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Abstract

We consider collusive agreements in (superadditive TU-)games that
bind collusion members to act as a single player in such a way that
the collusion performs its role in the original game if all members are
together; otherwise, the collusion plays no role, acting like the empty
set. Collusive agreements are feasible only for a set of players who
are connected on a tree. Collusion neutrality requires that no feasible
collusive agreement influences the total payoff for the collusion mem-
bers. On the domain of all games, tree-restricted or unrestricted, there
is a solution satisfying collusion neutrality, efficiency and null-player
property if and only if the tree is a line. Either replacing null-player
property with very-null-player property or restricting the domain to
the subdomain of tree-restricted games, we show that affine combina-
tions of hierarchical solutions (Demange 2004, van den Brink 2012) are
the only solutions satisfying the three axioms together with linearity.
All these results hold replacing collusion neutrality with the combi-
nation of pairwise neutrality and non-bossiness. Adding a mild equal
treatment axiom, we obtain characterizations of the average tree solu-
tion (the average of hierarchical solutions, i.e., the affine combination
with equal weights).
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1 Introduction

Collusive agreements among some players in a cooperative game may influ-
ence the structure of the game, and as a result, the total payoff of the collusion
members may change. This possibility has been raised by Harsanyi (1977)
through the joint-bargaining paradox in a bargaining framework; collusive
agreements can weaken the bargaining position of the collusion members.
The best known solution, the Shapley value, exhibits the same paradoxical
feature (Haller 1994). Three different types of collusive agreements have been
studied by numerous authors; see Haller (1994), Malawski (2002), van den
Brink (2009, 2012), among others. Here we consider collusive agreements
that bind collusion members to act as a single player in such a way that the
collusion performs its role in the original game if all members are together;
otherwise, the collusion plays no role, acting like the empty set (Malawski
2002, van den Brink 2009, 2012). Our key axiom, collusion neutrality, re-
quires that no coalition can influence the total payoff of its members through
the collusive agreements.

The most studied solution that is neutral to collusive agreements is the
Banzhaf value. Unfortunately, it is not efficient. The characterization of
the Banzhaf value in Malawski (2002) shows that no efficient and neutral
solution can be found as long as we also require the other standard axioms
in the characterization including null-player property. van den Brink (2012)
establishes a stronger non-existence result that there is no solution satisfying
collusion neutrality as well as efficiency and null-player property. However,
for “tree-restricted games”, namely, games with a restricted coalition for-
mation on a tree network, van den Brink (2012) shows that there do exist
solutions satisfying the three axioms. Nevertheless, there remain two crucial
open questions in this line of research.

In van den Brink (2012), both collusive agreements and coalition forma-
tion are subject to the same network constraint. Since collusive agreements
require strong commitments of members in addition to forming the coalition
itself, one may well argue that the constraint for collusive agreements could
be stricter than the constraint for coalition formations. This leads to the
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first question. Will the existence result in van den Brink (2012) go through
with different constraints for the collusive agreements and for coalition for-
mation? Of particular interest in our investigation is the environment where
only collusive agreements are subject to a network constraint and there is no
constraint in coalition formation. The second question is about the unique-
ness. Are the solutions in van den Brink (2012) unique ones satisfying the
three axioms? Our goal is to answer these two questions.

As in Demange (1994, 2004), Herings et al. (2008), and van den Brink
(2012), we consider a tree network constraint. We assume that collusive
agreements are feasible for collusions that are connected on the tree. Unlike
these three papers, however, there is no restriction on coalition formations.
That is, we consider all superadditive games, tree-restricted or unrestricted.
The model considered by van den Brink (2012), in our investigation, cor-
responds to a special case, the subset of tree-restricted games. Our first
result shows that the existence of solutions satisfying collusion neutrality,
efficiency and null-player property is guaranteed if and only if the tree is a
line. Therefore, on the domain of all superadditive games, with or without
the tree-restriction, the existence result of van den Brink (2012) no longer
holds except when the tree is a line.

Interpreting a rooted tree as a hierarchy, the hierarchical solution (De-
mange 2004) allows each “subtree” coalition, consisting of a player and all
her successors, to get its worth as its total payoff. All hierarchical solutions
satisfy collusion neutrality and efficiency. They violate null-player prop-
erty, but the violation never occurs on tree-restricted games (van den Brink
2012). Our second result shows that affine combinations (linear combina-
tions the sum of which coefficients equals 1) of these hierarchical solutions
are the only solutions satisfying the three axioms and linearity on the do-
main of tree-restricted games. Linearity is the combination of homogeneity
(of degree 1) and additivity and is used in other characterization results by
Shapley (1953), Lehrer (1988), Haller (1994), van den Brink (2009), Mishra
and Talman (2010), etc. The second result also holds on the domain of all su-
peradditive games when null-player property is replaced with a weaker axiom
called very-null-player property.

All our main results continue to hold when collusion neutrality is replaced
with a weaker axiom, pairwise neutrality (pertaining to collusions of two
players) and non-bossiness (pairwise collusive agreement should not influence
the payoffs of other players). As corollaries, we obtain characterizations of
the average tree solution (the average of hierarchical solutions, i.e., the affine
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combination with equal weights) by van den Brink (2009) and Mishra and
Talman (2010).

The hierarchical solutions we characterize here provide stable outcomes
in the core for all superadditive tree-restricted games, as shown by Demange
(2004). In fact, hierarchical outcomes are extreme points of the core. Earlier
in this line of research, Kaneko and Wooders (1982), Le Breton et al. (1992),
and Demange (1994) show that the core of a tree-restricted game is not empty
for all superadditive games. The application of the Shapley value to network
games (including tree-restricted games) is known as Myerson value (Myerson
1977). It selects a core allocation not always but only when a network game
is convex.

2 Model and Preliminaries

A cooperative game with transferable utility, briefly a game is defined by the
set of players N ≡ {1, 2, . . . , n} and the characteristic function v : 2N → R
with v(∅) = 0, which associates with each non-empty coalition S ⊆ N the
total payoff v(S) that the coalition can produce. The set of players N is
fixed and a game is denoted by the characteristic function v. For example,
for all non-empty coalitions T ⊆ N , T -unanimity game is denoted by the
characteristic function uT defined as follows: for all S ⊆ N , if T ⊆ S,
uT (S) = 1; otherwise, uT (S) = 0.

Game v is superadditive if for all disjoint S, T ⊆ N , v(S) + v(T ) ≤
v(S ∪T ). Let V be the collection of all superadditive games. A payoff vector
x ≡ (xi)i∈N ∈ RN is an n-dimensional vector, where xi is the payoff of player
i ∈ N . A solution f : V → RN associates with each game v a payoff vector
f(v) ∈ RN . The following three axioms for solutions are standard in the
cooperative game literature.

For superadditive games, grand coalition N gives the greatest opportuni-
ties for all players. Thus efficiency here can be stated as follows:

Efficiency. For all v ∈ V ,
∑

i∈N fi(v) = v(N).

A null-player i ∈ N of game v is a player who has no contribution to others,
that is, for all S ⊆ N\{i}, v(S ∪ {i}) = v(S). Let null(v) be the set of
null players in v. The next axiom requires that null players should not be
rewarded.
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Null-Player Property. For all v ∈ V , if i ∈ N is a null player in v (i.e.
i ∈ null(v)), then fi(v) = 0.

Next is linearity considered by numerous authors in the cooperative game
literature after Shapley (1953), in particular, by Lehrer (1988), Haller (1994),
van den Brink (2009), Mishra and Talman (2010), closely related with our
research.

Linearity. For all v, w ∈ V and all c ≥ 0, fi(v) + fi(w) = fi(v + w) and
fi(cv) = cfi(v).

Players can make a collusive agreement that bind the collusion members to
act as a single player in such a way that the collusion performs its role in
the original game if all members are together; otherwise, the collusion plays
no role, acting like the empty set. We look for solutions that are “neutral”
to such collusive agreements so that no collusion can increase or decrease its
total payoff.

When there is no restriction on the collusion formation, that is, any sub-
set of players can reach a collusive agreement, it is shown that there is no
solution satisfying the neutrality property together with efficiency and null-
player property (van den Brink 2012). Here we assume that the collusive
agreements can be made over a network and only connected coalitions are
feasible collusions.

A network is described by a set of edges L ⊆ N × N . For all i, j ∈ N
with i 6= j, a path from i to j is a sequence of nodes (i1, . . . , ik) such that
i1 = i, ik = j, and (i1, i2) ∈ L,. . .,(ik−1, ik) ∈ L. Network L is a tree, if for all
i, j ∈ N with i 6= j, there is a unique path from i to j.

In what follows, assume that (N,L) is a tree. Let C(L) be the set of
connected coalitions on the tree L. Given a game v, collusive agreements
among members of a connected coalition T ∈ C(L) enforce each member to
act as she does in the original game if she is with all other members, and to
play no role if any other member is missing. Hence a collusion of T ∈ C(L)
turns the game v into vT such that for all S ⊆ N , if T * S, vT (S) = v(S\T );
if T ⊆ S, vT (S) = v(S). Our main axiom requires that for any feasible
collusion on the tree, the total payoff of the collusion members should not be
influenced by their collusive agreement.

Collusion Neutrality. For all connected coalition T ⊆ N on L,
∑

i∈T fi(vT ) =∑
i∈T fi(v).
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Figure 1: When there are two non-null players 5 and 6 (i.e. null(v) ≡
{1, 2, 3, 4, 7}) on the tree, 3 and 4 are null players but they are not very null
players. All other null players (1, 2, 7) are very null players.

Pairwise neutrality (Malawski 2002) is defined as above focusing on two-
player coalitions, namely edges.

Despite the tree-restriction on collusive agreements, we will show that
except when L is a line, there is no solution satisfying collusion neutrality
(or pairwise neutrality) together with null-player-property and efficiency. A
slight weakening of null-player-property, however, leads to a positive result.
We drop the requirement of giving the zero payoff to some null players who
can play a critical role in “connecting two non-null players” so that they can
make a collusive agreement. All other null players should receive the zero
payoff. Given a tree (N,L), for all T ⊆ N , let T cn be the smallest connected
set including T (it is unique in the case of a tree). A player i ∈ N is a very
null player if she is a null player and cannot connect two non-null players,
that is, i /∈ [N\null(v)]cn. For example, on the tree in Figure 1, when all
players except for 5 and 6 are null players, [N\null(v)]cn = {3, 4, 5, 6} and 3
and 4 are null players but not very null players.

Very-Null-Player Property. For all v ∈ V , if i ∈ N is a very null player
in v (i.e. i /∈ [N\null(v)]cn), then fi(v) = 0.
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For all i ∈ N , let Li be the directed tree rooted at i induced by the tree L.
Let s̄i(j) be the set of successors of player j in the directed tree Li, and si(j)
the set of immediate successors of player j.

Definition (Hierarchical Solutions). For all agents i ∈ N , i-hierarchical
solution hi(·) = (hij(·))j∈N associates with each v ∈ V the payoff vector such
that for all j ∈ N ,

hij(v) = v(s̄i(j) ∪ {j})−
∑

k∈si(j)

v(s̄i(k) ∪ {k}).

In the environment where coalition formation of a game is also restricted
by the same tree network (as in van den Brink 2012), disconnected coali-
tions T cannot form and so v(T ) cannot be realized and the worth of the
disconnected coalition should be revised. The greatest realizable payoff for
disconnected coalition T is the sum of payoffs for its maximal connected sub-
sets on the tree. Using this, the tree restriction L turns the game v into
the tree-restricted game vL such that for all S ⊆ N , if S is connected on L,
vL(S) = v(S); if S is disconnected, vL(S) =

∑
T∈P (S) v(T ), where P (S) is

the set of maximal connected subsets of S on L. Let VL ≡ {vL : v ∈ V} be
the collection of tree-restricted games.

On tree-restricted games, hierarchical solutions and their convex combi-
nations satisfy null-player property as well as all the other axioms defined
earlier (van den Brink 2012). For the games without tree-restriction, these so-
lutions may violate null-player property but they still satisfy very-null-player
property.

The following facts are useful.

Fact 1. For all S, T ⊆ N , if S ∩ T 6= ∅, then uST = uS∪T .

Proof. The proof is immediate from the definition.

Fact 2. Let L ⊆ N × N be a tree and T ⊆ N . Let uT be the T -unanimity
game. On the TU-game uT , a player i ∈ N is a very null player if and only
if i /∈ T cn.

For a graph (N,L), a subset of players S ⊆ N is called a subtree if both
of S and N \ S are connected.
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Fact 3. Let S ⊆ N be a subtree of a tree L. The for all T ⊆ N ,
1. T ⊆ S if and only if T cn ⊆ S; and T ⊆ N\S if and only if T cn ⊆ N\S.
2. T ∩ S 6= ∅ if and only if T cn ∩ S 6= ∅; and T ∩ (N\S) 6= ∅ if and only if
T cn ∩ (N\S) 6= ∅.

Proof. The first equivalence of part 1 is obtained from connectedness of S
and the definition of T cn. The second equivalence can be shown using con-
nectedness of N\S. Part 2 is equivalent to part 1.

3 Main Results

We first show that with the exception of the special case that the tree is a line,
there does not exist any solution satisfying (pairwise) collusion neutrality,
efficiency, and null-player property.

Theorem 1. There is a solution on V satisfying (pairwise) collusion neu-
trality, efficiency, and null-player property if and only if the tree L is a line.

Proof. If L is a line, then for any end node i∗, i∗-hierarchical solution hi(·)
satisfies the three axioms. To show this, assume L ≡ {{1, 2}, {2, 3}, . . . , {n−
1, n}}. Then 1 is an end node and for all v ∈ V and all i ∈ N , h1i (v) =
v({i, i+ 1, . . . , n})−v({i+ 1, . . . , n}) , which equals 0 when i is a null player.
Hence 1-hierarchical solution satisfies null-player property. Other axioms can
be shown easily.

To prove the converse, assume that L is not a line. Then there are
distinct four nodes i, j, k, l ∈ N such that {{i, j}, {i, k}, {i, l}} ⊆ L. We
prove the non-existence result for the case with N = {1, 2, 3, 4} and L =
{{1, 2}, {1, 3}, {1, 4}} and skip the straightforward extension of this proof
in the general case. We show that given this tree, there is no solution
f satisfying the three axioms. For brevity, for all i, j, k ∈ N , we denote
{i, j} by ij, {i, j, k} by ijk. Let f(uN) = (α1, α2, α3, α4). Then, by collu-
sion neutrality and Fact 1, f12(u

234) = f12(u
N), f13(u

234) = f13(u
N), and

f14(u
234) = f14(u

N). Taking the sum of the three equations and using effi-
ciency and null-player property, we get 1 = 1 + 2f1(u

N). Hence α1 = 0.
By collusion neutrality and Fact 1, f12(u

134) = f12(u
N) = α1 + α2. Since

α1 = 0, f1(u
134) = α2. On the other hand, by Fact 1, (u34)13 = u134 = (u34)14.

Thus, since 1 is a null player in u34, f13(u
34) = f3(u

34) = f13(u
134) and

f14(u
34) = f4(u

34) = f14(u
134). Taking the sum of the two equations and
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using efficiency and null-player property, we get 1 = 1 + f1(u
134), that is,

f1(u
134) = 0. Since f1(u

134) = α2, α2 = 0.
Likewise, (u124)13 = uNand (u24)12 = u124 = (u24)14 leads to α3 =

f1(u
124) = 0. Also, (u123)14 = uN and (u23)13 = u123 = (u23)12 leads to

α4 = f1(u
123) = 0.

Therefore, α1 = α2 = α3 = α4 = 0, which contradicts efficiency.

As is clear from the proof, the non-existence result relies crucially on the
decisions over the set of games without tree restrictions, namely the games
in V\VL. When the domain is restricted to VL, all affine combinations of the
hierarchical solutions satisfy the three axioms (van den Brink 2012). It is also
crucial for the non-existence to require zero payoff to all null players, espe-
cially those null-players who are not very-null-players. If null-player property
is replaced with very-null-player property, again all affine combinations of
the hierarchical solutions satisfy collusion neutrality as well as efficiency and
very-null-player property.1 We next characterize solutions satisfying these
three axioms together with linearity.

We first show that the total share for a subtree is represented by a
weighted sum of the worth of the subtree coalition and the worth of the
complement coalition.

Lemma 1. If a solution f on V satisfies efficiency, collusion neutrality,
very-null player property, and linearity, then for all game v ∈ V and all
subtree S ⊆ N ,

fS(v) = (1− αS)v(S) + αS[v(N)− v(N \ S)],

where α = (α1, · · · , αn) ≡ f(uN) and αS ≡
∑

i∈S αi.

Proof. Let v ∈ V and let S ⊆ N be a subtree. Note that v can be represented
by a linear combination of unanimity games: v =

∑
T⊆N λT (v)uT . Then, by

linearity, fS(v) =
∑

T⊆N λT (v)fS(uT ).

Partition 2N\{∅} into P1 ≡ {T : T cn ⊆ S}, P2 ≡ {T : T cn ⊆ N\S},
P3 ≡ {T : S ⊆ T cn and T cn * S}, and P4 ≡ {T : S * T cn * N\S}.

Claim 1. For all T ∈ P1, fS(uT ) = 1.
Proof. Consider T ∈ P1. Then for all i ∈ N\S, i /∈ T cn and so i is a very

null player in the game uT . Hence by very-null-player property, fi(u
T ) = 0

for all i ∈ N\S. By efficiency, this implies fS(uT ) = 1. �
1The proof that hierarchical solutions satisfy very-null-player property is tedious. It is

available upon request.
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Claim 2. For all T ∈ P2, fS(uT ) = 0 and fN\S(uT ) = 1.
Proof. Consider T ∈ P2. Then for all i ∈ S, i /∈ T cn, and so i is a very null

player in uT . Hence by very-null-player property and efficiency, fS(uT ) = 0
and fN\S(uT ) = 1. �

Claim 3. For all T ∈ P3 ∪ P4, fS(uT ) = αS.
Proof. We divide the proof into three cases.
Case 1: T ∈ P3 and T is connected.
Since in this case, T ) S, uTN\S = uN . This yields, by collusion neu-

trality and connectedness of N\S, fN\S(uT ) = fN\S(uN). Then, by effi-
ciency, fN\S(uT ) = 1 − fS(uT ) and fN\S(uN) = 1 − fS(uN). Therefore,
fS(uT ) = fS(uN) = αS.

Case 2: T ∈ P4 and T is connected.
When S is a singleton, P4 is empty. By T∩S 6= ∅, it holds that uTS = uT∪S,

which, by collusion neutrality, yields fS(uT ) = fS(uT∪S). Since T ∩(N \S) 6=
∅, we have S ( T∪S, which implies fS(uT∪S) = αS by Case 1. Then it follows
that fS(uT ) = fS(uT∪S) = αS.

Case 3: T ∈ P3 ∪ P4 and T is disconnected.
Since T ∩ S 6= ∅, uTS = uT∪S, then by connectedness of S and collusion

neutrality, fS(uT ) = fS(uT∪S). Since T cn ∪ S ∈ P3 and T cn ∪ S is connected,
then by Case 1, fS(uT

cn∪S) = αS. Thus we have only to show fS(uT∪S) =
fS(uT

cn∪S), which leads to fS(uT ) = fS(uT∪S) = fS(uT
cn∪S) = αS.

Since (T∪S)∪(T cn\S) = T cn∪S and (T∪S)∩(T cn\S) = T∩(N \S) 6= ∅,
then uT∪ST cn\S = uT

cn∪S. By connectedness of T cn \ S and collusion neutrality,

fT cn\S(uT∪S) = fT cn\S(uT
cn∪S).

Since [T ∪ S]cn = T cn ∪ S, then by efficiency and very-null-player property,
fT cn∪S(uT∪S) = fT cn∪S(uT

cn∪S) = 1. Since T cn ∪ S = (T cn \ S) ∪ S and
(T cn \ S) ∩ S = ∅, then fT cn\S(uT∪S) = 1 − fS(uT∪S) and fT cn\S(uT

cn∪S) =
1− fS(uT

cn∪S). Therefore, fS(uT∪S) = fS(uT
cn∪S). �

Note that v(S) =
∑

T⊆S λT (v) =
∑

T∈P1
λT (v) and v(N\S) =

∑
T⊆N\S λT (v) =∑

T∈P2
λT (v). Hence using Claims 1-3,

fS(v) =
∑
T∈P1

λT (v)fS(uT ) +
∑
T∈P2

λT (v)fS(uT ) +
∑

T∈P3∪P4

λT (v)fS(uT )

= v(S) +
∑

T∈P3∪P4

λT (v)αS,
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and, since v(N) =
∑

T∈P1
λT (v) +

∑
T∈P2

λT (v) +
∑

T∈P3∪P4
λT (v)= v(S) +

v(N\S) +
∑

T∈P3∪P4
λT (v), then

∑
T∈P3∪P4

λT (v) = v(N) − v(S) − v(N\S).
Therefore, fS(v) = v(S) + αS[v(N) − v(S) − v(N \ S)]= (1− αS) v(S) +
αS[v(N)− v(N \ S)].

By the above lemma, the payoff to every player i ∈ N is obtained by sub-
tracting the payoffs to subtree coalitions which are the components (maximal
connected subsets) of N \{i} from the payoff to the grand coalition. We will
show, in the proof of our main result, that this payoff coincides with an affine
combination of hierarchical outcomes.

Theorem 2. A solution on V satisfies collusion neutrality, efficiency, very-
null-player property, and linearity if and only if it is an affine combination
of hierarchical solutions.

Proof. Let i ∈ N . Let d(i) be the number of components of N \ {i}. Let
D(i) ≡ {1, . . . , d(i)}. Let S1, S2, . . ., Sd(i) be the components of N\{i},
which are all subtree coalitions. Then

αi = 1− αS1 − · · · − αSd(i)
. (1)

By the previous lemma, for all j = 1, . . . , d(i),

fSj
(v) = (1− αSj

)v(Sj) + αSj
[v(N)− v(N \ Sj)].

For all t, i ∈ N , i’s t-hierarchical payoff hti is given by: if t = i,

hii(v) = v(N)−
∑

j∈D(i)

v(Sj),

and, if t 6= i and for some j = 1, . . . ,d(i), t ∈ Sj, then

hti(v) = v(N \ Sj)−
∑

k∈D(i)\j

v(Sk).

Note that i’s share in the hierarchical solutions depends only on the subtree
coalition to which the root belongs. Then, the payoff to player i is represented
by:

fi(v) = fN(v)− fS1(v)− · · · − fSd(i)
(v)

= v(N)−
∑

j∈D(i)

(1− αSj
)v(Sj)−

∑
j∈D(i)

αSj
[v(N)− v(N \ Sj)] (2)
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Note that
∑

j∈D(i) αSj
v(Sj) =

∑
j∈D(i)(

∑
k∈D(i) αSk

)v(Sj)−
∑

j∈D(i) αSj

∑
k∈D(i)\j v(Sk).

Using this, (2) can be rewritten by

fi(v) =
∑

j∈D(i)

αSj
[v(N \ Sj)−

∑
k∈D(i)\j

v(Sk)] + (1−
∑

j∈D(i)

αSj
)v(N) (3)

+
∑

j∈D(i)

 ∑
k∈D(i)\j

αSk

 v(Sj) +
∑

j∈D(i)

αSj
v(Sj)−

∑
j∈D(i)

v(Sj).

Since αSj
=

∑
t∈Sj

αt for each subtree Sj, it holds that αSj
[v(N \ Sj) −∑

k∈D(i)\j v(Sk)] =
∑

t∈Sj
αth

t
i(v, L) for 1 ≤ j ≤ d(i). Then, the first term in

the above equation equals the alpha-weighted sum of hierarchical solutions
(excluding i):

∑
t6=i αth

t
i(v, L). Then using (1), (3) can be written by:

fi(v) =
∑
t6=i

αth
t
i(v) + αi[v(N)−

∑
j∈D(i)

v(Sj)]

=
∑
t6=i

αth
t
i(v) + αih

i
i(v)

=
∑
t∈N

αth
t
i(v).

On the domain of tree-restricted games, all hierarchical solutions and
their affine combinations satisfy null-player property as shown by van den
Brink (2012).

Corollary 1. A solution on VL satisfies collusion neutrality, efficiency, null-
player property, and linearity if and only if it is an affine combination of
hierarchical solutions.

Proof. Note that all tree restricted games v ∈ VL can be represented by a
linear combination of the unanimity games of connected coalitions, that is,
v =

∑
T∈C(L) λT (v)uT , where C(L) is the set of connected subsets of N on L.

The rest of the proof is the same as in the proof of Lemma 1 and the proof
of Theorem 2.

The average tree solution (Herings et al., 2008) is a special example of
using equal weights, namely, f(v) = 1

n

∑
i∈N h

i(v). Herings et al (2008)
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provides an axiomatization of the average tree solution. Our main result gives
an alternative axiomatization. We only need to add the following minimal
equal treatment property.

Uniform Treatment of Uniforms (Ju et al., 2007). f1(u
N) = f2(u

N) =
· · · = fn(uN).

It follows from Theorem 2 that:

Corollary 2. A solution on V satisfies collusion neutrality, efficiency, very-
null-player property, linearity, and uniform treatment of uniforms if and
only if it is the average tree solution.

4 Pairwise Neutrality and Non-Bossiness

We now derive alternative characterization results using pairwise neutrality.
Our results in this section are obtained from the main results and equivalence
between collusion neutrality and the combination of pairwise neutrality and
the following axiom of non-bossiness, which says that if two linked players
cannot change their total payoff through their collusion, the payoffs of the
other players should not be changed either.2

Non-Bossiness. For all edges {i, j} ∈ L, if fi(v{i,j}) + fj(v{i,j}) = fi(v) +
fj(v), then for all h ∈ N\{i, j}, fh(v{i,j}) = fh(v).

Hierarchical solutions satisfy non-bossiness. To see this, for any link i, j
with i closer to the root, the total payoff of another player h 6= i, j depends
only on the worth of the coalition of h and all successors of h and the worths
of coalitions of each immediate successor of h and her successors. Since these
coalitions either include both i and j or include none of i and j, then the
coalitional worths are not affected by the collusion of i and j.

Lemma 2. Pairwise neutrality, non-bossiness, and linearity together imply
collusion neutrality.

Proof. Let f be a solution on V satisfying pairwise neutrality, non-bossiness,
and linearity.

First, we show that for all unanimity games uT and all connected S ⊆ N ,

fS(uTS ) = fS(uT ). (4)

2Ju (2012) considers a similar axiom in the framework of allocation problems.
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Case 1. T ∩ S = ∅ or S ⊆ T . In this case, uTS = uTand so (4) holds
trivially.

Case 2. T ∩ S 6= ∅ and S \ T 6= ∅. Since S is connected, there is
j1 ∈ S\T that is adjacent to a node h1 ∈ T ∩ S 6= ∅. Let J1 ≡ {j1} and
S1 ≡ [T ∩ S] ∪ J1. Next, if S 6= S1, there is j2 ∈ S\S1 that is adjacent to a
node h2 ∈ S1. Let J2 ≡ {j1, j2} and S2 ≡ [T ∩ S] ∪ J2. Continuing this way,
elements in S\T can be ordered as j1, j2, . . . , jM for some M such that for
some h1, h2, . . . , hM ∈ S, we have: for all m = 0, 1, . . . ,M , hm ∈ Sm−1 and
hmjm ∈ L, where J0 = ∅ and S0 ≡ T ∩ S.

For allm = 1, . . . ,M , by pairwise neutrality, fhmjm(uT∪Jm−1) = fhmjm(uT∪Jm).
Then by non-bossiness, fk(uT∪Jm−1) = fk(uT∪Jm), for all k ∈ S\{hm, jm}.
Hence, for allm = 1, . . . ,M , fS(uT∪Jm−1) = fS(uT∪Jm), which implies fS(uT ) =
fS(uT∪J1) = · · · = fS(uT∪JM ) = fS(uT∪S). Note that since T ∩ S 6= ∅,
fS(uT∪S) = fS(uTS ). Therefore we get fS(uTS ) = fS(uT ).

To show that fS(v) = fS(vS) for all v ∈ V and all S ∈ C(L), we use lin-
earity and the fact that all games can be represented by a linear combination
of unanimity games.

It follows from Lemma 2 and Theorem 2 that:

Theorem 3. The following are equivalent.
(i) Solution f on V satisfies pairwise neutrality, non-bossiness, efficiency,
very-null-player property, and linearity.
(ii) Solution f on V satisfies collusion neutrality, efficiency, very-null-player
property, and linearity.
(iii) Solution f is an affine combination of hierarchical solutions.

Proof. By Lemma 2, (i) implies (ii). Theorem 2 shows the equivalence be-
tween (ii) and (iii). Finally, as we have explained earlier, all hierarchical
solutions and their affine combinations satisfy the axioms in (i).

5 Concluding Remarks

A minimal equity condition is that in N -unanimity game uN where all play-
ers take uniform roles, no player should be punished when a player is not
punished.

Minimal Equity. There is no pair i, j ∈ N such that fi(u
N) < 0 ≤ fj(u

N).
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Efficiency and minimal equity together imply that for all i ∈ N , fi(u
N) ≥

0 and so all coefficients used in an affine combination of hierarchical solu-
tions in Theorem 2 should be non-negative. Thus adding minimal equity to
the four axioms in Theorem 2 and Corollary 1, we can characterize the fam-
ily of convex combinations (affine combinations with positive coefficients) of
hierarchical solutions.

Collusion neutrality in Theorem 2 cannot be replaced with pairwise neu-
trality. The next example shows that there are other solutions satisfying
pairwise neutrality and the other three axioms in the theorem.

Example. Let N = {1, 2, 3, 4} and L = {{1, 2}, {2, 3}, {3, 4}}. For all T ⊆
N , the unanimity game for T is denoted by uT . Define solution f on the set
of some of these unanimity games as follows:

f(uN) = (
1

4
,
1

4
,
1

4
,
1

4
) = f(u14) = f(u124) = f(u134),

f(u123) = f(u234) = (0,
1

2
,
1

2
, 0) = f(u13) = f(u24),

f(u23) = (0,
1

2
,
1

2
, 0),

f(u12) = (0, 1, 0, 0),

f(u34) = (0, 0, 1, 0).

Note that u12334 = uN , u1223 = u123, and u2312= u123. For all v ∈ V , when
v =

∑
T⊆N λT (v)uT for some (λT (v) ∈ R)T⊆N , f(v) ≡

∑
T⊆N λT (v)f(uT ).

Then it is easy to check that this solution satisfies pairwise neutrality, as well
as efficiency, very-null-player property, and linearity. However, collusion of
{2, 3, 4} at u13 reduces the total payoff from f234(u

13) = 1 to f234(u
13
234) =

f234(u
N) = 3/4. Hence the solution violates collusion neutrality.

On the domain of tree-restricted games, Mishra and Talman (2010) in-
troduce the following axiom as the key axiom characterizing the average tree
solution.

Independence in Unanimity Games, briefly IUG. For all T ⊆ N and all
j ∈ N \T , if T and T ∪{j} are connected, then for all i ∈ T with {i, j} /∈ L,
fi(u

T ) = fi(u
T∪{j}).

In the next lemma, we show that IUG together with the other axioms in
Theorem 2 imply pairwise neutrality and non-bossiness. Thus, by Lemma 2,
IUG also implies collusion neutrality.
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Lemma 3. Let f be a solution on VL satisfying efficiency, null player prop-
erty, and linearity. Then, if f satisfies IUG, then it satisfies pairwise neu-
trality and non-bossiness.

Proof. Let f be a solution on VL satisfying IUG as well as efficiency, null
player property, and linearity. First, we show that for all connected T ⊆ N ,
all ij ∈ L, and all k ∈ N \ {i, j}, fij(uT ) = fij(u

T
ij) and fk(uT ) = fk(uTij). If

T ∩{i, j} = ∅ or T ∩{i, j} = {i, j}, then uTij = uTand all of equalities trivially
hold. Without loss of generality, the remaining case is that T ∪ {i, j} = {i}.
Since uTij = uT∪{j}, IUG implies fk(uT ) = fk(uT∪{j}), for all k ∈ T \ {i}.
Combining this with efficiency leads to fij(u

T ) = fij(u
T∪{j}) = fij(u

T
ij).

Also, fk(uT ) = fk(uT∪{j}) holds for all k ∈ N \ {i, j} by IUG and null player
property. Finally, to show that fij(v) = fij(vij) and fk(vij) = fk(v) for all
v ∈ V , all ij ∈ L, and all k ∈ N \{i, j}, we use linearity and the fact that all
games can be represented by a linear combination of unanimity games.

Using this lemma and the earlier results, we get:

Corollary 3. The following are equivalent.
(i) Solution f on VL satisfies IUG, efficiency, null-player property, and lin-
earity.
(ii) Solution f on VL satisfies pairwise neutrality, non-bossiness, efficiency,
null-player property, and linearity.
(iii) Solution f on VL satisfies collusion neutrality, efficiency, null-player
property, and linearity.
(iv) Solution f is an affine combination of hierarchical solutions.

The main characterization results by Mishra and Talman (2010) is also
obtained as a corollary.

Corollary 4. A solution on VL satisfies IUG (or pairwise neutrality and
non-bossiness), efficiency, null-player property, linearity, and uniform treat-
ment of uniforms if and only if it is the average tree solution.

Proof. This follows from Corollaries 1, 2, and 3 and Theorem 3, and the fact
that on VL, all hierarchical solutions satisfy null-player property as explained
earlier.

van den Brink (2009) establishes a related result to this corollary (with
pairwise neutrality and non-bossiness) imposing an axiom which is similar
to the combination of non-bossiness and uniform treatment of uniforms.
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