
Solving Reduced-form Linear Rational Expectations

Models⇤

Jae Won Lee† Woong Yong Park‡

Abstract

This paper proposes an improvement on popular solution methods for linear rational ex-

pectations models (for example, Sims 2002) in terms of computational performance: When

a model can be transformed into a reduced form, the QZ decomposition to decouple the

dynamics of the stable and unstable block of the model can be replaced with the Schur de-

composition. The latter runs faster. The new method is applicable to a wide class of models

in the literature. It is especially useful for a large-scale model such as a multisector model

and a heterogeneous agent model that are increasingly popular recently. Compared to the

method that uses the QZ decomposition, the new method that uses the Schur decomposition

reduces computing time by 33.0% for a medium-scale model with 39 equations and 91.3% for

a large-scale model with 1,908 equations.
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1 Introduction

Quantitative macroeconomic analysis using estimated dynamic stochastic general equilibrium (DSGE)

models, best exemplified by Smets and Wouters (2007), has become popular in academia and in
⇤
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central banks around the world. One of the key steps of such analysis is to solve the equilibrium

equations of a DSGE model that are presented as a system of linear expectational difference equa-

tions or a linear rational expectations model. Starting with Blanchard and Kahn (1980), several

methods to solve linear rational expectations models have been proposed in the literature. The

solution methods that were later developed, such as Uhlig (1999), Klein (2000) and Sims (2002),

use the QZ decomposition (or the generalized Schur decomposition) to decouple the stable and

unstable block of the system. While the QZ decomposition has general applicability, it comes with

computational costs that can grow rapidly as the dimensionality of the model increases or the

model has to be solved many times for a Monte Carlo simulation. It can be prohibitively slow

for large-scale models such as a multisector model with the production network and a model with

heterogeneous agents, both of which are increasingly popular recently in macroeconomic research.

This paper shows that such a curse-of-dimensionality problem can be addressed without a

dramatic change to the existing solution methods. Specifically, we propose to replace the QZ

decomposition with the Schur decomposition based on an observation that most of the DSGE

models in the literature can be transformed into a reduced form. Since the QZ decomposition

operates on two coefficient matrices simultaneously while the Schur decomposition operates on

a single coefficient matrix, the latter runs faster. This may sound obvious. Using the Schur

decomposition, however, incurs an extra computational cost to transform a model into a reduced

form. What is less obvious is then whether there is still a computational gain when one takes into

account the extra cost, and the gain is significant in practice. Another issue is whether the method

is widely applicable and easy to use.

We address these questions and describe how to use the Schur decomposition within the frame-

work of the solution method by Sims (2002), better known by its computer code name gensys.

We check and report the performance improvement of the new method over the method by Sims

(2002) for models of different sizes. The performance gain that obtains by transforming models

into a reduced form and using the Schur decomposition, in terms of computing time reduction,

ranges from 33.0% for a medium-scale model with 39 equations to 91.3% for a large-scale model

with 1,908 equations.
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The solution method by Sims (2002) is widely used because of its general and easy applicability.

It does not require specifying jump and predetermined variables but explicitly recognizes that

expectational errors are naturally attached to equations in rational expectations models. As it

uses the QZ decomposition, one can flexibly write a DSGE model and add auxiliary equations

without worrying about recasting the model into a reduced form. We later illustrate an example

where a DSGE model cannot be transformed into a reduced form so the new method with the Schur

decomposition cannot be immediately applied. Such models, however, can be easily modified and

recast into a reduced form. Thus our advice is that one use the method with the QZ decomposition

when he or she does not want to worry about transforming a DSGE model into a reduced form

and does not have to solve the model many times, for example in a development stage, and use the

new method with the Schur decomposition when computation time is a concern of the first order,

for example in an estimation stage. To this end, we provide two Matlab codes on our websites

that implement the original method by Sims (2002) and our method. The first one, gensys2.m,

is a general version that chooses between the QZ decomposition and the Schur decomposition

depending on transformability of a model into a reduced form. The second one, rfsys.m, uses the

Schur decomposition to solve reduced-form models only. The second code is faster than the first

code since some steps of the solution method can be simplified. A user can also choose a faster

way to transform a model into a reduced form for his or her own application.

While our proposition is applicable to a wide range of linear rational expectations models,

we expect that it will be especially useful to the growing literature that employs multisector

models.1 Most of the existing studies in this literature rely on simulation exercises with fixed

parameterization. We observe that the curse of dimensionality is an important reason for the

literature to fail to take a full advantage of modern statistical methods, typically showcased in

the Bayesian DSGE estimation (see Fernandez-Villaverde, Rubio-Ramirez, and Schorfheide (2016)

for a recent survey). Though a small number of papers move further and try to estimate their

multisector models, they have to keep the number of sectors manageable and estimate their models
1
Long and Plosser (1983), Horvath (1998, 2000) and Dupor (1999) are early papers that consider multisector

DSGE models. More recent contributions include Foerster et al. (2011), Acemoglu et al. (2012), Carvalho and

Gabaix (2013), Atalay (2017), Carvalho and Tahbaz-Salehi (2018), Miranda-Pinto and Young (2019), Carvalho, Lee

and Park (2020), and Pasten, Schoenle and Weber (2020).
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on moderately disaggregated data (for example, see Bouakez, Cardia and Ruge-Murcia 2009 and

Carvalho, Lee and Park 2020). This paper shows that a seemingly small change to the original

solution method of linear rational expectations models could open the door to the estimation of

multisector models on highly disaggregated data, which in our view is an issue of the first order in

the quantitative analysis using multisector models.

A solution method of a linear rational expectations model is not just useful for a linear or

log-linearized DSGE model. It is also used as an input when solving DSGE models up to sec-

ond or higher (for example, see Schmitt-Grohe and Uribe 2004 and Kim, Kim, Schaumburg and

Sims 2008). Our method with the Schur decomposition thus can be used when working with a

higher-order approximation as well. Ahn, Kaplan, Moll, Winberry and Wolf (2018) use the Schur

decomposition to solve a linearized general equilibrium heterogeneous agent model with aggregate

shocks. However, the system of equilibrium equations of their continuous-time model lends itself

naturally to the Schur decomposition without the need to be transformed to a reduced form as in

our method.

2 Method

2.1 Detail

A linear rational expectations model can be written in the following canonical form of Sims (2002)

�0y (t) = �1y (t� 1) + C + z (t) + ⇧⌘ (t) , (1)

for t = 1, 2, · · ·, where y (t) is an n ⇥ n vector of variables, z (t) is an m ⇥ 1 vector of exogenous

shocks, ⌘ (t) is a p ⇥ 1 vector of expectational errors with Et⌘ (t+ 1) = 0 for all t, and C is an

n⇥1 vector of constants. Coefficient matrices �0, �1,  , and ⇧ are n⇥n, n⇥n, n⇥m, and n⇥p,

respectively. It is assumed that there is a common bound ⇠̄ on the maximal growth rate of the

variables in y. Typically ⇠̄ is set slightly above a unity so that unit roots are classified as stable.
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Suppose that �0 is invertible and the canonical form (1) is recast into the form

y (t) = �̃1y (t� 1) + C̃ +  ̃z (t) + ⇧̃⌘ (t) , (2)

for t = 1, 2, · · ·, where �̃1 = ��1
0 �1, C̃ = ��1

0 C,  ̃ = ��1
0  , and ⇧̃ = ��1

0 ⇧. We call (2) a

reduced form of the linear rational expectations model (1) following the simultaneous equations

model literature. Once a linear rational expectations model is transformed into a reduced form,

the Schur decomposition can be applied in lieu of the QZ decomposition to decouple the stable

and unstable block of the system. The former is faster than the latter.

Note that the entries of �̃1 of all the models that we consider are real. Then there always exists

a Schur decomposition of �̃1 such that

�̃1 = Q⌦Q0, (3)

where Q is unitary with QQ0 = Q0Q = In and ⌦ is upper block-triangular or upper quasi-triangular

with 1⇥ 1 or 2⇥ 2 diagonal blocks (Golub and Van Loan 1996). The entries of both Q and ⌦ are

real. The real eigenvalues of �̃1 are in 1⇥1 blocks of the diagonal of ⌦ while its complex conjugate

eigenvalue pairs are given as the eigenvalues of 2⇥ 2 blocks on the diagonal of ⌦. We organize Q

and ⌦ so that the eigenvalues smaller than ⇠̄ in modulus appear on the upper left diagonal of ⌦

and those that are greater than or equal to ⇠̄ in modulus appear on the lower right diagonal of ⌦.

We can now proceed with (3) and decouple the system of equations (2) into the stable and

unstable block. After such decoupling, the procedures that follow are exactly identical to those in

Sims (2002) once we let �0 = In and �1 = �̃1, C = C̃,  =  ̃, and ⇧ = ⇧̃ in the canonical form

(1). Since the QZ decomposition of an identity matrix is trivially the same identity matrix, some

expressions of Sims (2002) can be simplified.

Before concluding this subsection, we make two additional points on the Schur decomposition.

First, we obtain an extra computational gain by using a real from of the Schur decomposition in
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(3) rather than its complex form. Suppose that ⌦ in (3) is partitioned as follows:

⌦ =

2

664
⌦11 ⌦12

0n2⇥n1 ⌦22

3

775 ,

where ⌦11, ⌦12, and ⌦22 are n1 ⇥ n1, n1 ⇥ n2, and n2 ⇥ n2, respectively, with n1 + n2 = n. Then

⌦11 and ⌦22 are also upper quasi-triangular, and the set of the eigenvalues of ⌦ is the union of

the eigenvalues of ⌦11 and ⌦22. For s = 1, 2, · · ·, (⌦22)
s is again upper quasi-triangular, and its

eigenvalues are those of ⌦22 raised to the power of s. Therefore, even if ⌦ is not strictly upper

triangular, the solution method of Sims (2002) works fine. In the complex form of the Schur

decomposition, on the other hand, ⌦ is given as strictly upper triangular, and all the eigenvalues,

real and complex, are placed on its diagonal. To highlight the performance gain of using a real

form rather than its complex form, we later report the results in both cases.2

Second, although one can use the Jordan decomposition rather than the Schur decomposition

to decompose �̃1, the Schur decomposition is usually preferred in practical applications. The main

reason is the difficulty in developing a stable numerical algorithm for the Jordan decomposition,

as discussed, for example, in Golub and Van Loan (1996). In the special case where �̃1 has no

repeated eigenvalues, one can use the standard eigenvalue decomposition as in Blanchard and

Kahn (1980) for which a robust numerical algorithm is available. Repeated eigenvalues, however,

frequently show up in applications.

2.2 Invertibility of �0

The Schur decomposition speeds up solving linear rational expectations models, but at the expense

of generality. Thus a natural question is whether the new method is widely applicable. A necessary
2
It is straightforward to compute the eigenvalues of �̃1 from ⌦. The QZ decomposition also has a real form.

It is faster to compute the real QZ decomposition than the complex QZ decomposition. However, it requires

more work in Matlab to extract the generalized eigenvalues from the upper quasi-triangular matrix of the real QZ

decomposition than from the strictly upper triangular matrix of the complex QZ decomposition. So, depending on

the size of a model, the extra cost to compute the generalized eigenvalues from the real QZ decomposition could be

larger in Matlab than its performance gain compared to the complex QZ decomposition. The Lapack routine dgges,
which is used by Matlab to compute the real QZ decomposition, originally returns the generalized eigenvalues but

Matlab does not return them. Function schur of Julia and function qz of package QZ of R return the generalized

eigenvalues computed by dgges.
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condition for a linear rational expectations model to be transformed into a reduced form is that

all model variables, endogenous and exogenous, appear on the left hand side of (1) at least once.

Otherwise �0 would not be invertible. For illustration, let us consider a simple example where the

dynamics of inflation ⇡t is given as

⇡t = �Et⇡t+1 + ut, (4)

for t = 1, 2, · · · where ut is serially independent with Etut+1 = 0. If 0 < � < 1, (4) has a unique

solution ⇡t = ut. Now suppose that we are also interested in two step-ahead expected inflation so

we add ⇡t+2|t = Et⇡t+2 to (4). The dynamics of ⇡t does not change so the solution is still ⇡t = ut,

which implies that ⇡t+2|t = 0. The following canonical form of the extended model however cannot

be transformed to a reduced form since ⇡t+2|t does not show up on the left hand side:

2

6666664

1 �� 0

1 0 0

0 1 0

3

7777775

2

6666664

⇡t

⇡t+1|t

⇡t+2|t

3

7777775
=

2

6666664

0 0 0

0 1 0

0 0 1

3

7777775

2

6666664

⇡t�1

⇡t|t�1

⇡t+1|t�1

3

7777775
+

2

6666664

1

0

0

3

7777775
ut +

2

6666664

0 0

1 0

0 1

3

7777775

2

664
⌘1t

⌘2t

3

775 ,

where ⇡t+j|t = Et⇡t+j, ⌘1t = ⇡t � ⇡t|t�1 and ⌘2t = ⇡t+1|t � ⇡t+1|t�1.

For most of the DSGE models in the literature, �0 is invertible but there are some exceptions,

one of which is the model of Smets and Wouters (2007). It cannot be immediately transformed

into a reduced form since the real interest rate in its flexible-price part does not appear on the

left hand side of the canonical form as in the simple example above. We argue that our method

is still viable as one can examine the system of equations and modify it for invertibility into a

reduced form. In the simple example above, we can easily reduce the extended model into the

original model and add an equation for two step-ahead expected inflation, which is a function of

the solution for inflation, afterwards. In Smets and Wouters (2007), the real interest rate of the

flexible-price part can be eliminated from the system and the reduced system can be solved using

our method. The solution for the real interest rate in terms of the other endogenous variables can

be easily added after the reduced system is solved.

An extra computational cost to invert �0 is incurred when a linear rational expectations model

is transformed into a reduced form. But the cost is smaller in many cases than the performance
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gain of switching from the QZ decomposition to the Schur decomposition. The extra cost is

also partially compensated because some matrix inversions during the solution procedure become

unnecessary with the Schur decomposition. For some DSGE models in the literature, such as a

simple 3-equation New Keynesian model, the medium-scale model by Smets and Wouters (2007)

(after the aforementioned treatment), and the multisector model by Carvalho, Lee and Park (2020),

�0 can be inverted analytically before solving those models. Since �0 does not have to be inverted

numerically every time, we can save some time further.3

3 Performance comparison

In this section the solution method with the Schur decomposition is compared to the original

method with the QZ decomposition in terms of computing time to solve several DSGE models,

from a small scale to a medium scale and to a large scale.4 For fair comparison, we invert �0 every

time and include its time to the computing time of the method with the Schur decomposition.

To separately figure out the performance gain of using a real form of the Schur decomposition

rather than its complex form, we try both real and complex form of the Schur decomposition and

compare them in terms of computing time.

The new method is tested with the following DSGE models. The first model is a simple New

Keynesian model that has 3 equations. Then we consider the model of Smets and Wouters (2007)

and the model of Carvalho, Lee and Park (2020) that can be considered as a medium-scale model

with 39 and 144 equations, respectively. While the model of Smets and Wouters (2007) is a single-

sector New Keynesian model, the model of Carvalho, Lee and Park (2020) is a multisector New

Keynesian model with 27 sectors and the roundabout production structure. Lastly, the multisector
3
Typically �0 can be analytically inverted if the steady state of a DSGE model does not appear in the equilibrium

equations. Even if the steady state of a DSGE model enters the equilibrium equations, it can be analytically inverted

if the steady state of a DSGE model can be solved analytically – as is the case for many multisector models. For

a large-scale model with hundreds or thousands of equations, one can use a symbolic mathematics package such

as Symbolic Math Toolbox of Matlab to invert �0. However, it is found in simulation exercises that the gain of

inverting �0 analytically can be smaller than the cost of numerically evaluating ��1
0 for complicated DSGE models.

Later in Section 3, we compare the performance of the original method and the new method by numerically inverting

�0 for consistency across different models.
4
We make a few changes in the original gensys Matlab code written by Chris Sims so that it works as similarly

to the code that implements the new method as possible. Some of these changes were taken from the most recent

version of gensys, which is written in R by Chris Sims.
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Figure 1: Computing time comparison
Note: The computing time of the solution method with the Schur decomposition includes time to invert �0 nu-

merically. The reduction in time is computed relative to the method using the complex QZ decomposition. The

computing time is the average computing time of multiple runs for each model. The exercise is done in Matlab on

a computer that is equipped with Intel Xeon CPU E5-2640 v3 (4 physical cores) and 32GB RAM. The details of

the comparison exercise are given in the appendix.

New Keynesian model of Lee and Park (2020) is solved with different numbers of sectors. It does not

have the roundabout production structure but features a kinked demand function for consumption

goods. The largest number of sectors that we consider for the model of Lee and Park (2020) is 272,

which is the number of the consumer product categories (entry level items) on which Nakamura

and Steinsson (2008) estimate a number of price facts.

The result is reported in Figure 1 and Table 1. First, observe that the computing time to

solve a DSGE model rises fast with the dimensionality of the model. It takes almost a minute to

solve the model of Lee and Park (2020) with most disaggregate sectors, which is too slow for any

realistic simulation and estimation exercises. The computing time is greatly reduced with the Schur

decomposition and the reduction in time is bigger with its real form. The relative performance

gain is bigger for a larger-scale model. It reaches almost 90% as the number of equations of a

model becomes greater than 1,000.
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Table 1: Computing time comparison

Models Number of Computing time (seconds) Reduction
equations complex

QZ
complex
Schur

real
Schur

in time (%)

(1) (2) (1) (2)

Simple NK model 3 0.00018 0.00014 0.00007 22.2 59.5

Smets and Wouters (2007) 39 0.0011 0.0009 0.0007 18.0 33.0

Carvalho, Lee and Park (2020) 144 0.0119 0.0104 0.0072 13.0 39.9

Lee and Park (2020)

with number of sectors 2 18 0.0005 0.0004 0.0003 22.1 46.5

10 74 0.0060 0.0028 0.0023 53.1 61.3

25 179 0.0637 0.0194 0.0181 69.6 71.6

50 354 0.2963 0.0870 0.0594 70.6 80.0

75 529 0.8937 0.2585 0.1828 71.1 79.5

100 704 2.4731 0.5332 0.3732 78.4 84.9

150 1,054 8.5612 1.5532 0.8941 81.9 89.6

200 1,404 20.8134 3.9729 1.8538 80.9 91.1

250 1,754 44.4219 8.3771 3.6041 81.1 91.9

272 1,908 55.9110 11.2089 4.8719 80.0 91.3

Note: See the note for Figure 1.

4 Conclusion

The original method using the QZ decomposition proposed by Sims (2002) is powerful since one

does not have to care about non-invertibility of �0. However, it comes with a cost of relatively slow

performance, which can increase rapidly in the dimensionality of a model. The cost is multiplied

by millions when one has to solve the model millions of times for a Monte Carlo simulation.

We propose to use the Schur decomposition in lieu of the QZ decomposition after transforming

a DSGE model into a reduced form. By switching to the Schur decomposition, we can reduce com-

puting time substantially, up to to 91.3% for a large-scale model with 1,908 equations. Therefore,

an efficient strategy would be that one uses the method with the QZ decomposition when he or

she does not have to solve a model many times, for example in a development stage, and uses the

method with the Schur decomposition when the model has to be solved many times, for example

in an estimation stage.
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Appendix

A Details of the performance comparison exercise

We solve the models multiple times and compute the average computing time per run. The number

of runs are: 1,000,000 for the simple New Keynesian model and Smets and Wouters (2007) model;

100,000 for Carvalho, Lee and Park (2020); and 100,000 for the 2-sector model, 10,000 for the

10-sector, 25-sector, 50-sector model, 1,000 for the 75-sector, 100-sector, 150-sector, 200-sector,

250-sector, 272-sector of Lee and Park (2020). For larger models, we invert �0 using reusable

matrix decompositions in Matlab for faster inversion.
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Details of the solution method
for

Solving Reduced-form Linear Rational Expectations Models ⇤

This note presents the details of the solution method using the Schur decomposition.

A linear rational expectations model can be written in the following canonical form of Sims (2002)

�0y (t) = �1y (t� 1) + C + z (t) +⇧⌘ (t) , (1)

for t = 1, 2, · · · , where y (t) is an n ⇥ n vector of variables, z (t) is an m ⇥ 1 vector of exogenous shocks, ⌘ (t) is a

p⇥ 1 vector of expectational errors with Et⌘ (t+ 1) = 0 for all t, and C is an n⇥ 1 vector of constants. Coefficient

matrices �0, �1,  , and ⇧ are n⇥ n, n⇥ n, n⇥m, and n⇥ p, respectively. It is assumed that there is a common

bound ⇠̄ on the maximal growth rate of the variables in y. Typically ⇠̄ is set slightly above a unity so that unit

roots are classified as stable.

If �0 is invertible, the canonical form (1) can be recast into the form

y (t) = �̃1y (t� 1) + C̃ +  ̃z (t) + ⇧̃⌘ (t) , (2)

for t = 1, 2, · · · , T , where �̃1 = ��1
0 �1, C̃ = ��1

0 C,  ̃ = ��1
0  , and ⇧̃ = ��1

0 ⇧. There always exists a Schur

decomposition of �̃1 such that

�̃1 = Q⌦Q0, (3)

where Q is unitary with QQ0 = Q0Q = In and ⌦ is upper block-triangular or upper quasi-triangular with 1⇥ 1 or

2⇥ 2 diagonal blocks. Note that Q0
is the conjugate transpose of Q.

Let w (t) = Q0y (t) and pre-multiply both sides of (2) with Q0
to obtain

w (t) = ⌦w (t� 1) +Q0
h
C̃ +  ̃z (t) + ⇧̃⌘ (t)

i
. (4)

The diagonal entries of ⌦ are the eigenvalues of �̃1. Let us denote the eigenvalues of �̃1 with {!ii}ni=1. Note that

some of the eigenvalues can be repeated. We can rearrange the Schur decomposition (3) so that !ii’s are placed

in the ascending order: |!ii|  |!jj | if 1  i < j  n. Suppose that there are k eigenvalues smaller than ⇠̄ in the

absolute value: |!ii| < ⇠̄ for 1  i  k. We can partition ⌦ accordingly such that

⌦ =

"
⌦11 ⌦12

0 ⌦22

#
,

where ⌦11 is a k ⇥ k matrix whose diagonal entries are {!ii}ki=1 and ⌦22 is an (n� k) ⇥ (n� k) matrix whose

⇤Jae Won Lee (University of Virginia) and Woong Yong Park (Seoul National University). First version: May 2020. This note
follows the description of the solution method by Sims (2002).
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diagonal entries are {!ii}ni=k+1. The vectors and matrices in (4) can be partitioned in the same way

"
w1 (t)

w2 (t)

#
=

"
⌦11 ⌦12

0 ⌦22

#"
w1 (t� 1)

w2 (t� 1)

#
+

"
Q1·

Q2·

# h
C̃ +  ̃z (t) + ⇧̃⌘ (t)

i
, (5)

where

Q0 =

"
Q1·

Q2·

#
.

Now note that the lower block of equations in (5) is explosive since the eigenvalues of ⌦22 are greater than or

equal to the bound ⇠̄. It has a solution that does not explode so long as we solve it forward to make w2 as a function

of future z’s. Let us define

x2 (t) = Q2·

h
C̃ +  ̃z (t) + ⇧̃⌘ (t)

i
.

It follows that

w2 (t) = ⌦
�1
22 w2 (t+ 1)� ⌦�1

22 x2 (t+ 1)

= lim
s!1

⌦�s
22 w2 (t+ s)�

1X

s=1

⌦�s
22 x2 (t+ s)

= �
1X

s=1

⌦�s
22 x2 (t+ s) , (6)

where in the last equality it is assumed that ⌦�s
22 w2 (t+ s) tends to 0 as s tends to infinity, which will be verified

later. This equation implies that the expectational errors should endogenously fluctuate to equate the variable

known in period t on the left hand side and a function of the future values on the right hand side. Note that

1X

s=1

⌦�s
22 Q2·⇧̃⌘ (t+ s) =

1X

s=1

⌦�s
22 Q2· ̃ [Etz (t+ s)� z (t+ s)] ,

which leads to

Q2·⇧̃⌘ (t+ 1) =
1X

s=1

⌦�s+1
22 Q2· ̃ [Etz (t+ s)� Et+1z (t+ s)] .

For such ⌘ (t) to exist, it is required that

span

⇣
Q2·⇧̃

⌘
� span

✓n
⌦�s

22 Q2· ̃
on�k

s=1

◆
, (7)

according to Sims (2002). If z (t) is serially uncorrelated, the existence condition (7) is reduced to

Q2·⇧̃⌘ (t+ 1) = �Q2· ̃z (t+ 1) ,

which requires that

span

⇣
Q2·⇧̃

⌘
� span

⇣
Q2· ̃

⌘
.

Once we confirm that such ⌘ (t) exists, we can take expectations conditional on the information set available in

period t on both sides of (6) to obtain

w2 (t) = �
1X

s=1

⌦�s
22 Q2·Et

h
C̃ +  ̃z (t+ s)

i
= (I � ⌦22)

�1 Q2·C̃ �
1X

s=1

⌦�s
22 Q2· ̃Etz (t+ s) . (8)
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If z (t) is serially uncorrelated, the solution for w2 (t) is simplified to

w2 (t) = (I � ⌦22)
�1 Q2·C̃.

For the system to have a unique solution, we should be able to pin down the expectational errors for the stable

block using the solution found by solving the unstable block forward. Specifically, there should exist a k ⇥ (n� k)

matrix � such that

Q1·⇧̃ = �Q2·⇧̃.

Suppose that such � exists. Then (5) leads to

"
Ik ��
0 In�k

#
w (t) =

"
⌦11 ⌦12 � �⌦22

0 ⌦22

#
w (t� 1)+

"
Q1· � �Q2·

Q2·

#
C̃+

"
Q1· � �Q2·

Q2·

#
 ̃z (t)+

"
0

Q2·

#
⇧̃⌘ (t) .

Replace the process for w2 (t) with its solution (8) to obtain

w (t) =

"
⌦11 ⌦12 � �⌦22

0 0

#
w (t� 1) +

"
Q1· � �

h
I � (I � ⌦22)

�1
i
Q2·

(I � ⌦22)
�1 Q2·

#
C̃ +

"
Q1· � �Q2·

0

#
 ̃z (t)

�
"
�

I

# 1X

s=1

⌦�s
22 Q2· ̃Etz (t+ s) ,

which, by pre-multiplying Q =
h
Q·1 Q·2

i
, can be transformed to,

y (t) = Q·1

h
⌦11 ⌦12 � �⌦22

i
Q0y (t� 1) +Q

"
Q1· � �

h
I � (I � ⌦22)

�1
i
Q2·

(I � ⌦22)
�1 Q2·

#
C̃

+Q·1 (Q1· � �Q2·)  ̃z (t)� (Q·1�+Q·2)
1X

s=1

⌦�s
22 Q2· ̃Etz (t+ s) .

If z (t) is serially uncorrelated, the solution is reduced to

y (t) = Q·1

h
⌦11 ⌦12 � �⌦22

i
Q0y (t� 1) +Q

"
Q1· � �

h
I � (I � ⌦22)

�1
i
Q2·

(I � ⌦22)
�1 Q2·

#
C̃ +Q·1 (Q1· � �Q2·)  ̃z (t) .

If there are no stable roots, that is k = 0, Q = Q2· = Q·2 and the solution is simply

y (t) = Q·2 (I � ⌦22)
�1 Q2·C̃ �Q·2

1X

s=1

⌦�s
22 Q2· ̃Etz (t+ s) .

If z (t) is serially uncorrelated, the solution is simplified to

y (t) = Q·2 (I � ⌦22)
�1 Q2·C̃.
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