σ) = TD(σ∗). If σ∗ is order-preserving, then we are done. If not, we repeat

the process above again until we obtain an order-preserving assignment. At the end, we can

conclude that TD(σ) = TD(σ′) for some order-preserving assignment σ′ and obtain the desired

conclusion.

Appendix II: Algorithm for an efficient leximax assignment

We present an algorithm to find an efficient leximax assignment as discussed in subsection 4.2.

Algorithm A

Input: A problem (S, p) ∈ SN

Output: A feasible bipartite graph g of B(S, p)

Initialization: Let a = 0, j = 0, and Q = ∅, R = ∅

Step 1. Select all edges (j, j′) of B(S, p) such that j = j′ (if such edge exists), and let Q be the

set of those edges, and R be the vertices in S not joined by an edge in Q, that is,

Q = {(j, j′) ∈ E(B(S, p)) | j = j′}

R = {j′ ∈ S | (j, j′) 6∈ Q for all j ∈ P}.

19

Step 2. Let a := a+ 1.

Step 3. If a = n + 1 then finish the algorithm, and the subgraph g of B(S, p) with edge set Q

is the output.

Step 4. Let j := j + 1.

Step 5. If j = n + 1, then go to Step 2. Otherwise, if |{(j′, j′′) ∈ Q | j′ = j}| ≥ |Lj \ Lj−1|,

then go to Step 4. If |{(j′, j′′) ∈ Q | j′ = j}| < |Lj \ Lj−1|, then go to Step 6.

Step 6. If j − a ∈ R, then go to Step 7. Otherwise, go to Step 9.

Step 7. If (j, j − a) is an edge of B(S, p), then let Q := Q ∪ {(j, j − a)} and R = R \ {j − a}.

Otherwise, go to Step 8.

Step 8. If |{(j′, j′′) ∈ Q | j′ = j}| ≥ |Lj \ Lj−1|, then go to Step 4. Otherwise, go to Step 9.

Step 9. If j + a ∈ R and (j, j + a) is an edge of B(S, p), then let Q := Q ∪ {(j, j + a)} and

R := R \ {j + a}. Otherwise, go to Step 4.

20

 http://ier.snu.ac.kr

21

Discussion Papers in Economics
Seoul National University

For a listing of papers 1-70 please contact us by e-mail ecores@snu.ac.kr

71. Youngsub Chun and Toru Hokari, “On the Coincidence of the Shapley Value and the

Nucleolus in Queueing Problems,” October 2006; Seoul Journal of Economics 20 (2007), 223-
237.

72. Bong Chan Koh and Youngsub Chun, “Population Sustainability of Social and Economic

Networks,” October 2006.

73. Bong Chan Koh and Youngsub Chun, “A Decentralized Algorithm with Individual Endowments

for the Probabilistic Serial Mechanism,” October 2006.

74. Sunghoon Hong and Youngsub Chun, “Efficiency and Stability in a Model of Wireless

Communication Networks,” July 2007.

75. Youngsub Chun and Eun Jeong Heo, “Queueing Problems with Two Parallel Servers,”

November 2007.

76. Byung-Yeon Kim and Youngho Kang, “The Informal Economy and the Growth of Small

Enterprises in Russia,” September 2008.

77. Byung-Yeon Kim, “Informal Economy Activities and Entrepreneurship: Evidence from RLMS,”

September 2008.

78. Youngsub Chun and Boram Park, “Population Solidarity, Population Fair-Ranking, and the

Egalitarian Value,” April 2010.

79. Youngsub Chun and Boram Park, “Fair-Ranking Properties of a Core Selection and the Shapley

Value,” August 2010.

80. Donghyu Yang, “ Regional Integration, Collective Security, and Trade Networks: West German

and Japanese Economies under Allied Occupation,” May 2012.

81. Chulhee Lee and Jinkook Lee, “ Employment Status, Quality of Matching, and Retirement in

Korea: Evidence from Korean Longitudinal Study of Aging,” May 2012.

82. Chulhee Lee, “Industrial Characteristics and Employment of Older Manufacturing Workers in
 the Early-Twentieth-Century United States,” May 2012.

83. Chulhee Lee, “Military Service and Economic Mobility: Evidence from the American Civil

War,” May 2012.

84. Young Sik Kim and Manjong Lee, “Intermediary Cost and Coexistence Puzzle,” May 2012.

22

85. Chulhee Lee, “In Utero Exposure to the Korean War and its Long-Term Effects on Economic
and Health Outcome,” June 2012.

86. Youngsub Chun, Inkee Lee and Biung-Ghi Ju, “Priority, Solidarity and Egalitarianism,”

December 2012.

87. Biung-Ghi Ju and Junghum Park, “Hierarchical Outcomes and Collusion Neutrality,” December

 2012.

88. Youngsub Chun, Chang-Yong Han and Bawoo Kim, “Demand Operators and the Dutta-Kar
 Rule for Minimum Cost Spanning Tree Problems,” March 2013.

89. Youngsub Chun, Manipushpak Mitra and Suresh Mutuswami, “Egalitarian Equivalence and

Strategyproofness in the Queueing Problem,” April 2013.

90. Youngsub Chun, Manipushpak Mitra, and Suresh Mutuswami, “Characterizations of Some

Strategyproof Mechanisms in the Queueing Problem,” March 2014.

91. Yuan Ju, Youngsub Chun and René van den Brink, “Auctioning and Selling Positions: a non-

cooperative approach to queueing conflicts,” March 2014.

	no.92 겉표지
	SlotAllocation_20141025
	no.92 리스트 A4

