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Abstract

We investigate the implications of two demand operators, the weak de-
mand operator and the strong demand operator, introduced by Granot and
Huberman (1984) for minimum cost spanning tree problems (mcstp’s). The
demand operator is intended to measure the maximum amount that each
agent can ask to her followers in compensation for making a link to her.
However, the original definition of the weak demand operator does not cap-
ture this idea and we propose its modification. Then, we introduce a proce-
dure which enables us to calculate the maximum sequentially for each agent.
By applying the modified weak demand operator to the irreducible mcstp’s,
the Dutta-Kar allocation is obtained from any component-wise efficient ini-
tial allocation. For the strong demand operator, the Dutta-Kar allocation can
be obtained if the procedure is initiated from any allocation in the irreducible
core.
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1 Introduction
A minimum cost spanning tree problem (mcstp) introduced by Claus and Kleit-
man (1973) is concerned with the construction of a minimal cost spanning tree
(mcst) which provides for each agent a connection to the source, and the alloca-
tion of the total connection cost among the agents. Examples of the mcstp can be
found easily: construction of communication networks such as telephone or cable
television, construction of a drainage system, etc. An mcst can easily be found
by using the Prim (1957) algorithm. On the other hand, for the fair allocation
of total connection costs, many rules have been proposed: the Bird rule (Bird,
1976), the core and the nucleolus (Granot and Huberman, 1981, 1984), the Folk
solution (Feltkamp et al., 1994; Bergantinos and Vidal-Puga, 2005, 2007; Lorenz
and Lorenzo-Freire, 2009), the Kar rule (Kar, 2002), the Dutta-Kar rule (Dutta
and Kar, 2004), the piecewise linear rules (Bogomolnaia and Moulin, 2010), the
sequential equal contributions rules (Chun and Lee, 2012), and so on.

In this paper, we focus on the second question of fairly allocating the total
cost among agents. In particular, we investigate the implication of two demand
operators, the weak demand operator and the strong demand operator, introduced
by Granot and Huberman (1984) for the mcstp. The demand operator is intended
to measure the maximum amount that each agent can ask to her followers in com-
pensation for making a link to her. For the weak demand operator, the amount that
an agent can transfer to her immediate followers is determined by considering her
opportunity cost. Since the original definition of the weak demand operator does
not capture this idea properly, we propose its modification, the modified weak de-
mand operator. For the strong demand operator, an agent is supposed to solve
a maximization problem under the condition that no coalition of her followers
together with any other agents has an incentive to make their own mcst.

We propose a procedure to apply the demand operators and calculate the re-
sulting allocation as follows. First, a cost matrix is modified to its irreducible form
before the operator is applied. The irreducible cost matrix is defined to be the cost
matrix obtained by reducing the cost of each link as low as possible without af-
fecting the minimum cost of the problem. Secondly, we rename agents using the
order selected by the Prim algorithm when the mcst is constructed. Thirdly, we
assume that the operating agent who is making a demand to her followers leaves
after the operator is applied. The remaining agents cannot use the node of the
leaving agent and an alternative mcst needs to be constructed. Since there may be
many different ways to construct an mcst for the remaining agents, we impose a
pre-specified selection rule for the construction of a new mcst. This rule selects
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as the new mcst one which keeps the original link structure as much as possi-
ble. Finally, we apply the operator sequentially to each agent from a given initial
allocation.

As it turns out, our procedure provides another interesting justification for the
Dutta-Kar rule. This rule is introduced by Dutta and Kar (2004) as a solution sat-
isfying cost monotonicity and being a core selection. Cost monotonicity requires
that the cost allocated to an agent does not increase if the cost of a link involv-
ing the agent decreases, nothing else changing. A rule is a core selection if no
coalition of agents can be better off by building their own network. We show that
if the modified weak demand operator is applied, then the Dutta-Kar allocation
is obtained from any component-wise efficient initial allocation. For the strong
demand operator, the Dutta-Kar allocation can be obtained if the procedure is ini-
tiated from any allocation in the irreducible core (that is, the core of the irreducible
cost matrix).

This paper is organized as follows. In section 2, we introduce minimum cost
spanning tree problems and cost allocation rules. In section 3, we present the two
demand operators, the weak demand operator and the strong demand operator, and
propose a modification of the weak demand operator. In section 4, we propose a
procedure of applying the demand operators and show the coincidence results.

2 Preliminaries

2.1 The minimum cost spanning tree problem
Let N = {1, 2, · · · } be a (finite or infinite) universe of all “potential” agents and
N be the collection of non-empty, finite subsets of N. A typical element of N is
denoted by N ≡ {1, ..., n} and 0 is a special node called the source. We call each
element of N0 ≡ N ∪ {0} a node, and N0 ≡ {N0|N ∈ N}.

Given N0 ∈ N0, a cost matrix C = (cij)i,j∈N0 represents the cost of the direct
link between any pair of nodes. For all i, j ∈ N0, we assume that cij ≥ 0 if i 6= j
and cij = 0 if i = j. Also, we assume that for all i, j ∈ N0, cij = cji. The set of
all cost matrices for N0 is denoted by CN0 and C ≡ ∪N0∈N0CN0 .

A minimum cost spanning tree problem (mcstp) is a pair (N0, C) where N ∈
N is a finite set of agents, 0 is the source, and C ∈ CN0 is the cost matrix.

A graph g overN0 is a subset of a complete graph gN0 ≡ {(ij)|∀i, j ∈ N0, i 6=
j}, whose element is an arc. A path from i to j in g is a sequence of different arcs
{(ik−1ik)}Kk=1 that satisfies (ik−1ik) ∈ g for all k ∈ {1, 2, · · · , K}, i0 = i and
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iK = j. Two distinct nodes i and j ∈ N0 are connected in g if there exists a path
from i to j, and a graph g is connected if all pairs of nodes are connected in g. A
tree is a connected graph with a unique path from any node to 0. We denote the
set of all trees over N0 as TN0 and T ≡ ∪N0∈N0TN0 . For any t ∈ TN0 , let tij be the
unique path from i to j in t.

Given t ∈ TN0 and i, j ∈ N0, i is a predecessor of j in t if there exist k ∈ N0

such that (ik) ∈ t0j . Let P (j|t) be the set of all predecessors of j in t. Agent i
is the immediate predecessor of j in t if (ij) ∈ t0j . Let p(j|t) be the immediate
predecessor of j in t. j is a follower of i in t if i ∈ P (j|t). Let F (i|t) be the
set of all followers of i in t. Agent j is an immediate follower of i if p(j|t) = i.
Let f(i|t) be the set of all immediate followers of i in t. For each i ∈ f(0|t),
{i} ∪ F (i|t) is a component.

For all N0 ∈ N0 and all C ∈ CN0 , a minimum cost spanning tree (mcst)
t(N0, C), is defined to be argmint∈TN0

∑
(ij)∈t cij . Let m(N0, C) be the minimum

cost for the mcstp (N0, C), that is, m(N0, C) ≡
∑

(ij)∈t(N0,C) cij .
Let C|S0 be the restriction of the cost matrix C to the coalition S0 ⊆ N0. Bird

(1976) associated an mcstp (N0, C) with a game (N, c) where for each S ⊂ N,
c(S) = m(S0, C|S0). The core of the game (N, c) is defined by

Core(N, c) ≡
{
x ∈ RN

∣∣∣∑
i∈N

xi = c(N) and
∑
i∈S

xi ≤ c(S),∀S ⊂ N
}
.

Also, Bird (1976) introduced the irreducible cost matrix which is the cost matrix
obtained by reducing the cost of each link as low as possible without affecting
the total cost of the problem. For a given mcstp (N0, C) and its mcst t(N0, C),
let C∗ = (c∗ij)i,j∈N0 be the irreducible cost matrix of C, where for each i, j ∈
N0, c

∗
ij = max(kl)∈tij(N0,C){ckl}. In addition, he proposed the irreducible core

(denoted by Core(N, c∗)) as the core for the irreducible cost matrix, which is a
subset of the core.

When there is no ambiguity, we use P (i), p(i), F (i), f(i), and (S0, C) instead
of P (i|t), p(i|t), F (i|t), f(i|t), and (S0, C|S0), respectively.

2.2 The Prim algorithm
Prim (1957) introduced an algorithm to find an mcst, now called the Prim algo-
rithm, defined as follows.1 For each N0 ∈ N0 and each C ∈ CN0 ,

1An alternative algorithm is proposed by Kruskal (1956).
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Step 0: Let A0 ≡ {0} and g0 ≡ ∅.

Step 1: Choose an ordered pair (a1b1) such that2

(a1b1) = argmin
(ij)∈A0×(A0)c

cij.

Let A1 ≡ A0 ∪ {b1} and g1 ≡ g0 ∪ {(a1b1)}.

Step k : Choose an ordered pair (akbk) such that

(akbk) = argmin
(ij)∈Ak−1×(Ak−1)c

cij.

Let Ak ≡ Ak−1 ∪ {bk} and gk ≡ gk−1 ∪ {(akbk)}.

The algorithm terminates at step n and gn is the mcst for (N0, C).

From now on, for a given mcstp, we rename each agent by the step chosen in
the Prim algorithm, i.e., agent 1 is chosen in the first step of the Prim algorithm
and agent i in the ith step. When several agents have the same cost at some step,
the Prim algorithm arbitrarily chooses one agent. We will avoid this difficulty by
restricting the domain of permissible cost matrices.

C̃N0 ≡{C ∈ CN0|C induces a unique agent in each step of the Prim algorithm},

C̃ ≡
⋃

N0∈N0

C̃N0 .

An mcst may not be unique on C̃. For example, let N = {1, 2, 3} and c01 = 6,
c12 = 2, c13 = c23 = 3 and let all other costs be larger than 6. Even though the
mcst is not unique, we note that a unique agent is selected at each step of the Prim
algorithm.

2.3 Rules
For each N ∈ N , a cost allocation is a vector y = (yi)i∈N ∈ RN

+ , where for
each i ∈ N, yi is the cost assigned to agent i. Let YN be the set of all cost
allocations for N . For each N0 ∈ N0, a cost allocation rule, or a rule, is a

2Given A ⊆ N0, A
c ≡ N0 \A.
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function ϕ : CN0 → YN , which associates to each N0 ∈ N0 and each C ∈ CN0 a
cost allocation ϕ(N0, C) ≡ (ϕi(N0, C))i∈N .

Now we introduce two rules for the problem, the Bird rule and the Dutta-
Kar rule (DK rule). For the Bird rule, each agent is sequentially connected to
the source by the Prim algorithm and pays the additional cost incurred by her
inclusion in the mcst.

Bird rule, ϕB: For all N0 ∈ N0, all C ∈ C̃N0 , and all i ∈ N , ϕB
i (N0, C) = cp(i)i.

A rule is a core selection if no coalition of agents can be better off by building
their own network. On the other hand, cost monotonicity requires that the cost
allocated to agent i does not increase if the cost of a link involving agent i goes
down, nothing else changing. The Bird rule is a core selection but fails to satisfy
cost monotonicity.

Dutta and Kar (2004) proposed another rule for the problem, the DK rule ϕDK ,
which is also a core selection and satisfies cost monotonicity. This rule is defined
as follows: for all N0 ∈ N0 and all C ∈ C̃N0 ,

Step 0: Let A0 ≡ {0}, g0 ≡ ∅, and t0 ≡ 0.

Step 1: Choose the ordered pair (a1b1) such that

(a1b1) = argmin
(ij)∈A0×(A0)c

cij.

Let t1 ≡ max{t0, ca1b1}, A1 ≡ A0 ∪ {b1}, and g1 ≡ g0 ∪ {(a1b1)}.

Step k: Choose the ordered pair

(akbk) = argmin
(ij)∈Ak−1×(Ak−1)c

cij.

Let tk ≡ max{tk−1, cakbk}, Ak ≡ Ak−1 ∪ {bk}, gk ≡ gk−1 ∪ {(akbk)}, and
ϕDK

k−1(N0, C) ≡ min{tk−1, cakbk}.

The algorithm terminates at step n and ϕDK
n (N0, C) ≡ tn.

If C /∈ C̃, at some step, several agents might have the same cost and the Prim
algorithm may not be able to determine a unique agent. By taking an average of
all the possibilities, the DK allocation can be calculated. However, on the domain
C̃, since a unique agent is determined at each step, we do not face such a difficulty.
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Since we rename all agents based on the step chosen by the Prim algorithm,
for each i ∈ N, the node bi is agent i, and the node ai is the agent p(i). Thus,
for each i ∈ N, caibi = cp(i)i. Therefore, on the domain C̃, the DK rule can be
rewritten as

ϕDK
k (N0, C) = min{max

l≤k
{cp(l)l}, cp(k+1)k+1}, 1 ≤ k < n,

and ϕDK
n (N0, C) = maxl=1,...,n cp(l)l.

2.4 Component-wise efficiency of rules
Efficiency requires that the sum of costs assigned to all agents should be equal to
the total cost. A stronger requirement of component-wise efficiency requires that
the sum of costs assigned to each component should be equal to its cost. If a rule
does not satisfy component-wise efficiency, then there exists some component that
would benefit by constructing its own mcst.

Component-wise efficiency: For all N0 ∈ N0, all C ∈ CN0 , all i ∈ f(0), and all
y ∈ YN , a cost allocation y is component-wise efficient if∑

j∈{i}∪F (i)

yj =
∑

j∈{i}∪F (i)

cp(j)j.

As shown in Granot and Huberman (1981), any cost allocation in the core satis-
fies component-wise efficiency. Since the Bird and the Dutta-Kar rules are core
selections, both of them are component-wise efficient.

3 Demand operators
In this section, we define two demand operators, the weak demand operator (wdo)
and the strong demand operator (sdo), and discuss their properties.

3.1 The weak demand operator
Granot and Huberman (1984) introduced the wdo after considering the opportu-
nity cost of each agent. Suppose that agent i is the immediate predecessor of
agent j and each agent pays the cost according to the Bird rule y = ϕB(N0, C).
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If agent i leaves, then agent j is connected with the source or another agent and
pays more than yj . Therefore, agent i can make a demand for her cooperation
with agent j and a transfer of the surplus from agent j to agent i results in a new
allocation. When some agent is asking for compensation her followers, we call
her the operating agent.

For eachN0 ∈ N0 and eachC ∈ C̃N0 , let t(N0, C) be the mcst of the game. For
each k ∈ N, a subtree tk(N0, C) of t(N0, C) with root k is defined as tk(N0, C) =
{(ij)|i, j ∈ {k} ∪ F (k), (ij) ∈ t(N0, C)}. Given t(N0, C), for all i ∈ N , let
t̃(N0 \ {i}, C) be an mcst for the problem (N0 \ {i}, C) such that for all j ∈ f(i),
tj(N0, C) ⊆ t̃(N0 \ {i}, C). For each j ∈ f(i), there exists an arc (rk) such that
(rk) is in the unique path from 0 to j in t̃(N0 \ {i}, C), r ∈ N0 \ ({j} ∪ F (j)),
and k ∈ {j} ∪ F (j). Let ai

j = crk.3

The wdo is a function which associates to each initial allocation a cost alloca-
tion obtained after considering how much each agent can demand to her followers.

Weak Demand Operator (Granot and Huberman, 1984): For all N0 ∈ N0, all
C ∈ C̃N0 , all i ∈ N , and all y ∈ YN ,

wdi
j(y) =


ai

j −
∑

(uv)∈tj(N0,C) cuv +
∑

l∈F (j) yl if j ∈ f(i),

yi −
∑

k∈f(i) (wdi
k(y)− yk) if j = i,

yj otherwise.

We note that in the definition of the operator the terms after ai
j vanishes if the

Bird allocation is initially given. Also, it is easy to check that
∑

j∈N wd
i
j(y) =∑

j∈N yj.
The wdo can be interpreted as follows. If agent i makes a demand to her

immediate followers, the followers form an alternative mcst without i and pay the
cost of the alternative tree. Since the alternative tree increases the cost allocation
of agent i’s immediate followers, the difference can be claimed by agent i.

However, the current definition of the wdo has a flaw. After agent i leaves,
the cost of an alternative tree for {j} ∪ F (j) will be ai

j +
∑

(uv)∈tj(N0,C) cuv, but
agents in j ∈ f(i) get a benefit if

∑
(uv)∈tj(N0,C) cuv increases. Since the cost ai

j +∑
(uv)∈tj(N0,C) cuv should be shared among agents j and her followers, it is awk-

ward to ask only agent i to be responsible for the increase in
∑

(uv)∈tj(N0,C) cuv.

3Note that t̃(N0\{i}, C) may not be unique. Since crk depends on the choice of t̃(N0\{i}, C),
it may not be uniquely determined either. However, in our application of the demand operators,
we will impose a selection rule to make sure that this arc is uniquely determined.

8



Based on this observation, we suggest the following modification.

Modified Weak Demand Operator (mwdo): For all N0 ∈ N0, all C ∈ C̃N0 , all
i ∈ N , and y ∈ YN ,

wd
i

j(y) =


(ai

j +
∑

(uv)∈tj(N0,C) cuv)−
∑

l∈F (j) yl if j ∈ f(i),

yi −
∑

k∈f(i) (wd
i

k(y)− yk) if j = i,

yj otherwise.

As discussed earlier, (ai
j +
∑

(uv)∈tj(N0,C) cuv) is the cost of the alternative tree for
{j}∪F (j), which is constructed after agent i leaves. Thus, in our definition of the
mwdo, for any j ∈ f(i), {j}∪F (j) share the cost of an alternative tree. Similarly
to the wdo, if the Bird allocation is initially given, the terms after ai

k vanishes in the
definition of the operator. Therefore, in this case, the two definitions of the wdo’s
are the same. Also, as in the case of wdo, it is easy to show that

∑
j∈N wd

i

j(y) =∑
j∈N yj .

3.2 The strong demand operator
Suppose an mcst is given and agent i is the immediate predecessor of agent j.
Furthermore, suppose that the initial cost allocation is y and agent i wants to
transfer some of her cost to agent j. What is the maximum amount that she can
transfer? If agent i asks too much, agent j will disconnect the arc (ij) and form
her own tree together with other agents. Therefore, agent i can transfer her cost
as long as agent j does not have an incentive to form her own tree.

Before we formally define the sdo, we introduce one more notation. For
R1, R2 ⊂ N, a coalition set TR1,R2 is defined as

TR1,R2 = {S ⊆ N | R1 ⊆ S, R2 ∩ S = ∅}.

For convenience, if both R1 and R2 are singletons, say R1 = {i} and R2 = {j},
then we write Ti,j instead of T{i},{j}.

Strong Demand Operator (Granot and Huberman, 1984): To find the maximum
amount of the cost transfer, agent i first solves the optimization problem,

max{
∑

j∈f(i)

zj}
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subject to ex(R, z) = c(R)−
∑
i∈R

zi ≥ 0 for all R ∈ Tf(i),{i} ∪ (TS,f(i)\S : S ⊂ f(i)),

zk = yk for all k /∈ {i} ∪ f(i), and∑
i∈N

zi =
∑
i∈N

yi.

Then, the sdo is defined by

sdi
j(y) =


zj if j ∈ f(i),
yi −

∑
k∈f(i)(zk − yk) if j = i,

yj otherwise.

We call the first constraints of the optimization problem participation constraints.
Note that if y is in the core, then the constraints of the sdo ensure that all cost al-
locations in {sdi(y)} are also in the core. The sdo measures the maximal amount
of transfers that agent i can demand to her followers without giving them an in-
centive to build their own tree. Also, as in the case of wdo and mwdo, it is easy to
check that

∑
j∈N sd

i
j(y) =

∑
j∈N yj .

4 Main results
In this section, we introduce a procedure to apply the demand operators and show
how the DK allocation can be obtained as a consequence.

4.1 A procedure for the application of demand operators
We apply the demand operators on the irreducible cost matrix C∗ instead of the
original cost matrix C for the following two reasons. First, as soon as an mcst is
constructed, it is difficult to find the meaning of the costs of links which are not a
part of the mcst. Secondly, on C, mwdo or sdo can assign a negative allocation to
the operating agent.

Furthermore, we assume that the operating agent leaves the problem after
mwdo or sdo is applied to her. Since the remaining agents cannot use the op-
erating agent’s node, they need to construct an alternative tree. On the irreducible
cost matrix, there may be many different ways to construct at each step an mcst
for the remaining agents. To keep the relationship between the original and the
new trees as close as possible, we impose the following selection rule.
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Selection rule ρ for the construction of an mcst: For all N0 ∈ N0, all C ∈ C̃N0 ,
and all i ∈ N , let agent ` ∈ N be such that ` ∈ f(i) and for all j ∈ f(i) \ {`},
` < j. The alternative mcst, t̃(N0 \ {i}, C∗), is constructed as follows:

• Agent ` is connected to p(i) and all other agents j ∈ f(i)\{`} are connected
to agent `.

Next we introduce our procedure to apply demand operators sequentially to
each agent following the numbering of agents assigned by the Prim algorithm.
For all S ⊆ N and all y ∈ YN , let yS be the projection of y onto RS .

Sequential application of a demand operator on the irreducible cost matrix:
For all N0 ∈ N0, all C ∈ C̃N0 , and all y0 ∈ YN ,

(i) Transform the cost matrix C into the irreducible cost matrix C∗.

(ii) Let N1 = N and y1 = y0 be the initial cost allocation.

(iii) At Step k = 1, . . . , n, we apply a demand operator4 to agent k and obtain a
new cost allocation zk ∈ YNk .5

(iv) Agent k leaves and the remaining agents construct an alternative tree fol-
lowing the selection rule ρ.

(v) The procedure repeats with Nk+1 = Nk\{k} and the initial cost allocation
yk+1 = zk

Nk\{k}.

4.2 The modified weak demand operator and the Dutta-Kar
rule

Now we are ready to present our first main result on the relation between the
mwdo and the Dutta-Kar rule. In particular, we show that if the initial allocation is
component-wise efficient, then the Dutta-Kar allocation is obtained after applying
the mwdo sequentially to all agents.

First, we determine how much agent 1 should pay when the mwdo is applied
to her. If the initial cost allocation is component-wise efficient, then she pays the
minimum of the two costs, her connection cost and agent 2’s connection cost.

4If necessary, we use the selection rule ρ.
5At Step n, the procedure ends at (iii).
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Lemma 1. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y is component-wise
efficient, then wd

1

1(y) = min{c∗01, cp(2)2}.

Proof. Let N0 ∈ N0, C ∈ C̃N0 , and y be the initial cost allocation which is
component-wise efficient. Let wd

1
(y) be the new cost allocation obtained after

the mwdo is applied to agent 1.
The proof is divided into two cases.

Case I. f(1) = ∅: In this case, agent 1 is the only agent in the problem or all other
agents belong to different components. Since y is component-wise efficient and
agent 1 does not have any follower to transfer her cost, she pays c∗01. Since agent
2 belongs to a different component, c∗01 < cp(2)2. Altogether, wd

1

1(y) = c∗01 =
min{c∗01, cp(2)2}.

Case II. f(1) 6= ∅: From the definition of the mwdo,

wd
1

1(y) = y1 −
∑

s∈f(1)

(wd
1

s(y)− ys)

= y1 −
∑

s∈f(1)

((a1
s +

∑
(ij)∈ts(N0,C)

c∗ij −
∑

r∈F (s)

yr)− ys)

= (y1 +
∑

s∈f(1)

∑
r∈F (s)

yr +
∑

s∈f(1)

ys)−
∑

s∈f(1)

a1
s −

∑
s∈f(1)

∑
(ij)∈ts(N0,C)

c∗ij

=
∑

s∈{1}∪F (1)

ys −
∑

s∈f(1)

a1
s −

∑
s∈f(1)

∑
(ij)∈ts(N0,C)

c∗ij.

Let agent ` be such that ` ∈ f(1) and for all m ∈ f(1) \ {`}, ` < m. From the
definition of the selection rule ρ, a1

` = max{c∗01, c
∗
1`} and for all s ∈ f(1) \ {`},

a1
s = cp(s)s. Together with the definition of ts(N0, C), we have

wd
1

1(y) =
∑

s∈{1}∪F (1)

ys −
∑

s∈f(1)

a1
s −

∑
s∈f(1)

∑
(ij)∈ts(N0,C)

c∗ij

=
∑

s∈{1}∪F (1)

ys −max{c∗01, c
∗
1`} −

∑
s∈f(1)\{`}

cp(s)s −
∑

s∈f(1)

∑
(ij)∈ts(N0,C)

c∗ij

=
∑

s∈{1}∪F (1)

ys −max{c∗01, c
∗
1`} −

∑
s∈f(1)\{`}

cp(s)s −
∑

s∈f(1)

∑
r∈F (s)

cp(r)r.
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Since y is component-wise efficient,
∑

s∈{1}∪F (1) ys =
∑

s∈{1}∪F (1) cp(s)s. There-
fore,

wd
1

1(y) =
∑

s∈{1}∪F (1)

ys −max{c∗01, c
∗
1`} −

∑
s∈f(1)\{`}

cp(s)s −
∑

s∈f(1)

∑
r∈F (s)

cp(r)r

=
∑

s∈{1}∪F (1)

cp(s)s −max{c∗01, c
∗
1`} −

∑
s∈f(1)\{`}

cp(s)s −
∑

s∈f(1)

∑
r∈F (s)

cp(r)r

= cp(1)1 + cp(`)` −max{c∗01, c
∗
1`}

= c∗01 + c∗1` −max{c∗01, c
∗
1`}

= min{c∗01, c
∗
1`}.

Since either c∗01 < cp(2)2 ≤ c∗1` or c∗01 ≥ cp(2)2 = c∗1`,
6 min{c∗01, c

∗
1`} =

min{c∗01, cp(2)2}. Therefore, wd
1

1(y) = min{c∗01, cp(2)2}.

Altogether, we conclude that wd
1

1(y) = min{c∗01, cp(2)2}.

Suppose that we begin with a component-wise efficient allocation and apply
the mwdo to the first agent. After agent 1 leaves, wd

1

N\{1}(y) is the cost allocation
of the remaining agents. Next we show that this allocation is component-wise
efficient for the alternative mcst of the remaining agents.

Lemma 2. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y is component-
wise efficient, then wd

1

N\{1}(y) is component-wise efficient for the alternative mcst
t̃(N0 \ {1}, C∗).

Proof. Let N0 ∈ N0, C ∈ C̃N0 , and y be the initial cost allocation which is
component-wise efficient. Since the mwdo does not affect the cost allocation of
agents belonging to other components, all we have to check is how the allocation
is affected in the component the operating agent belongs to.

Once again, the proof is divided into two cases.

Case I. f(1) = ∅: Since agent 1 is the only agent in the component, this compo-
nent will be empty after the mwdo is applied to agent 1. Since y is component-wise
efficient, wd

1

N\{1}(y) is component-wise efficient for the alternative mcst.

6In either case, the equality in the second relation holds when `= 2.
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Case II. f(1) 6= ∅: From the definition of the mwdo,
∑

s∈{1}∪F (1)wd
1

s(y) =∑
s∈{1}∪F (1) ys. Since y satisfies component-wise efficiency,

∑
s∈{1}∪F (1) ys =∑

s∈{1}∪F (1) cp(s)s. By Lemma 1, wd
1

1(y) = min{c∗01, cp(2)2}.
Let agent ` be such that ` ∈ f(1) and for all m ∈ f(1) \ {`}, ` < m. From the

definition of the selection rule ρ, a1
` = max{c∗01, c

∗
1`} and for all s ∈ f(1) \ {`},

a1
s = cp(s)s. Since a1

` is the cost of the arc (0`) after agent 1 leaves, the cost of the
alternative tree for this component is

∑
s∈F (1)\{`} cp(s)s+a

1
` =

∑
s∈F (1)\{`} cp(s)s+

max{c∗01, c
∗
1`}.

After agent 1 leaves,∑
s∈F (1)

wd
1

s(y) =
∑

s∈{1}∪F (1)

wd
1

s(y)− wd
1

1(y)

=
∑

s∈{1}∪F (1)

ys − wd
1

1(y)

=
∑

s∈{1}∪F (1)

cp(s)s − wd
1

1(y)

=
∑

s∈{1}∪F (1)

cp(s)s −min{c∗01, cp(2)2}

=
∑

s∈F (1)\{`}

cp(s)s + c∗01 + c∗1` −min{c∗01, cp(2)2}

=
∑

s∈F (1)\{`}

cp(s)s + c∗01 + c∗1` −min{c∗01, c
∗
1`}

=
∑

s∈F (1)\{`}

cp(s)s + max{c∗01, c
∗
1`}.

Therefore, wd
1

N\{1}(y) is component-wise efficient for the alternative mcst.

Altogether, we conclude thatwd
1

N\{1}(y) is component-wise efficient for t̃(N0\
{1}, C∗).

Now we are ready to present our first main result.

Theorem 1. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y is component-
wise efficient, then the allocation obtained by applying the mwdo from y coincides
with the DK allocation.
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Proof. Let N0 ∈ N0, C ∈ C̃N0 , and y0 be the initial cost allocation which is
component-wise efficient. Let N1 = N and y1 = y0. At Step 1, the mwdo is
applied to agent 1. Let z1 = wd

1
(y1). By Lemma 1, z1

1 = min{c∗01, cp(2)2} =
min{c01, cp(2)2}. After that, N2 = N1 \ {1} constructs an alternative tree accord-
ing to the selection rule ρ. Let y2 = z1

N2 . By Lemma 2, y2 is component-wise
efficient for the alternative mcst. The selection rule ensures that 2 ∈ f(0) with the
connection cost c∗02 = max{c01, cp(2)2}.

At Step 2, the mwdo is applied to agent 2 and similarly, z2 = wd
2
(y2). By

Lemma 1, z2
2 = min{c∗02, cp(3)3}, and by Lemma 2, y3 = z2

N3 is component-
wise efficient for the alternative mcst with N3 = N2 \ {2}. The selection rule
ensures that 3 ∈ f(0) with the connection cost c∗03 = max{c∗02, cp(3)3} = max{c01,

cp(2)2, cp(3)3}. . . . Let zk = wd
k
(yk), yk+1 = zk

Nk+1 , and Nk+1 = Nk \ {k}.
At Step k (k < n), the mwdo is applied to agent k, and zk = wd

k
(yk).

Once again, note that zk
k = min{c∗0k, cp(k+1)(k+1)}, c∗0k = max{c01, cp(2)2, . . . ,

cp(k)k} = maxj≤k{cp(j)j}, and yk+1 = zk
Nk+1 is component-wise efficient for the

alternative mcst.
At the last step, agent n pays c∗0n = maxj=1,...,n{cp(j)j}.
Therefore, at each step, the operating agent k < n pays wd

k

k(y
k) =

min{maxl≤k{cp(l)l}, cp(k+1)k+1} which coincides with ϕDK
k (N0, C) and agent n

pays maxj=1,...,n{cp(j)j} which coincides with ϕDK
n (N0, C).

4.3 The strong demand operator and the Dutta-Kar rule
We discuss the relation between the sdo and the Dutta-Kar allocation. In par-
ticular, we show that if the initial allocation is in the irreducible core, then the
Dutta-Kar allocation is obtained after applying the sdo sequentially to all agents.

First, we determine how much agent 1 should pay when the sdo is applied
to her. If the initial cost allocation is in the irreducible core, then she pays the
minimum of the two costs, her connection cost and agent 2’s connection cost, the
same as the mwdo.

Lemma 3. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y ∈ Core(N, c∗),
then sd1

1(y) = min{c∗01, cp(2)2}.

Proof. Let N0 ∈ N0, C ∈ C̃N0 , and y ∈ Core(N, c∗) be the initial cost allocation.
Let sd1(y) be the new cost allocation obtained after the sdo is applied to agent 1.
As Granot and Huberman (1984) mentioned, if an initial allocation is in the core,
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then the constraints of the sdo ensure that the outcome is in the core. Therefore, it
is obvious that sd1(y) ∈ Core(N, c∗).

We divide the proof into two cases:

Case I. f(1) = ∅: In this case, agent 1 is the only agent in the problem or all other
agents belong to different components. Since y is in the irreducible core, it is
component-wise efficient. Moreover, agent 1 does not have any followers to trans-
fer her cost. Therefore, agent 1 should pay c∗01. Since agent 2 belongs to different
components, c∗01 < cp(2)2 = c02. Altogether, sd1

1(y) = c∗01 = min{c∗01, cp(2)2}.

Case II. f(1) 6= ∅: Let agent ` be such that ` ∈ f(1) and for all m ∈ f(1) \ {`},
` < m. Note that c∗(N \ {1}) = c∗(N) − min{c∗01, c

∗
1`}. Since either c∗01 <

cp(2)2 ≤ c∗1` or c∗01 ≥ cp(2)2 = c∗1`,
7 min{c∗01, c

∗
1`} = min{c∗01, cp(2)2}. Since y ∈

Core(N, c∗), c∗(N) =
∑

i∈N yi. From the definition of the sdo,
∑

i∈N sd
1
i (y) =∑

i∈N yi.
First, suppose that sd1

1(y) < min{c∗01, cp(2)2}. Then,

ex(N \ {1}, sd1(y)) = c∗(N \ {1})−
∑

j∈N\{1}

sd1
j(y)

= (c∗(N)−min{c∗01, c
∗
1l})− (

∑
j∈N

sd1
j(y)− sd1

1(y))

= (c∗(N)−
∑
j∈N

sd1
j(y))− (min{c∗01, c

∗
1l} − sd1

1(y))

= −min{c∗01, c
∗
1l}+ sd1

1(y)

= −min{c∗01, cp(2)2}+ sd1
1(y)

< 0.

Since sd1(y) is in the irreducible core, each coalition should have a non-negative
excess under sd1(y), a contradiction.

Secondly, suppose that sd1
1(y) > min{c∗01, cp(2)2}. Let ε = sd1

1(y)−min{c∗01,
cp(2)2} > 0. Since sd1(y) is in the irreducible core, for all S ⊆ N , ex(S, sd1(y)) =
c∗(S) −

∑
j∈S sd

1
j(y) ≥ 0. Let ŷ be a new cost allocation obtained from sd1(y)

after agent 1 transfers ε to agent `. We consider four cases: for all coalitions
R ⊂ N ,

(1) R ∩ {1, `} = ∅: ex(R, ŷ) ≥ 0 since ∀i ∈ N \ {1, `}, ŷi = sd1
i (y).

7In either case, the equality in the second relation holds when ` = 2.
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(2) R ∩ {1, `} = {1}: ex(R, ŷ) > 0 since ∀i ∈ N \ {1, `}, ŷi = sd1
i (y) and

ŷ1 < sd1
1(y).

(3) R ∩ {1, `} = {1, `}: ex(R, ŷ) ≥ 0 since
∑

i∈R ŷi =
∑

i∈R sd
1
i (y).

(4) R∩{1, `} = {`}: Let R+1 ≡ R∪{1}. Since sd1(y) is in the irreducible core,
ex(R+1, sd1(y)) ≥ 0. Also, note that c∗(R) = c∗(R+1)−min{c∗01, c

∗
1`}. Then,

ex(R, ŷ) = c∗(R)−
∑
i∈R

ŷi

= c∗(R+1)−min{c∗01, c
∗
1`} − {

∑
i∈R+1

ŷi − ŷ1}

= c∗(R+1)−min{c∗01, c
∗
1`} − {

∑
i∈R+1

sd1
i (y)− ŷ1}

= c∗(R+1)−
∑

i∈R+1

sd1
i (y) + ŷ1 −min{c∗01, c

∗
1`}

= c∗(R+1)−
∑

i∈R+1

sd1
i (y) + sd1

1(y)− ε−min{c∗01, c
∗
1`}

= c∗(R+1)−
∑

i∈R+1

sd1
i (y) + min{c∗01, cp(2)2} −min{c∗01, c

∗
1`}

= c∗(R+1)−
∑

i∈R+1

sd1
i (y)

≥ 0.

Since agent 1 can transfer ε to agent ` without violating the participation con-
straints, sd1(y) cannot be a solution of the optimization problem for the sdo, a
contradiction.

Altogether, we conclude that sd1
1(y) = min{c∗01, cp(2)2}.

Suppose that we begin with an initial allocation y in the irreducible core and
apply the sdo to the first agent. After agent 1 leaves, sd1

N\{1}(y) is the cost alloca-
tion assigned to the remaining agents. Next we show that this allocation is in the
irreducible core of the problem for the remaining agents.

Lemma 4. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y ∈ Core(N, c∗),
then sd1

N\{1}(y) ∈ Core(N \ {1}, c∗).
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Proof. Let N0 ∈ N0, C ∈ C̃N0 , y ∈ Core(N, c∗), and 1 ∈ f(0). First, we
show that the excess conditions are satisfied. Since y ∈ Core(N, c∗), sd1(y) ∈
Core(N, c∗). Therefore, in the mcstp (N0 \ {1}, C∗), for all R ⊆ N \ {1},
ex(R, sd1

N\{1}(y)) ≥ 0.
Next we show that the efficiency condition is satisfied. From the definition

of the sdo,
∑

j∈N yj =
∑

j∈N sd
1
j(y). Also, since y is in the irreducible core,∑

i∈N yi =
∑

(ij)∈t(N0,C∗) c
∗
ij . By the selection rule ρ,∑

(ij)∈t(N0,C∗)

c∗ij =
∑

(ij)∈t̃(N0\{1},C∗)

c∗ij + min{c∗01, cp(2)2}

and by Lemma 3,∑
i∈N

sd1
i (y) =

∑
i∈N\{1}

sd1
i (y) + sd1

1(y) =
∑

i∈N\{1}

sd1
i (y) + min{c∗01, cp(2)2}.

Therefore,
∑

(ij)∈t̃(N0\{1},C∗) c
∗
ij =

∑
i∈N\{1} sd

1
i (y), as desired.

Altogether, we conclude that sd1
N\{1}(y) ∈ Core(N \ {1}, c∗).

Now we are ready to present our second main result.

Theorem 2. For all N0 ∈ N0, all C ∈ C̃N0 , and all y ∈ YN , if y ∈ Core(N, c∗),
then the allocation obtained by applying the sdo from y coincides with the DK
allocation.

Proof. LetN0 ∈ N0, C ∈ C̃N0 , and y0 ∈ Core(N, c∗) be the initial cost allocation.
Let N1 = N and y1 = y0. At Step 1, the sdo is applied to agent 1. Let z1 =
sd1(y1). By Lemma 3, z1

1 = min{c∗01, cp(2)2} = min{c01, cp(2)2}. After that,
N2 = N1 \ {1} constructs an alternative tree according to the selection rule ρ. By
Lemma 4, y2 = z1

N2 ∈ Core(N2, c∗). The selection rule ensures that 2 ∈ f(0)
with the connection cost c∗02 = max{c01, cp(2)2}.

At Step 2, the sdo is applied to agent 2 and similarly, z2 = sd2(y2). By Lemma
3, z2

2 = min{c∗02, cp(3)3}, and Lemma 4, y3 = z2
N3 ∈ Core(N3, c∗). The selection

rule ensures that 3 ∈ f(0) with the connection cost c∗03 = max{c∗02, cp(3)3} =
max{c01, cp(2)2, cp(3)3}. . . . Let zk = sdk(yk), yk+1 = zk

Nk+1 , and Nk+1 = Nk \
{k}.

At Step k (k < n), the sdo is applied to agent k, zk = sdk(yk). Once
again, note that zk

k = min{c∗0k, cp(k+1)(k+1)}, c∗0k = max{c01, cp(2)2, . . . , cp(k)k} =
maxj≤k{cp(j)j}, and yk+1 = zk

Nk+1 ∈ Core(Nk+1, c∗).
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At the last step, agent n pays c∗0n = maxj=1,...,n{cp(j)j}.
Therefore, at each step, the operating agent k < n pays sdk

k(y
k) =

min{maxl≤k{cp(l)l}, cp(k+1)k+1} which coincides with ϕDK
k (N0, C) and agent n

pays maxj=1,...,n{cp(j)j} which coincides with ϕDK
n (N0, C).
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