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CHARACTERIZATIONS OF SOME STRATEGYPROOF
MECHANISMS IN THE QUEUEING PROBLEM

YOUNGSUB CHUN, MANIPUSHPAK MITRA, AND SURESH MUTUSWAMI

ABSTRACT. We investigate mechanisms satisfying queue efficiency,
equal treatment of equals and strategyproofness in the context of queue-
ing models. We give two results here. First, we present a simpler proof of
Kayi and Ramaekers’ [9] characterization of the symmetrically balanced
VCG mechanism. Second, we use independence axioms, introduced by
Chun [2] and Maniquet [10], to characterize the pivotal and the reward-
based pivotal mechanisms (Mitra and Mutuswami [12]).

JEL Classifications: C72, D63, D82.

Keywords: Queueing problem, equal treatment of equals, strategyproof-
ness, VCG mechanisms.

1. INTRODUCTION

This paper is on queueing models which have been analyzed in Econom-
ics in a recent set of papers (Chun [1], [2], Kayi and Ramaekers [9], Mani-
quet [10], Mitra [11], Mitra and Mutuswami [12] among others). We pro-
vide two results here. First, we give a simpler proof of the characterization
of the symmetrically balanced VCG mechanism obtained by Kayi and Ramaek-
ers [9]. Second, we provide alternate characterizations of two mechanisms
from the class of k-pivotal mechanisms identified by Mitra and Mutuswami
[12], the pivotal mechanism and the reward-based pivotal mechanism.

The key axioms in our analysis are queue efficiency and strategyproofness.
The former requires that the selected queue minimize the aggregate wait-
ing cost. The latter requires that truthful reporting be a weakly dominant
strategy for all agents. In our context, a classic result of Holmström [8] im-
plies that a mechanism satisfies these two properties if and only if it is a
VCG mechanism.1 Our focus, therefore, is on particular mechanisms from
the class of VCG mechanisms.

A brief word about the motivation follows. As noted above, Kayi and Ra-
maekers [9] show that the symmetrically balanced VCG mechanism is the
unique VCG mechanism satisfying ETE and BB. Their proof is complicated

Date: March 25, 2014.
This paper is based on the first half of our paper “No-envy, egalitarian equivalence and
strategyproofness in queueing problems.” We are grateful to William Thomson for his com-
ments and suggestions. Chun’s work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (NRF-2013S1A3A2055391).
1The family of VCG mechanisms is due to Vickrey [15], Clarke [4] and Groves [6].
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because they work with social choice correspondences. To be precise, at every
profile of types, the mechanism chooses a subset from the set of all possible
queues. This formulation means that they cannot use Holmström’s result
which only applies to social choice functions. In contrast, we assume the ex-
istence of a tie-breaking rule which selects one queue whenever there is
more than one efficient queue and this allows us to use Holmström’s result
to provide an alternate proof.

One might ask naturally how much generality is lost in our approach.
In this regard, we note here that the correspondence which selects the set
of efficient queues at each profile is “essentially” single-valued. As will be-
come clear, the efficient queue is unique at all profiles where no two agents
have identical waiting costs. We can show that the set of all such profiles
is an open and dense set in Rn

+ and thus the efficiency correspondence is
generically single-valued. Hence, in our opinion, imposing a tie-breaking
rule on profiles where the efficiency correspondence is not single-valued
does not amount to a significant loss of generality. We emphasize that our
result applies for any choice of tie-breaking rule.2

The k-pivotal mechanisms were introduced by Mitra and Mutuswami
[12] and generalize the pivotal mechanism which appears in many con-
texts. Their significance lies in the fact that they are immune to a particu-
lar form of group deviation.3 Mitra and Mutuswami [12] characterize this
family using pairwise strategyproofness, queue efficiency, equal treatment
of equals and weak linearity. Since, as noted by Mitra and Mutuswami [12]
themselves, weak linearity does not have a strategic or normative interpre-
tation, we provide alternate characterizations of two mechanisms from this
class using appropriate independence axioms introduced by Chun [2] and
Maniquet [10].4

This paper is organized as follows. In Section 2, we introduce the model
and characterize the subset of VCG mechanisms which also satisfy equal
treatment of equals. We use this result to prove our two main results in Sec-
tion 3 and we conclude in Section 4.

2. THE MODEL

Let N = {1, . . . , n}, n ≥ 2, be the set of agents. Each agent has one job to
process by a machine but the machine can process only one job at a time.
All jobs take the same time to process which is normalized to one.

2To be precise, agents with the same waiting cost end up with the same utility, no matter
which tie-breaking rule is used to select the efficient queue.
3Mitra and Mutuswami [12] show that the k-pivotal mechanisms are weak group strate-
gyproof which implies that no coalition deviate in a manner benefiting all deviating mem-
bers strictly. Pairwise strategyproofness is weak group strategyproofness restricted to coali-
tions of size at most two.
4Weak linearity requires that transfers vary in a linear fashion whenever an agent changes
her announcement in a manner which does not change the efficient queue.
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A queue is an onto function σ : N → {1, . . . , n} denoting the order in
which jobs are processed. We denote σ(i) as σi. The set of all possible
queues is Σ(N). The set of all predecessors of agent i is Pi(σ) = { j ∈ N | σ j <
σi} and the set of all followers of agent i is Fi(σ) = { j ∈ N | σ j > σi}. When
the context is clear, we abuse notation and use Pi and Fi.

Each agent i is identified with her waiting cost per unit of time θi ∈ R+

which is known only to the agent. A profile of waiting costs, θ = (θi)i∈N , is a
collection of the waiting costs of all agents. For all i ∈ N, let θN\{i} denote
the collection of waiting costs of all agents other than i. An agent’s utility
depends on her waiting cost θi and the transfer ti she receives. We assume
that preferences are quasi-linear and given by ui(σi, ti;θi) = ti − (σi − 1)θi.

A mechanism µ = (σ , t) associates to each profile θ, a tuple µ(θ) ≡
(σ(θ), t(θ)) where σ(θ) is the selected queue and t(θ) = (t1(θ), . . . , tn(θ))
is the vector of transfers. Let µi(θ) = (σi(θ), ti(θ)) denote i’s allocation for
the profileθ and let ui(θ;θ′i) = −(σi(θ)− 1)θ′i + ti(θ) denote i’s utility when
the announced profile is θ and her own waiting cost is θ′i .

2.1. Axioms. We say that a queue σ is efficient for the profile θ if σ ∈
argminσ ′∈Σ(N) ∑i∈N(σ

′
i − 1)θi. In words, an efficient queue minimizes the

aggregate waiting costs of the agents. It is easy to show that σ is efficient
for the profileθ if and only ifσi < σ j wheneverθi > θ j. Let E(θ) denote the
set of efficient queues for the profile θ. Note that E(θ) is always non-empty
and is a singleton if no two agents have the same waiting cost.

Remark 2.1. Since E(θ) can be a correspondence, our definition of a mech-
anism implicitly assumes the existence of a tie-breaking rule which selects an
efficient queue whenever there is more than one such queue. We assume
that there is an order of the agents,�, which is used to break ties. The same
order is used to break ties when a queue involving subsets of agents has to
be selected.

Definition 2.1. A mechanism µ is queue efficient (EFF) if for all θ, σ(θ) ∈
E(θ).

The next axiom is strategyproofness which requires that an agent should
not benefit strictly by misrepresenting her waiting cost no matter what she
believes other agents to be doing. Call θ,θ′ S-variants if θi = θ′i for all
i ∈ N \ S.

Definition 2.2. A mechanism µ is strategyproof (SP) if for all i ∈ N, all i-
variants θ,θ′, ui(θ;θi) ≥ ui(θ

′;θi).

Remark 2.2. Holmström [8] shows that when the domain of preferences is
convex, the Vickrey-Clarke-Groves (VCG) mechanisms are the only ones sat-
isfying EFF and SP. Since preferences are quasi-linear, the preferences are
completely specified by the domain of the profile of waiting costs. Since
this is Rn

+, it follows that a mechanism satisfies EFF and SP if and only if it
is a VCG mechanism.

We now formally define these mechanisms.
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Definition 2.3. A mechanism µ = (σ , t) is a VCG mechanism if it satisfies
EFF and the transfers at all profiles θ given by

(2.1) ti(θ) = − ∑
j∈Fi(σ(θ))

θ j + fi(θN\{i}).

It is to be noted that the usual way of writing the VCG transfers is ti(θ) =
−∑ j 6=i(σ j(θ)− 1)θ j + hi(θN\{i}). This is equivalent to our formulation. For
details, see our companion paper (Chun, Mitra and Mutuswami [3]).

A desirable property is budget balance requiring there be no net transfers
into or out of the economy.

Definition 2.4. A mechanism µ is budget balanced (BB) if for all θ,
∑

n
i=1 ti(θ) = 0.

Finally, equal treatment of equals is an equity property requiring that two
agents with the same waiting cost end up with the same (net) utilities.

Definition 2.5. A mechanism µ satisfies equal treatment of equals (ETE) if for
all θ, and all i, j ∈ N, θi = θ j implies that ui(θ;θi) = u j(θ;θ j).

We also use some additional axioms in our characterizations of the piv-
otal and reward-based pivotal mechanisms and we discuss them later.

2.2. Anonymous VCG mechanisms. In this subsection, we characterize
the subset of VCG mechanisms satisfying EFF, SP and ETE. We use this
proposition to prove our two main results.

Definition 2.6. A VCG mechanism µ = (σ , t) is anonymous if for all θ and
all i ∈ N,

(1) ti(θ) = −∑ j∈Fi(σ(θ))θ j + fi(θN\{i}), and
(2) fi is symmetric, i.e., fi(x) = fi(y) whenever x and y are permuta-

tions of one another.
(3) for all i, j ∈ N, and all θ such that θi = θ j, fi(θ−i) = f j(θ− j).

Remark 2.3. Given (2) and (3), we can write fi = f for all i ∈ N.

Our characterization result follows. It must be emphasized that even
though we require SP and ETE, the choice of tie-breaking rule does not
matter since agents having the same waiting costs end up with the same
utility.

Proposition 2.1. A mechanism satisfies EFF, ETE and SP if and only if it is an
anonymous VCG mechanism.

Proof. : Since the sufficiency is obvious, we only prove the necessity part
here. It follows from Remark 2.2 that if (σ , t) satisfies EFF and SP, then it is
a VCG mechanism. Hence, the transfers are given by

∀θ, ∀i ∈ N : ti(θ) = − ∑
j∈Fi(σ(θ))

θ j + fi(θN\{i}).
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Let θN\{i} and θ′N\{i} be two profiles (in Rn−1
+ ) such that there exist two

agents k, j such that (i) θ′j = θk,θ′k = θ j, and (ii) θl = θ′l for all l 6= j, k.
In other words, the two profiles differ only in that the announcements of
two agents are interchanged. We will show that for all i ∈ N, fi(θN\{i}) =
fi(θ

′
N\{i}). Suppose not, and let x = fi(θN\{i}) 6= fi(θ

′
N\{i}) = y.

Consider (θ j,θN\{i}) ∈ Rn
+ where i and j announce θ j and the other

agents announce θN\{i, j}. Using ETE between i and j, it follows that

(2.2) fi(θN\{i}) = f j(θ j,θN\{i, j}) = x.

Next, consider (θ j,θk,θN\{i, j}) where i announces θ j, j and k announce θk
and the others announce θN\{i, j,k}. Using ETE between j and k, it follows
that

(2.3) f j(θ j,θN\{i, j}) = fk(θ j,θk,θN\{i, j,k}).

It follows from the above two equations that

(2.4) fk(θ j,θk,θN\{i, j,k}) = x.

Now, consider (θk,θN\{i}) where i and k announce θk and the rest an-
nounce θN\{i,k}. Using ETE between i and k, we obtain

(2.5) fi(θN\{i}) = fk(θk,θN\{i,k}) = x.

It follows from the previous two equations that

(2.6) fk(θ j,θk,θN\{i, j,k}) = fk(θk,θ j,θN\{i, j,k}) = x.

Now starting from θ′N\{i}, we can do the same analysis to obtain

(2.7) fk(θ j,θk,θN\{i, j,k}) = fk(θk,θ j,θN\{i, j,k}) = y.

This gives us the contradiction. Now let θN\{i} and θ′N\{i} be permu-
tations of one another. It is easy to see that we can get from one profile to
any permutation of the profile by interchanging sequentially the announce-
ments of two agents in at most n − 2 steps.5 From the above analysis, fi
cannot change at any step and hence, we must have fi(θN\{i}) = fi(θ

′
N\{i}).

Note that ETE implies that for all i, j ∈ N, i 6= j, fi(θ j,θN\{i, j}) =
f j(θi,θN\{i, j}) if θi = θ j. This along with symmetry of fi implies that all
the fi functions are the same and so we can put fi = f for all i. �

Remark 2.4. In the context of a related but different model of allocating
heterogeneous goods, Pápai [13] showed that the family of anonymous VCG
mechanisms can be characterized using the property of envy-free (see Ob-
servation 3, p 376 of her article). We provide a complete proof here to show

5Let θ,θ′ ∈ Rn be permutations of one another. First, find θk such that θk = θ′1. Construct
the profile θ̂1 such that θ̂1

1 = θk , θ̂1
k = θ1 and θ̂1

j = θ j for j 6= 1, k. Then proceed to θ2 and so

on. At the end of step j, the first j components of θ̂ j must coincide with θ′ and hence, in at
most n− 1 steps we would have moved from θ to θ′.
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that these mechanisms can be characterized using the weaker property of
equal treatment of equals.

Remark 2.5. Hashimoto and Saitoh [7] show that anonymity in welfare and
SP implies EFF. The following example shows that anonymity in welfare
cannot be weakened to ETE. Let N = {1, 2} and suppose that σi(θ) = i for
all profiles θ. The transfers are given by

ti(θ) =

{
−θ2/2 if i = 1,
θ1/2 if i = 2.

It is straightforward to verify that this mechanism violates EFF but satis-
fies both SP and ETE.

3. CHARACTERIZATION RESULTS

We now analyze some interesting mechanisms from the class of anony-
mous VCG mechanisms characterized in Theorem 2.1.

3.1. Symmetrically balanced VCG mechanism. The symmetrically bal-
anced VCG mechanism is the VCG mechanism for which the transfers are
given by
(3.1)

∀i ∈ N : tλ
∗

i (θ) = ∑
l∈Pi(σ(θ))

(
σl(θ)− 1

n− 2

)
θl − ∑

l∈Fi(σ(θ))

(
n−σl(θ)

n− 2

)
θl .

This mechanism is obtained by choosing

(3.2) ∀i ∈ N : f (θN\{i}) = ∑
j∈N\{i}

(
σ j(θN\{i})− 1

n− 2

)
θ j.

Kayi and Ramaekers [9] established the following result. As discussed
in the introduction, we provide an alternate proof here.

Theorem 3.1. Let n ≥ 3. A mechanism satisfies EFF, ETE, SP and BB if and
only if it is the symmetrically balanced VCG mechanism.

Proof. Since the sufficiency is clear, we only show the necessity here. Let
θ′ = (θ′i)i∈N be such that θ′1 > · · · > θ′n. We shall show that

(3.3) f (θ′−n) =
n−1

∑
i=1

(
i− 1
n− 2

)
θ′i .

By EFF, σi(θ
′) = i for all i ∈ N. By Proposition 2.1 and budget balance,

(3.4) ∑
i∈N

f (θ′N\{i}) = ∑
i∈N

(i− 1)θ′i .

Let Θ = {θ′1, · · · ,θ′n}. For k = 1, . . . , n, let Θk be the set of profiles θ such
that

(1) θi ∈ Θ for all i ∈ N,
(2) i < j < k =⇒ θi > θ j > θ′n,
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(3) θi = θ′n if i ≥ k.

We will prove the following hypothesis by induction. For all k = 1, . . . , n,
and all θ ∈ Θk,

(3.5) f (θ−n) =
k−1

∑
r=1

(
r− 1
n− 2

)
θr +

(n + k− 3)(n− k)
2(n− 2)

θ′n.

Step 1: When k = 1, the set Θ1 is a singleton and θ = (θ′n, . . . ,θ′n). By BB,

∑
i∈N

f (θ−i) =
n(n− 1)

2
θ′n.

Since f is symmetric, we can write the above as

n f (θ−n) =
n(n− 1)

2
θ′n or f (θ−n) =

n− 1
2

θ′n.

It is easily verified that the above expression for f (θ−n) is identical to the
one given by (3.5).

Induction Step: Suppose that the hypothesis is true for all k ≤ K − 1. Let
θ = (θ1, · · · ,θK−1,θn, · · · ,θn) ∈ ΘK. Observe that any efficient queueσ for
this profile must be such that σi = i, i = 1, . . . , K− 1. BB implies that

(3.6) ∑
i∈N

f (θ−i) =
K−1

∑
i=1

(i− 1)θi +
(n− K + 1)(n + K− 2)

2
θ′n.

Let i ∈ {1, . . . , K− 1}. Define θi by

θi
j =


θ j if j < i,
θ j+1 if n > j ≥ i,
θ′n otherwise.

Thus, the first i − 1 elements of θi are the same as θ, for the next n − i
elements, the jth element of θi is the j + 1 element of θ and the last element
of θi is θ′n. Observe that θi

j = θ′n for all j ≥ K− 1 and hence θi ∈ ΘK−1.

For i = 1, . . . , K − 1, θi
−n is a permutation of θ−i. Hence the symmetry

of f implies that f (θ−i) = f (θi
−n). Symmetry also implies that for any

i, j ∈ {K, . . . , n}, f (θ−i) = f (θ− j). Hence, for i = K, . . . , n, we can write
f (θ−i) = f (θ−n). Therefore, we can write (3.6) as
(3.7)
K−1

∑
i=1

f (θi
−n)+ (n−K+ 1) f (θ−n) =

K−1

∑
i=1

(i− 1)θi +
(n− K + 1)(n + K− 2)

2
θ′n.

Using the induction hypothesis on the profiles θi, we have

(3.8) f (θi
−n) =

K−2

∑
r=1

(
r− 1
n− 2

)
θi−1

r +
(n + K− 4)(n− K + 1)

2(n− 2)
θ′n.
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Hence,

(n− K + 1) f (θ−n) =
K−1

∑
i=1

(i− 1)θi −
K−1

∑
i=1

K−2

∑
r=1

(
r− 1
n− 2

)
θi

r

+

[
(n− K + 1)(n + K− 2)

2
− (K− 1)(n + K− 4)(n− K + 1)

2(n− 2)

]
θ′n.

This simplifies to

(n− K + 1) f (θ−n) =
K−1

∑
i=1

(i− 1)θi −
K−1

∑
i=1

K−2

∑
r=1

(
r− 1
n− 2

)
θi

r

+
(n− K + 1)(n− K)(n + K− 3)

2(n− 2)
θ′n.

Recall that θi
j = θ j, j = 1, . . . , i− 1 and θi

j = θ j+1, j = i, . . . , K− 2. Note,
however, that the order in the efficient queue is the same for i = 1, . . . , K− 2
in the profiles θ and θi. Using these observations,

K−2

∑
r=1

(
r− 1
n− 2

)
θi

r =
i−1

∑
r=1

(
r− 1
n− 2

)
θr +

K−2

∑
r=i

(
r− 1
n− 2

)
θr+1.

Note that θr appears in exactly K − 2 of the profiles of the type θi. In par-
ticular, θr appears in all profiles except for θr. For i = 1, . . . , r − 1, θr is
the waiting cost of agent r− 1 (in the profile θi); in the other profiles, it is
the waiting cost of agent r. It thus follows that the coefficient of θr in the
expression

K−1

∑
i=1

(i− 1)θi −
K−1

∑
i=1

K−2

∑
j=1

(
j− 1
n− 2

)
θi

j

is

r− 1− (r− 2)(r− 1)
n− 2

− (K− r− 1)(r− 1)
n− 2

=
(r− 1)(n− K + 1)

n− 2
.

We thus have

(n−K+ 1) f (θ−n) =
K−1

∑
r=1

(r− 1)(n− K + 1)
n− 2

θr +
(n− K + 1)(n− K)(n + K− 3)

2(n− 2)
θ′n.

Dividing across by (n− K + 1) establishes the induction step.

We can now establish (3.3) by considering the case k = n. In this case, the
second term drops out of (3.5) and the expression is exactly what we want
to establish. Since f (θ′−n) does not depend on θ′n, it follows that (3.3) also
applies to any profile where the waiting costs of agents in N \ {n} have the
same ordinal ranking. Observe that (3.2) reduces to (3.3).

Now let i 6= n. Rename the agents so that agents i and n interchange
names with the others retaining their original names. We can do the same
argument, and at the end interchange names again, to conclude that f (θ′−i)
is given by (3.2). To complete the proof, we need to consider the case when
θ′1 ≥ · · · ≥ θ′n. In this case, the same proof goes through except that we
have to use a tie-breaking rule to select an efficient queue. It can be verified
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that no matter what tie-breaking rule is used, f (θ′−i) will still be given by
(3.2). �

3.2. Pivotal and reward-based pivotal mechanisms. In the queueing con-
text, by generalizing the idea of the pivotal mechanism, Mitra and Mu-
tuswami [12] introduced the k-pivotal mechanisms and showed that they
are weak group strategyproof.6 In addition, it can be shown that the k-pivotal
mechanisms also satisfy the normative criterion of no-envy.7

Definition 3.1. A mechanism (σ , t̄k) is a k-pivotal mechanism if there exists
k ∈ {1, . . . , n} such that for each profile θ, σ(θ) ∈ E(θ) and the transfers
are given by

t̄k
i (θ) =


−∑ j:σi(θ)<σ j(θ)≤kθ j if σi(θ) < k,

0 if σi(θ) = k,
∑ j:k≤σ j(θ)<σi(θ)θ j if σi(θ) > k.

Mitra and Mutuswami [12] characterize the k-pivotal mechanisms
through the axioms of pairwise strategyproofness, EFF, ETE and weak lin-
earity. As discussed in the introduction, weak linearity is a technical as-
sumption, lacking interpretation in strategic or normative terms. Here, we
provide axiomatic characterization of two mechanisms in the class of k-
pivotal mechanisms without using weak linearity.

Definition 3.2. The pivotal mechanism (σ , tp) is such that for all profiles θ,
σ(θ) ∈ E(θ) and

(3.9) tp
i (θ) = − ∑

j∈Fi(σ(θ))

θ j for all i ∈ N.

Definition 3.3. The reward-based pivotal mechanism (σ , tr) is such that for
all profiles θ, σ(θ) ∈ E(θ) and

(3.10) tr
i (θ) = ∑

j∈Pi(σ(θ))

θ j for all i ∈ N.

Remark 3.1. The pivotal mechanism is the n-pivotal mechanism while the
reward-based pivotal mechanism is the 1-pivotal mechanism.

The independence axioms that we use to characterize the pivotal and the
reward-based pivotal mechanisms are based on the idea that if an agent’s
waiting cost changes but the efficient queue remains unchanged, then some
agents should remain unaffected. Note that even though the efficient queue
is unchanged, the aggregate waiting cost of society will change. Hence, it is
not clear which agents should remain unaffected. Chun [2] and Maniquet
[10] take differing approaches.

6Formally, weak group strategyproofness implies there are no S-variants θ,θ′ such that
ui(θ

′ ;θi) > ui(θ;θi) for all i ∈ S. We have pairwise strategyproofness if we also require
|S| ≤ 2.
7No-envy, introduced by Foley [5], requires the allocation to be such that no agent strictly
prefers having another agent’s allocation.
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Maniquet [10] uses independence of preceding costs which requires that an
increase in an agent’s waiting cost which leaves the efficient queue is un-
changed should affect only the agent and her predecessors. This reflects
the idea that when an agent’s waiting cost increases, while the aggregate
waiting cost increases, this cannot be attributed to the agents’ successors.
On the other hand, Chun [2] uses independence of following costs which re-
quires that a decrease in an agent’s waiting cost (so that the efficient queue
is unchanged) not affect the predecessors. This is based on a similar idea:
a decrease in an agent’s waiting cost decreases the aggregate waiting cost.
Since the agent’s predecessors are not involved in generating this benefit,
they should not be affected. We define the axioms formally now.

Definition 3.4. A mechanism µ satisfies independence of preceeding costs
(IPC) if for all i-variants θ and θ′ such that θ′i > θi and σ(θ) = σ(θ′),
ul(θ;θl) = ul(θ

′;θl) for all l ∈ Fi(σ(θ)).

Definition 3.5. A mechanism µ satisfies independence of following costs (IFC)
if for all i-variants θ and θ′ such that θ′i < θi and σ(θ) = σ(θ′), ul(θ;θl) =
ul(θ

′;θl) flor all l ∈ Pi(σ(θ)).

Remark 3.2. It is obvious that the pivotal mechanism satisfies IPC, and the
reward-based pivotal mechanism satisfies IFC.

Our last axiom is a mild regularity condition on the transfers saying that
if all agents have zero waiting costs, then their utility from the mechanism
should also be zero.

Definition 3.6. A mechanism µ satisfies the zero transfer condition (ZTC) if
ui(θ;θi) = 0 for all i ∈ N whenever θ = (0, . . . , 0).

The following theorem characterizes the pivotal and the reward-based
pivotal mechanisms.

Theorem 3.2.

(1) The pivotal mechanism (σ , tp) is the only mechanism that satisfies
EFF, ETE, SP, IPC, and ZTC.

(2) The reward-based pivotal mechanism (σ , tr) is the only mechanism
that satisfies EFF, ETE, SP, IFC, and ZTC.

Proof. We first prove (1). It is obvious that the pivotal mechanism satisfies
EFF, ETE, SP, IPC, and ZTC. Conversely, let (σ , t) be a mechanism satisfying
the five axioms. Without loss of generality, suppose that θ is such that θ1 ≥
θ2 ≥ · · · ≥ θn and that for each i ∈ N, σi = i. By Proposition 2.1, the
transfer can be expressed as:

∀i ∈ N : ti(θ) = − ∑
j∈Fi(σ(θ))

θ j + f (θN\{i}).

In particular, tn(θ) = f (θN\{n}). By IPC, for all N \ {n}-variants θ,θ′ such
that θ′i ≥ θ′n = θn for all i 6= n, tn(θ) = tn(θ′). This implies that there exists
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c ∈ R such that for allθN\{n}, f (θN\{n}) = c. By ZTC, c = 0. Altogether, we
conclude that for all i ∈ N, ti(θ) = −∑ j∈Fi(σ(θ))θ j = tp

i , as desired.

Now we prove (2). It is obvious that the reward-based pivotal mecha-
nism satisfies EFF, ETE, SP, IFC, and ZTC. Conversely, let (σ , t) be a mech-
anism satisfying the five axioms. Without loss of generality, suppose that θ
is such that θ1 ≥ θ2 ≥ · · · ≥ θn and that for each i ∈ N, σi = i. By Theorem
2.1, the transfer can be expressed as:

∀i ∈ N : ti(θ) = − ∑
j∈Fi(σ(θ))

θ j + f (θN\{i}).

In particular, t1(θ) = −∑ j∈F1(σ(θ))θ j + f (θN\{1}). By IFC, for all θ,θ′ such
that θ1 = θ′1, t1(θ) = t1(θ

′) which implies that there exists c ∈ R such that
for all θN\{1}, f (θN\{1}) = ∑ j∈F1(σ(θ))θ j + c. By ZTC, c = 0. Altogether, we
have that for all i ∈ N,

ti(θ) = − ∑
j∈Fi(σ(θ))

θ j + f (θN\{i})

= − ∑
j∈Fi(σ(θ))

θ j + ∑
j∈N\{i}

θ j

= ∑
j∈Pi(σ(θ))

θ j

= tr
i ,

which is the desired conclusion. �

4. CONCLUSIONS

We have provided an alternate proof of Kayi and Ramaekers’ [9] charac-
terization of symmetrically balanced VCG mechanism. We have also pro-
vided characterizations of the pivotal and the reward-based pivotal mech-
anisms using independence axioms. A remaining task is to provide a char-
acterization of the entire class of k-pivotal mechanisms without using weak
linearity.
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