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Abstract

This paper provides experimental evidence on the impacts of irreversibility and
imperfect monitoring on the efficiency and the equity of repeated public goods
game. We find that irreversibility and imperfect monitoring both lead to ineffi-
cient and unequal outcomes through different channels. Irreversibility lowers public
goods contribution in earlier periods and makes the initial-period contribution gap
between two players long-lasting. Imperfect monitoring hampers conditional coop-
eration and reduces group contribution persistently. A finite mixture estimation
with conditional cooperator provides a coherent account of the treatment effects.
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1 Introduction

In many economic and social settings, agents have incentives to free ride and benefit from
others’ contributions, often leading to sub-optimal outcomes. Repeated interactions can
help resolve this problem when long term benefits from mutual cooperation outweigh a
short term individual gain of free-riding. When a deviation from a cooperative path is
observed, players punish the defector by choosing a non-cooperative behavior. If they are
sufficiently patient, such a punishment threat can deter players from deviating for short
term gains (e.g., Abreu, 1988 and Maskin and Fudenberg, 1986). The power of dynamic
incentives to sustain cooperation can, however, be limited if the actions of others are
imperfectly observed and the level of individual contribution is constrained to be non-
decreasing. This paper examines experimentally the roles of irreversibility of actions and
imperfect monitoring in cooperation in dynamic interaction.

When actions are constrained to be irreversible, cooperation must occur gradually
over time (e.g., Lockwood and Thomas, 2002 and Marx and Matthews, 2000). This is
because the threat to return to a non-cooperative outcome is no longer available and
the only threat available is the withdrawal of future contributions. Players must then
build up cooperation gradually. Such gradualism will delay players’ reaching contribution
levels close to the efficient level, reducing efficiency. When imperfect monitoring is added,
however, Guéron (2015) shows that, under some continuity assumptions, there cannot be
any contributions in equilibrium. The reason is that as increments in cooperation become
arbitrarily small, any given monitoring technology will no longer be sufficiently precise
to detect deviations, leading to the unravelling of any potential cooperative equilibrium.

The stage game of our experiment is a continuous action prisoner’s dilemma with a
linear kinked payoff structure in which free riding is strictly dominant for each player and
there exists an upper bound on the limits of cooperation as socially optimal. The structure
is similar to that of a linear public goods game until the kink, after which contributions
no longer generate any benefits. The introduction of this upper bound reflects the fact
that returns to contribution to the public good eventually decrease with the level of
contributions.1 Moreover, it allows to study efficiency and equality independently of one
another. Indeed, in a standard public good game, the sum of payoffs is maximal when
all contribute the full amount of their endowment. In contrast, in our setting, the sum of
payoffs is maximal when the sum of contributions reaches a certain threshold, irrespective
of how this is shared between players. This allows us to investigate inequality between
players irrespective of efficiency.

1See, for the application of the diminishing returns of the public good, Demsetz (1970), Laury et al.
(1999) and Battaglini et al. (2016).
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We study four different types of dynamic games with reversible or irreversible actions,
and perfect or imperfect public monitoring. With reversible actions, theory predicts that
all feasible and individually rational payoffs can be obtained in equilibrium, both under
perfect or imperfect monitoring. With irreversibility and perfect monitoring, the Pareto
frontier of the equilibrium payoff set is now bounded away from the Pareto frontier of
the feasible payoff set because of the inefficiency induced by gradualism (Lockwood and
Thomas, 2002). Finally, with both irreversibility and imperfect monitoring, no coopera-
tion is feasible in equilibrium (Guéron, 2015).

By using the comparative static comparison of equilibrium sets across treatments, we
make two hypotheses that can be tested with our experimental data. First, irreversibility
of actions lowers subjects’ payoffs both in the games with perfect monitoring and in the
games with imperfect monitoring. Second, imperfect monitoring lower subjects’ payoffs
in the games with irreversible actions but does not affect their payoffs in the games with
reversible actions.

Both irreversibility and imperfect monitoring cause significant efficiency losses in our
experiment. Defining the efficiency ratio as the ratio of the sum of the supergame payoffs
of players and the maximal possible sum of the supergame payoffs in excess over the stage-
game Nash equilibrium payoff, we observe a 36 percentage-point decline in efficiency due
to irreversibility and a 15 percentage-point drop due to imperfect monitoring. Under
irreversibility, inefficiency is caused by a delay in cooperation, as evidenced by the fact
that cooperation is reduced mostly in the early periods of the game. In contrast, imperfect
monitoring reduces group contributions persistently over all periods.

Our study can also shed some light on the sources of inequality, as we find that
both irreversibility and imperfect monitoring tend to increase payoff inequality between
players. Introducing the inequality ratio as the absolute value of the difference between
the two players’ supergame payoffs, normalized by their sum, we find that irreversibility
increases inequality by a six percentage point while imperfect monitoring does so by a
four percentage point. Under irreversibility, a gap in contributions at the initial period
is not easily corrected and persists throughout the game.

To make a behavioral account of the treatment effects on efficiency and equity, we
implement a finite mixture estimation and infer the proportion of conditional cooperator
across the treatments. We find that irreversibility increases the proportion of conditional
cooperator, whereas imperfect monitoring lowers it. Using our estimation of conditional
cooperation, along with the behavior of subjects at the initial period, we then simulate the
contribution paths of players across all treatments. The resulting efficiency and equality
ratios are closely in line with our data, suggesting that this mixture model can provide a
coherent account of the experimental evidence.
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Our paper contributes to the experimental literature on dynamic games with irre-
versible actions. Studies of sequential provision of public goods (Dorsey, 1992; Duffy
et al., 2007; Choi et al., 2008; Diev and Hichri, 2008; Choi et al., 2011) consider how a
gradual decision process can affect the provision in a static public goods game. Though
the decision is made over multiple periods, players’ utilities are determined only by the
final level of the public good in those studies. In our setup, each period is a distinct stage
game with a flow payoff for each player.

The most closely related paper is Battaglini et al. (2016). In their irreversibility
treatment, players can not decrease the amount of public goods contribution over periods
which is a similar design to us. However, their reversibility treatment is also a dynamic
game, but in which the public contributions can be scaled back in the future. They find
that irreversibility leads to higher public good production than reversible investment. In
contrast, we consider the irreversibility of actions in the standard setting of a repeated
prisoner’s dilemma game and find that it leads to higher inefficiency and more unequal
outcomes than reversible actions.2

We also contribute to the experimental literature on repeated games. Many studies
on infinitely repeated prisoner’s dilemma games have focused on identifying complicated
history-dependent strategies and understanding the determinants of cooperation (Dal Bó,
2005; Blonski et al., 2011; Fudenberg et al., 2012; Sherstyuk et al., 2013).3 They find
that going from a one-shot prisoner’s dilemma games to an infinitely repeated game
increases the rate of cooperative behavior significantly. Our study is the first experimental
paper that examines the joint effects of irreversibility and imperfect monitoring on both
efficiency and equality, in a prisoner’s dilemma setting.

Another strand of the literature considers the role of imperfect monitoring in repeated
games. Aoyagi and Frechette (2009) are the first to introduce imperfect monitoring in an
experimental setting, and find some efficiency loss when noise is large. This is in contrast
with most of the follow-up literature, such as Fudenberg et al. (2012), Embrey et al.
(2013), or Aoyagi et al. (2015), who do not see an impact of imperfect public monitoring
on efficiency. We use the multiplicative noise structure with a continuum of actions and
find that imperfect monitoring reduces efficiency, in line with the findings of Aoyagi and
Frechette (2009), and equality of payoffs between players.

The rest of this paper is organized as follows: Section 2 introduces our model and
theoretical results; Section 3 describes our experimental design; Section 4 presents the
results of the experiment; finally, Section 5 concludes.

2Kurzban et al. (2008) introduces irreversibility to the trust game and does not find any effect on the
first mover’s investment level.

3See also a recent survey is Dal Bo and Frechette (2016).
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2 Theory

2.1 Setup

The stage game is a continuous action prisoner’s dilemma. There are two players, i = 1, 2,
and each player chooses a contribution level ci ∈ [0,∞), i = 1, 2. Payoffs are given by

ui(c1, c2) = π(ci, cj) =

π1ci + π2cj if ci + cj ≤ 2c∗,

π1ci + π2(2c∗ − ci) if ci + cj > 2c∗,

where π1 < 0, π2 > 0, and π1 + π2 > 0.
A player’s payoff is strictly decreasing in their own contribution, weakly increasing

in the other player’s contribution, and total payoffs are increasing in the sum of both
players’ contributions until the sum reaches 2c∗. Hence, it is socially optimal for the two
players to cooperate and reach 2c∗ although it is not in any player’s interest to cooperate.
In this sense, the stage game we consider has a prisoner’s dilemma structure.

Time is infinite, t = 0, 1, . . .. In each period there is a probability (1− δ) ∈ (0, 1) that
the interaction stops. Payoffs are realized once the interaction stops. In each period t,
players choose contribution levels (c1,t, c2,t).

Monitoring. We consider two cases of monitoring: perfect monitoring vs. imperfect
(public) monitoring. In games of perfect monitoring, the period-τ expected payoff of
player i is given by the following normalized discounted sum:

(1− δ)
∞∑
t=0

δtπ(ci,t+τ , cj,t+τ ).

In games of imperfect public monitoring, players observe a public signal yt, which
is the only information they have about their partner’s play. The distribution of yt
conditional on contribution levels (c1,t, c2,t) is common knowledge and satisfy a continuity
requirement: for small changes in actions, the change in the distribution of the signal is
also small (see Guéron, 2015). We use a noise structure that is multiplicative in the sum
of contributions made by two players:

yt = (c1,t + c2,t) εt,

where the εt are iid and εt ∼ U [1 − r, 1 + r] for r ∈ (0, 1), for all t. The parameter r
represents the size of noise, relative to the sum of contributions. For example, if r = 0.1,
players will observe a signal that is within plus or minus ten percent of the sum of
contributions.
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There are two noteworthy implications of using the multiplicative noise structure.
First, if both players do not contribute at all, this will be perfectly known. Moreover,
as the sum of contributions increases, the range of the public signal increases. It is
simple and easy to explain this noise structure to participants of the experiment. Its
main advantage over an additive noise structure in our setup is that it avoids having the
possibility of subjects observing negative signals, which is not natural when interpreting
actions as contributions to a public good.

In games of imperfect public monitoring, a strategy depends on the public signal
rather than on the other player’s contribution, as well as one’s own past contribution.
Players will then form expectations as to which histories may have occurred and will
evaluate payoffs according to those expectations.

Irreversibility. In the repeated game, actions are reversible in the sense that they
are unconstrained and players face the same strategic interaction in each period. In the
dynamic game, actions are irreversible in the sense that they are constrained to be weakly
increasing over time:

ci,t+1 ≥ ci,t

for i = 1, 2 and t = 0, 1, 2, . . .. With irreversibility, the game becomes a dynamic con-
tribution game in which past contributions are not refundable, as opposed to a repeated
public goods game.

2.2 Equilibrium characterization

Let us first define the set of feasible and individually rational payoffs. Consider the sum
of the stage game payoffs, which is given by u1(c1, c2) + u2(c1, c2) = (π1 + π2)(c1 + c2) if
c1 + c2 ≤ 2c∗ and by u1(c1, c2) + u2(c1, c2) = (π1− π2)(c1 + c2) + 4π2c

∗ if c1 + c2 > 2c∗. It
is maximized when when c1 + c2 = 2c∗, and the maximum payoff a player can get (when
only the other is contributing) is 2π2c

∗. Also, note that a player can always guarantee
at least a payoff of zero by not contributing. Hence, the set of feasible and individually
rational payoffs is given by

F∗ = {(u1, u2) | u1 + u2 ≤ 2(π1 + π2)c∗;u1 ≤ 2π2c
∗;u2 ≤ 2π2c

∗;u1 ≥ 0;u2 ≥ 0}.

We now characterize the equilibrium payoff set for each of the four games that are
used in the experiment. All proofs are deferred to Online Appendix A.

In the repeated game with perfect monitoring, we give a necessary and sufficient
condition for any feasible and individually rational payoff to be an equilibrium payoff.
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Proposition 1. Consider the repeated game with perfect monitoring. When δ ≥ −π1/π2,
any feasible and individually rational payoff is an equilibrium payoff of the repeated game.
When δ < −π1/π2, the only equilibrium is when players do not contribute after any
history.

To characterize the equilibrium payoff set in the repeated game with perfect moni-
toring, we first consider a set of simple stationary grim-trigger strategies: players play
a given action profile (c1, c2) in each period, unless someone deviates in which case they
play the unique stage-game Nash equilibrium (0, 0) forever. This allows us to recover an
important part of the Pareto frontier of F∗, except for the most asymmetric payoffs.

We then consider the following non-stationary grim-trigger strategy: (i) from period
1 onward, players play an efficient stationary grim-trigger equilibrium; and (ii) in period
0, one player contributes nothing while the other contributes such that his repeated game
payoff is 0. Incentive compatibility is straightforward to verify as the player contributing
in period 1 gets a payoff of zero whether or not he contributes. It allows us to recover
the whole Pareto frontier. Given that (0, 0) is also an equilibrium payoff, convexity then
ensures that any feasible and individually rational payoff is an equilibrium payoff.

Next, for the repeated game with imperfect monitoring, we provide a sufficient con-
dition for any feasible and individually rational payoff to be an equilibrium payoffs in
Proposition 2. The parameters in our experiment are chosen so as to satisfy this condi-
tion.

Proposition 2. Consider the repeated game with imperfect monitoring and noise level r.
When δ ≥ −π1/π2 and π2δ(1−r)+2rπ1(1−δ)

−π1[δ(1−r)+2r(1−δ)] ≥ −π2δ/π1, then any feasible and individually
rational payoff is an equilibrium payoff of the repeated game.

The proof of this result is similar to the case of perfect monitoring and reversible
actions, first considering simple grim trigger strategies and then non-stationary ones.
The proof also relies on the fact that our monitoring technology is such that the public
signal has an interval support, and maximal punishments for realizations outside of this
interval serve as sufficient deterrents against deviations.

In the dynamic game with irreversible actions and perfect monitoring, we show that
the equilibrium payoff set is bounded away from the Pareto frontier of the feasible and
individually rational payoff set.

Proposition 3. Consider the dynamic game with irreversibility and perfect monitoring.
When δ ≥ −π1/π2, then the equilibrium payoff set is bounded away from the Pareto
frontier of the feasible payoff set by a factor 1 − δ. When δ < −π1/π2 then the only
equilibrium is when players do not contribute.
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Cooperation becomes more difficult with the irreversibility constraint. Under per-
fect monitoring, players must gradually increase their contributions (see Lockwood and
Thomas, 2002). Intuitively, since players cannot lower contribution from the past level,
the only way to punish deviations is to always hold back a fraction of contribution from
the efficient level. Hence, players follow an increasing contribution path and threaten
to stop the increase should a deviation occur. This gradualism means that the efficient
frontier shifts inward.

To characterize part of the efficient frontier, we consider an equilibrium path for
which all the no-deviation constraints hold with equality. This gives us a system of
second-order difference equations, whose solution allow us to recover part of the frontier
of the equilibrium payoff set. It is bounded away from the efficient frontier (although
this inefficiency disappears as the discount factor converges to one). It is however not
possible to provide a full characterization of the payoff frontier in that case, but we do
provide upper and lower bounds.

Finally, in the game with irreversible actions and imperfect monitoring, Guéron (2015)
shows that under a continuity condition of the monitoring technology, players do not
contribute in equilibrium. The continuity condition is met in our experiment.

Proposition 4. Consider the dynamic game with imperfect perfect monitoring. Then
the only equilibrium consist in players not contributing, after any history.

To see why cooperation breaks down with imperfect monitoring, first note that in any
equilibrium contributions will be bounded from above by their efficient level, and consider
a potential equilibrium in which players contribute. As contributions must increase, and
are bounded from above, they eventually converge. Close to the upper bound, a player
can profitably deviate by slightly reducing their contribution level and then returning to
the prescribed equilibrium. Such a deviation would lead to a punishment by the other
player, if detected. However, close to the upper bound of contributions, such a punishment
would be arbitrarily small. Moreover, when the monitoring technology is continuous, the
probability of detection is small if the deviation is also small. A small punishment,
coupled with a small probability of detection, eventually renders the deviation profitable,
leading to an unravelling of cooperation.

The equilibrium payoff sets of the four games are visually summarized in Figure 1.
The straight line in each of the four panels represent the Pareto frontier of the feasible
and individually rational payoff set, and the area shaded in red represents the equilibrium
payoff set. Figures 1a) and 1b) show that in the repeated games, all feasible payoffs are
equilibrium payoffs. Figure 1c) shows that with perfect monitoring and irreversibility, the
payoff set is bounded away from the Pareto frontier of the feasible set. Finally Figure 1d)
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Figure 1: Equilibrium payoff sets

shows that the unique equilibrium outcome with irreversibility and imperfect monitoring
is (0, 0), which corresponds to no contribution.

By comparing the equilibrim payoff sets, we hypothesize in regard to the impacts of
irreversibility and imperfect monitoring as follows.

Hypothesis 1 Irreversibility lowers payoffs both in the games with perfect monitoring
and in the games with imperfect monitoring.

Hypothesis 2 Imperfect monitoring lowers payoffs in the games with irreversible actions
but does not affect payoffs in the games with reversible actions.

3 Experimental Design and Procedures

In the experiment we use the following parameter values of the linear kinked specification:
π1 = −1, π2 = 3, and c∗ = 50. Payoffs are calculated in terms of South Korean Won
(KRW).4 To preclude negative payoffs, 100 is added to each subject’s stage game payoff.
Therefore, the stage game payoff function is given by

4In 2016, the average exchange rate is around 1 USD = 1,050 KRW.
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ui(ci,t, cj,t) =

100− ci,t + 3cj,t if ci,t + cj,t ≤ 100,

400− 4ci,t if ci,t + cj,t > 100.

Subjects choose a contribution level between 0 and 100 using a slide bar, with a
precision of two decimal places. Each player has incentives to free ride and receives
benefit from the other’s contribution as long as the sum of contributions is below 100.

The experiment consists of the four dynamic game treatments by varying the struc-
tures of reversibility and monitoring: the game with reversible actions and perfect moni-
toring (RA-PM), the game with reversible actions and imperfect monitoring (RA-IPM),
the game with irreversible actions and perfect monitoring (IRA-PM), and the game with
irreversible actions and imperfect monitoring (IRA-IPM). With regard to the noise struc-
ture in the experiment, it follows a uniform distribution and can be as large as 10% of
the sum of contributions. For example, if the total contribution in the previous period is
50, the noise is randomly drawn from the distribution U [−5, 5]. In each treatment, after
each stage game is played, supergames continue to a next stage game with probability
90% (δ = 0.9) and terminates with probability 10%.

There are 16 sessions in total, with four for each treatment. The experiment was
computerized with z-Tree (Fischbacher, 2007) and run at the Center for Experimental
and Behavioral Social Science Lab at Seoul National University during the period be-
tween September and November 2016. The subjects in the experiment were recruited
from the pool of Seoul National University undergraduate students from all disciplines
through official website of the university. Each subject participated in only one of the
experimental sessions. After subjects had read the instructions, the experimenter read
aloud the instructions.5 In each session subjects played a series of supergames, at each of
which they were randomly and anonymously paired with their partners. Subjects played
supergames for 75 minutes in a session. To control supergame lengths across treatments,
we use the random termination rule (δ = 0.9) for the four sessions with the IRA-IPM
treatment. Then we take the realized series of supergame lengths from each session and
use these series for the sessions of the other treatments.6 After each supergame ends, sub-
jects observed the results of that supergame, including their own actions, their partners’

actions, public signals, and their payoffs across periods. To make a parallel structure be-
tween IPM and PM, we also give public signal as the sum of contribution in the previous
round in the PM treatments.

In the experiment the average length of the supergames is 9.7 periods, close to the
5Sample instructions are available in Online Appendix B.
6This method is commonly used in the experimental literature of repeated games (e.g., Aoyagi et al.,

2015) to control the effect of length in supergames across treatments.
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Table 1: Summary information on the treatments

Treatment Subjects Session Subjects per session Supergames Rounds per supergame Average earnings
Average max min (unit:KRW)

RA-PM 56 4 12,14,14,16 13,14,16,16 9.8 28 1 24,100

RA-IPM 58 4 12,14,16,16 10,14,18,21 9.6 28 1 22,100

IRA-PM 58 4 14,14,14,16 13,17,18,19 9.6 28 1 21,200

IRA-IPM 54 4 12,14,14,14 14,16,17,23 9.9 34 1 19,400

expected length of 10 given the value of the continuation probability, with the maximum
length being 34 periods. Participants accumulated their earnings across supergames and
on averaged earned KRW 25,800 including the show-up fee of KRW 5,000. Table 1
provides the description of the experimental sessions of the four treatments. In total, 226
subjects participated in the experiment.

4 Results

We begin our analysis of the experimental data by plotting the two players’ supergame-
level earnings for each treatment. In order to facilitate the comparison between observed
earnings and equilibrium payoff sets presented in Figure 1, we compute the normalized
discounted sum of a subject’s payoffs across periods at the supergame level, conditional on
the realization of random termination. Suppose that a supergame lasted for K periods
and a subject received a stream of payoffs P1, ...., PK . The normalized sum of payoffs
for this subject is defined as P1+δP2+...+δK−1PK

1+δ+δ2+...+δK−1 . For the sake of brevity, we refer to the
normalized discounted sum of payoffs as the supergame payoff.

Figure 2 shows the scatter plots of two players’ supergame payoffs for each of the
four treatments. Because player labeling is arbitrary, each figure contains two players’
supergame payoffs by permuting their labels. The set of feasible and individually rational
payoffs is represented by the triangle made by orange (horizontal and vertical) lines.7

Note that it is equivalent to the equilibrium payoff sets for the RA-PM and RA-IPM
treatments.

The top left panel of Figure 2 shows that a large proportion of the data in the RA-PM
treatment are clustered around the Pareto optimal and symmetric outcome (200, 200).
This outcome can be achieved only if both players contributed 50 from the first period
onward. The introduction of imperfect monitoring (the top right panel) or irreversibility
(the bottom left panel) appears to make subjects’ supergame payoffs further away from

7Note that (100, 100) is the supergame payoff obtained when both players make zero contributions
throughout the game. Thus, F∗ = {(u1, u2) | u1 + u2 ≤ 400;u1 ≥ 100;u2 ≥ 100}.
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the Pareto optimal outcome. The treatment with both irreversible actions and imperfect
monitoring (the bottom right panel) shows most clearly that a substantial proportion
of the data are clustered around the stage-game Nash equilibrium payoffs (100, 100).
We also note that dispersion of the data from the symmetric outcomes (45-degree line)
appears to increase with the introduction of imperfect monitoring and irreversibility from
the RA-PM treatment. 8

We also note that the proportion of observed supergame payoffs that fall below the
individually rational payoff of a player appears to small but increase with both imperfect
monitoring and irreversibility of actions. The theory predicts that people should never
get worse than the stage-game Nash equilibrium payoff of 100. Nonetheless, we observe
that some subjects occasionally got a supergame payoff lower than the stage-game Nash
equilibrium. Specifically, these frequencies are 2.4% in the RA-PM treatment, 6.1% in
the RA-IPM, 8.5% in the IRA-PM, and 19.9% in the IRA-IPM treatment.

4.1 Efficiency and Equity

We examine the effects of irreversibility and imperfect monitoring on the efficiency and
equity of supergame outcomes by introducing two ratios, the efficiency ratio and the
inequality ratio.

The efficiency ratio is defined as the ratio of the sum of the players’ supergame payoffs
and their maximum possible sum, where both sums are taken in excess of the stage-game
Nash equilibrium payoffs. This allows for the ratio to range between 0 and 1, being zero
when both player earn the stage-game Nash equilibrium payoff and 1 when the two players
coordinate to achieve the maximal sum of payoffs. The inequality ratio is defined as the
absolute value of the difference between two players’ supergame payoffs, normalized by
their sum. It also ranges between 0 and 1, 0 meaning that both players have the same
supergame payoff and 1 meaning a maximal payoff difference.

Table 2 reports the overall summary of how efficient and unequal supergame outcomes
emerge across treatments. First, the efficiency level substantially declines with the intro-
duction of irreversibility and imperfect monitoring. Irreversibility reduces efficiency by
37 percentage point in the games with perfect monitoring and by 35 percentage point
in the games with imperfect monitoring. Imperfect monitoring lowers efficiency by 16
percentage point in the games with reversible actions and by 14 percentage point in the
games with irreversible actions.

Second, payoff inequality increases substantially with irreversibility and imperfect
8In Online Appendix C.1, in order to control potential learning effects across supergames, we plotted

the same figures by focusing on last 5 supergames in each session. The data patterns remain to be robust.

12



Figure 2: Scatter plots of supergame payoffs across treatments
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Table 2: Summary statistics of supergame payoffs

Treatments RA-PM RA-IPM IRA-PM IRA-IPM

Variable: sum of supergame payoffs

Mean 369.1 338.2 295.5 268.3

S.D. 45.3 53.1 51.2 52.8

Efficiency ratio 0.85 0.69 0.48 0.34

Variable: difference between supergame payoffs

Mean 18.1 31.7 38.4 50.2

S.D. 31.3 39.1 49.7 61.5

Inequality ratio 0.06 0.10 0.13 0.18

Observations 351 383 377 354

monitoring, too. With regard to inequality ratio, irreversibility increases inequality by
7 percentage point in the games with perfect monitoring and by 8 percentage point in
the games with imperfect monitoring. Imperfect monitoring makes inequality go up by
4 percentage point in the games with reversible actions and by 5 percentage point in the
games with irreversible actions.

We next perform regression analysis on the effects of irreversibility and monitoring.
We start with efficiency. Table 3 shows the linear regression results for efficiency ratio.
The first column shows results with the pooled data across all treatments. Other columns
reports results with the subsample of the data corresponding to a treatment. For example,
column (2) includes the sample of the games of RA-PM and IRA-PM. Standard errors
are clustered at the session level. All regression specifications include fixed effects by
controlling for sequence of supergames in a session and their lengths.

In column (1), both the IRA and IPM dummy variables are significantly negative at
1% level. The efficiency loss is large: 36 percentage-point decline due to irreversibility
of actions and 15 percentage-point drop due to imperfect monitoring. This effect of irre-
versibility is significantly greater than that of imperfect monitoring in our experimental
setup (p-value < 0.01). Columns (2)−(5) in Table 3 show the regression analysis for each
sub-sample. In all specifications the coefficients of IRA and IPM remain significant and
quantitatively robust.

We connect our findings on efficiency to those in the literature. Firstly, in regard to
the role of irreversibilty, Battaglini et al. (2016) studied experimentally a dynamic public
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Table 3: Treatment effects on efficiency

Dependent variable: efficiency ratio

(1) (2) (3) (4) (5)
Sample All PM IPM RA IRA

IRA -0.359*** -0.367*** -0.350***

(0.032) (0.046) (0.044)
IPM -0.146*** -0.155*** -0.137**

(0.032) (0.027) (0.057)

Constant 0.713*** 0.689*** 0.592*** 0.760*** 0.309***

(0.039) (0.043) (0.046) (0.041) (0.055)
Fixed effect Y Y Y Y Y

Observation 1,465 728 737 734 731
R2 0.412 0.444 0.354 0.177 0.282

Notes: Session level clustered standard error in parenthesis. */**/*** represent 10/5/1% significance
level respectively. Fixed effects include sequence of supergame in a session and length of supergames.

goods provision game with perfect monitoring and compared between cases of reversible
and irreversible actions. They found that the case of irreversible actions leads to a higher
level of efficiency than that of reversion actions, which is in line with the theoretical
prediction based on Markov Perfect equilibrium. Their theoretical and experimental
findings are opposite to ours. Our theory predicts, based on the comparative static
exercise of equilibrium sets, and the experimental data support that irreversibility leads
to a lower level of efficiency. A main difference between their setup and ours is that
subjects in Battaglini et al. (2016) accumulate the pubic goods provision over periods
even in the game with reversible actions, whereas our game with reversible actions is the
pure repetition of stage games of public goods provision.

Secondly, the experimental literature has found mixed evidence on the role of imper-
fect monitoring in efficiency. Aoyagi and Frechette (2009) found that imperfect moni-
toring leads to an increase in efficiency loss, while Aoyagi et al. (2015) found no impact
of imperfect monitoring on efficiency. We believe that the detail of repeated games, in-
cluding noise structure and action space, plays a role in such contrasting findings. Our
experiment contributes to this literature by providing evidence that imperfect monitoring
lowers efficiency in both conventional repeated games and dynamic games with irreversible
actions, with the use of the multiplicative noise structure and continuous action space.

Result 1. Each of irreversibility and imperfect monitoring causes inefficiency. Irre-
versibility results in greater efficiency loss than imperfect monitoring.
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Table 4: Treatment effects on equality

Dependent variable: inequality ratio

(1) (2) (3) (4) (5)
Sample All PM IPM RA IRA

IRA 0.064*** 0.059** 0.066***

(0.015) (0.024) (0.016)
IPM 0.041*** 0.028*** 0.055**

(0.014) (0.007) (0.023)

Constant 0.193*** 0.193*** 0.236*** 0.224*** 0.229***

(0.021) (0.021) (0.030) (0.021) (0.030)
Fixed effect Y Y Y Y Y

Observation 1,465 728 737 734 731
R2 0.141 0.171 0.115 0.240 0.090

Notes: Session level clustered standard error in parenthesis. */**/*** represent significance level
10/5/1%. Fixed effects include sequence of supergame in a session, length of supergames, and sum
of supergame payoff.

We move to the regression analysis regarding the effects of irreversibility and imperfect
monitoring on payoff inequality between two players. The dependent variable is the
inequality ratio. Table 4 reports the linear regression results in the same structure as
Table 3, controlling for fixed effects on the sequence of supergames and their lengths and
the sum of supergame payoffs as well. Standard errors are clustered at the session level.

The regression results confirm that both irreversibility and imperfect monitoring in-
crease significantly payoff inequality between two subjects. Column (1), based on all
data, shows that irreversibility increases inequality by 6 percentage point and imperfect
monitoring does so by 4 percentage point. Both coefficients are significant at 1% level.
The effect of irreversibility on unequal outcomes is significantly larger than that of imper-
fect monitoring (F statistics: 12.01 p-value<0.01). Columns (2)–(5) confirm the robust
effects of irreversibility and imperfect monitoring on equity. We note that the coefficient
of imperfect monitoring dummy is larger in the games with irreversible actions than in
the games with reversible actions.

Result 2. Each of irreversibility and imperfect monitoring causes inequality. Irreversibil-
ity results greater inequaility than imperfect monitoring.
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Figure 3: Sum of contributions by period

4.2 Contribution Dynamics

We have shown that both irreversibility and imperfect monitoring lead to inefficient and
unequal supergame payoffs. In this section we investigate subjects’ behavior and group
dynamics to understand the differential treatment effects on efficiency and equality.

We begin by presenting the sum of two players’ contributions per period across treat-
ments in Figure 3. We take the average of the sum of contributions in each period
over groups and sessions. The red horizontal line represents the efficient level of group
contributions.

Figure 3 reveals two prominent features about the dynamics of group contributions.
First, as the theoretical literature predicts (e.g., Lockwood and Thomas, 2002), coopera-
tion is built gradually over time in both IRA-PM and IRA-IPM treatments when actions
are irreversible. Comparing between RA and IRA treatments under each of monitoring
technologies, we observe that contributions in early periods are much lower in an IRA
treatment than in an RA treatment but they become similar or even higher in later pe-
riods. On the other hand, the first-period group contribution is similar in the IRA-PM
and IRA-IPM treatments. But the gradient of gradual cooperation is much lower in the
IRA-IPM treatment than in the IRA-PM treatment. As a result, we observe larger depar-
ture from the efficient level of cooperation when irreversibility is combined with imperfect
monitoring. Given that the experimental literature has documented that human subjects
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often cooperate even when free riding is the only Nash equilibrium (Cooper et al., 1996;
Ledyard, 1995), the theoretical prediction of zero contribution in the IRA-IPM treatment
may be too stringent to hold in the experiment. Having pointed out this, a lower gradi-
ent of gradual cooperation and as a result greater inefficiency in the IRA-IPM treatment
can be interpreted as qualitatively consistent with the theory. Overall, we conclude that
irreversibility reduces players’ supergame payoffs because of low contributions in early
periods which are resulted from gradual cooperation.9

Second, imperfect monitoring lowers group contributions throughout the supergame.
Comparing the RA-PM and RA-IPM treatments, the gap of group contributions in the
first period is small but becomes wider and persists over later periods. This pattern is
also similar when comparing the IRA-PM and IRA-IPM treatments.

Result 3. (i) Irreversibility induces gradual cooperation and makes group contributions
low in early periods, which results in greater efficiency loss. (ii) Imperfect monitoring
reduces group contributions persistently over periods, leading to larger inefficiency.

We next turn to check if the first-period contribution difference between two players
has a long lasting effect over dynamics and results in payoff inequality at the supergame
level. If one player contributes excessively but the other player does not in the first
period, such initial discrepancy of contribution may be rectifiable by the former player
in the games with reversible actions but may not be easily fixable in the games with
irreversible actions. If it is the case, we can take it as one factor driving the effect of
irreversibility on payoff inequality.

Table 5 shows linear regression analyses showing the impact of the first-period con-
tribution difference on the average contribution difference in subsequent periods (that is,
from period 2 to the end) of the supergame. Specifically, we identify who contributes
more in the first period in each supergame and take the contribution difference between
this subject and the other subject. For the dependent variable, we define the average
contribution difference in subsequent periods between this subject and the other subject.

As we expected, in the games with irreversible actions (columns (3)–(4)), the first-
period contribution difference has a positive effect on contribution gap in the following
periods. On the other hand, it has no significant effect and the magnitude of the coefficient
is close to zero in each game with reversible actions (columns (1)–(2)). It suggests that
when we consider a behavioral model to explain the effect of irreversibility on equality,
as presented in the next section, the initial contribution gap in the experimental data is
one factor we need to take into account.

9To control the effect of learning, we report the comparable figure using the last 5 supergames in each
session in Online Appendix C.2.
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Table 5: Regression for persistent effect of period 1 difference

Dependent variable: Overall contribution difference

(1) (2) (3) (4)

Sample RA-PM RA-IPM IRA-PM IRA-IPM

Period 1 difference -0.07 0.02 0.54*** 0.68**

(0.05) (0.06) (0.06) (0.21)

Fixed effect Y Y Y Y
Constant -18.19 0.32 0.70 1.85

(8.11) (3.26) (1.33) (6.16)

Observation 324 351 348 327
R2 0.173 0.068 0.312 0.348

Notes: Session level clustered standard error in parenthesis. */**/*** represent significance level
10/5/1%. Fixed effects include sequence of supergame in a session and length of supergames.

4.3 Econometric Analysis of Individual Behavior

In order to make a parsimonious account of the treatment effects on efficiency and equality
we found in the data, we consider a simple model that incorporates conditional cooper-
ation or reciprocal behavior. It is well-known that human subjects behave reciprocally
in a wide range of strategic situations including public goods provision and social dilem-
mas (e.g., Sugden, 1984; Fischbacher et al., 2001; Fischbacher and Gachter, 2010). On
the other hand, diverse motives ranging from selfish preferences to altruism also drive
heterogeneous human behaviors.

We adopt a finite mixture approach (McLachlan and Peel, 2004) in which each subject
in the experiment can belong to one of two behavioral types τ : conditional cooperator
(τ = cc); or others (τ = others). Because the types are not directly observable, from
our perspective, each subject is assigned a probability of being a conditional cooperator.
To classify, let the incremental contribution of individual i in period t be denoted by
INCi

t which is the difference of contribution between period t and t − 1. We focus on
increments rather than absolute levels of contributions because of the dynamic structure
of the games. A conditional cooperator is assumed to positively adjust her increment
in period t to their opponent j’s increment of period t − 1.10 Suppose an individual i’s
increment at t is a function of j’s increment at t− 1 and the error term εiτt with a normal

10We assume that subject i views the contribution of opponent j at period t as the difference between
public signal and contribution of i at period t, containing some noise in IPM treatments.
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distribution with zero-mean:

INCi
t = γτ + βτINC

j
t−1 + εiτt.

Our mixture model is characterized by eight parameters: β = (βcc, βothers), γ =
(γcc, γothers), the fraction of conditional cooperator π = (πcc, πothers)11, and the variance of
error term σ2 = (σ2

cc, σ
2
others). Then given the normal distribution error term assumption,

we first construct the density of type τ for the ith individual as follows.

f(INCi
t , INC

j
t−1; βτ , γτ , στ ) =

T∏
t=3

φ(INC
i
t − (γτ + βτINC

j
t−1)

στ
)

where T and φ denote the number of rounds in the session and the standard normal
distribution. We then construct a log likelihood function as follows:

lnL(β, γ, π, σ2 | INCi
t , INC

j
t−1) =

N∑
i=1

ln
∑

τ∈{cc,others}
πτf

(
INCi

t , INC
j
t−1 | βτ , γτ , στ

)

Table 6 reports separately the results of the maximum likelihood estimation for each
sample of the games with reversible actions and those with irreversible actions because
of their different dynamic structure of the games. Our econometric method produces
parameter estimates of the two types with one of them having a significantly positive
value of β. We refer to that type as a conditional cooperator (cc) and the other type as
others. After the model is estimated, we compute a posterior probability of an individual
being a conditional cooperator, using the data of her choices. The rightmost two columns
report the average of individual posterior probabilities of two types.

The estimation results reveal notable differences of subjects’ behavior across treat-
ments. First, the irreversibility structure of actions promotes conditional cooperation.
It corroborate with the main feature of gradual cooperation predicted by theory and
borne out by our data. The proportion of a conditional cooperator is higher in the IRA
treatments than in the RA treatments: 69% for the IRA treatments and 36% for the
RA treatments. The responsiveness of conditional cooperation appears to be higher in
the IRA treatments than in the RA treatments: 0.41 in the IRA and 0.33 in the RA
treatments. Second, perfect monitoring facilitates conditional cooperation. The poste-
rior proportion of a conditional cooperator is higher in each game with perfect monitoring
than that with imperfect monitoring: 51% vs. 19% in the RA games and 76% vs. 61%
in the IRA games.

11πothers is equal to 1− πcc in 2 types classification case.
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Table 6: Finite Mixture Estimation Results

Treatment Type 1 (cc) Type 2 (others) Average posterior
β γ π β γ π Type 1 Type 2

RA-PM 0.33∗∗∗
(0.01)

−0.45∗∗
(0.19)

0.36∗∗∗
(0.03)

0.01
(0.13)

0.02
(0.23)

0.64 0.51 0.49
RA-IPM 0.19 0.81

IRA-PM 0.41∗∗∗
(0.01)

1.56∗∗∗
(0.06)

0.69∗∗∗
(0.03)

0.00
(0.43)

0.07
(1.08)

0.31 0.76 0.24
IRA-IPM 0.61 0.39

Notes: */**/*** represent significance level 10/5/1%. We note that in RA sample type 1 (2) σ is 22.56
(0.23). In IRA sample type 1 (2) σ is 4.61 (0.20). In both samples, type 1 sigma is significant at 5%
level. The log-likelihoods of RA (IRA) is -21,188 (-18,723). The number of observations in RA (IRA) is
9,054 (8,906).

In order to evaluate whether the variations of conditional cooperation can explain
the treatment effects on efficiency and equality, we conduct a simulation exercise using
subjects’ initial contributions, initial increments, realized length of supergame, and their
posterior probabilities of the two behavioral types at each supergame in the experimental
data. Specifically, each pair of subjects who played a supergame in the experiment is
assigned to a joint posterior distribution of four possible matchings of behavioral types
estimated in Table 6. This allows us to compute four possible contribution paths of
a super game. By using the joint posterior distribution of the four type matchings, we
compute the expected supergame payoffs of two players and derive the simulated efficiency
and equality outcomes.

Table 7 shows the simulation results of efficiency and equality based on the finite
mixture estimation results, and compare them with the observational patterns of the data.
The simulated outcomes match quantitatively closely the corresponding observational
outcomes across the treatments. In addition, the observational rankings of efficiency and
equity over the treatments hold in the simulation exercise. Hence, we conclude that the
variations of conditional cooperation across the treatments explain well the effects of
irreversibility and imperfect monitoring on efficiency and equality.

Result 4. (i) Irreversibility promotes conditional cooperation, while imperfect monitoring
hampers it. (ii) These estimated variations of conditional cooperation explains well the
treatment effects on efficiency and equality.
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Table 7: Comparing between observed and simulated outcomes

Treatments RA-PM RA-IPM IRA-PM IRA-IPM

Variable: sum of supergame payoff

Observed mean 369.1 338.2 295.5 268.3

Simulated mean 363.6 344.5 305.4 278.3

Variable: efficiency ratio

Observed mean 84.5% 69.1% 47.8% 34.2%

Simulated mean 81.8% 72.2% 52.7% 39.2%

Variable: difference between supergame payoff

Observed mean 18.1 31.7 38.4 50.2

Simulated mean 24.5 38.8 45.7 55.2

Variable: inequality ratio

Observed mean 5.6% 10.2% 12.9% 17.6%

Simulated mean 6.7% 11.3% 14.9% 19.8%

5 Concluding Remarks

We consider four dynamic public goods games, which vary along two dimensions. First,
actions can either be reversible (i.e., unconstrained) or irreversible (i.e., constrained to
be non-decreasing over time). Second, actions can either be perfectly monitored or im-
perfectly monitored. In the latter case, the distribution of public signal satisfies a mild
continuity requirement.

Theory predicts that in the repeated public good game, whether monitoring is perfect
or imperfect, the set of equilibrium payoffs is the whole set of feasible and individually
rational payoffs. With irreversibility and perfect monitoring, the equilibrium payoff set is
strictly included in the set of feasible payoffs, with an efficiency loss on the order (1− δ),
where δ is the discount factor. Finally, with irreversibility and imperfect monitoring,
cooperation is no longer feasible and no contributions ever take place in equilibrium.

Our experiments show that irreversibility and imperfect monitoring cause inefficiency
and inequality. Irreversibility affects efficiency through gradualism, whereas imperfect
monitoring lowers group contributions persistently over periods. We also find that irre-
versibility makes it hard to correct the initial contribution gap between players which
results in inequality in the supergame. Lastly, both irreversibility and imperfect mon-
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itoring decreases the degree of conditional cooperation. This variation of conditional
cooperation explains well the experimental data.
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ONLINE APPENDICES

A Equilibrium payoffs

A.1 Feasible and individually rational payoffs

The sum of stage game payoffs is given by u1(c1, c2) + u2(c1, c2) = (π1 + π2)(c1 + c2) if
c1 +c2 ≤ 2c∗, which is maximized when c1 +c2 = 2c∗. In that case, u1 +u2 = 2(π1 +π2)c∗.
Note that the maximum payoff a player can get is when the other player is the only one to
contribute, up to 2c∗. Therefore we must have ui ≤ 2π2c

∗, and the set of feasible payoffs
is given by

F = {(u1, u2) | u1 + u2 ≤ 2(π1 + π2)c∗;u1 ≤ 2π2c
∗;u2 ≤ 2π2c

∗}.

However, a player can always guarantee a payoff of zero by not contributing, so that
the set of feasible and individually rational payoffs is given by

F∗ = {(u1, u2) | (u1, u2) ∈ F ;u1 ≥ 0;u2 ≥ 0}.

A.2 Proof of Proposition 1: reversibility and perfect monitoring

In this section we show that any feasible and individually rational payoff profile u ∈ F∗

is the payoff of a subgame-perfect equilibrium. We do so in two steps.
First, we characterize the payoffs that can be obtained by playing a simple stationary

grim-trigger strategy: players play a given action profile (c1, c2) in each period, unless
someone deviates in which case they play the unique stage-game Nash equilibrium (0, 0)
forever.

We then consider a “modified” grim-trigger strategy in the following way: 1) from
period 1 onwards, players play an efficient stationary grim-trigger equilibrium; and 2)
in period 0, one player contributes nothing while the other contributes such that his
repeated game payoff is 0.

Stationary grim-trigger

We first restrict ourselves to a stationary grim-trigger, where players play a fixed profile
(c1, c2) forever. If there is a deviation, they play the unique Nash equilibrium (0, 0)
forever.
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Without loss of generality, we consider ci ≥ cj, and check that Pi has no incentives
to deviate. If Pi follows the strategy, he gets a payoff of π1ci + π2cj in each period. If
he deviates, he gets π2cj today followed by 0 forever afterwards.12 Therefore Pi will not
deviate if

π1ci + π2cj ≥ (1− δ)π2cj,

and we will have an equilibrium if

cj ≤ ci ≤ −
π2

π1
δcj.

Taking i = 1, 2, we obtain the following characterization of the set of actions that can
be supported by a stationary grim-trigger equilibrium using Nash reversion:

{
(c1, c2) | c1 + c2 ≤ 2c∗;− π1

δπ2
c1 ≤ c2 ≤ −

δπ2

π1
c1

}
.

Note that for this to be possible we must have −π2
π1
δ ≥ 1, that is δ ≥ −π1

π2
. If not, the

only equilibrium of the repeated game is to play (0, 0) forever.
We see in particular that we can reach points on the Pareto frontier of the feasible

payoffs when c1 + c2 = 2c∗. However not all the frontier can be recovered because of the
constraints − π1

δπ2
c1 ≤ c2 ≤ − δπ2

π1
c1. The maximal payoff that P1 can get will be when

c1 + c2 = 2c∗ and c1 < c2 = − δπ2
π1
c1, which corresponds to c1 = −π1

δπ2−π1
2c∗ and c2 = δπ2

δπ2−π1
.

The payoffs are then given by

(u1, u2) =
(

π2
2δ − π2

1
π2

2δ − π2
1 − π1π2(1− δ)

2c∗, −π1π2(1− δ)
π2

2δ − π2
1 − π1π2(1− δ)

2c∗
)
.

Symmetrically, the highest payoff that P2 can obtain from a stationary grim-trigger
strategy is when c1 + c2 = 2c∗ and c2 < c1 = − δπ2

π1
c2, which corresponds to c2 = −π1

δπ2−π1
2c∗

and c1 = δπ2
δπ2−π1

. The payoffs are then given by

(u1, u2) =
( −π1π2(1− δ)
π2

2δ − π2
1 − π1π2(1− δ)

2c∗, π2
2δ − π2

1
π2

2δ − π2
1 − π1π2(1− δ)

2c∗
)
.

Non-stationary grim-trigger

We now consider a class of non-stationary grim-trigger strategies with the following prop-
erties: 1) from period 1 onwards, both players play an efficient stationary grim-trigger
equilibrium; and 2) in period 0, player i contributes 0 and player j contributes (less than

12This is because the best deviation possible is not to contribute, since contributing is strictly domi-
nated.
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u1 + u2 = 2(π1 + π2)c∗

Figure 4: Pareto frontier using stationary grim-trigger strategies payoffs under perfect
monitoring (in red)

2c∗) so that his repeated game payoff is 0, and any deviation triggers an infinite play of
the stage-game Nash equilibrium.

Such a strategy is trivially a subgame-perfect equilibrium. First, from period 1 on-
ward, players play a subgame perfect equilibrium. In period 0, Pi clearly has no incentive
to deviate, as he is contributing zero. Finally, if Pj deviates and contributes zero in pe-
riod 0, this is followed by an infinite repetition of (0, 0), and the payoff from such a
deviation is 0, the same as the repeated game payoff under this modified grim-trigger
strategy.

Fix a stationary grim-trigger equilibrium (c1, c2), which is played from period 1 on-
ward. For it to be an equilibrium, we must have c1 + c2 ≤ 2c∗ and − π1

δπ2
c1 ≤ c2 ≤ − δπ2

π1
c1.

In period 0 player i contributes ci,0 = 0 and player j contributes cj,0 ≤ 2c∗ so that the
repeated game payoff of player j is 0, that is, such that:

(1− δ)π1cj,0 + δ(π1cj + π2ci) = 0.

This gives
cj,0 = δ

−π1(1− δ)
(π1cj + π2ci).

The equilibrium payoff of Pj from this non-stationary equilibrium is zero by construction,
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while the payoff of Pi is given by

(1− δ)π2cj,0 + δ (π1ci + π2cj) = (1− δ)π2
δ

−π1(1− δ)
(π1cj + π2ci) + δ (π1ci + π2cj)

= (π2 − π1)(π1 + π2)
−π1

δci.

This payoff will be maximized when ci is maximized, given the constraints cj,0 ≤ 2c∗,
ci + cj ≤ 2c∗ and − π1

δπ2
cj ≤ ci ≤ − δπ2

π1
cj. The solution involves having ci + cj = 2c∗ and

cj,0 = 2c∗, in which that case we have

ci = −π1

δ(π2 − π1)
2c∗,

and
cj = −δπ2 + (1− δ)π1

δ(π2 − π1)
2c∗,

and the repeated game payoff of Pi is therefore

(π2 − π1)(π1 + π2)
−π1

δ
−2c∗π1

δ(π2 − π1)
= (π1 + π2)2c∗.

That is, the payoff from this strategy is one of the end point of the Pareto frontier
of the feasible and individually rational payoff set. Given that (0, 0) is an equilibrium
payoff and that the equilibrium payoff set is convex, any feasible and individually rational
payoff must be an equilibrium payoff.

A.3 Proof of Proposition 2: Reversibility and imperfect moni-
toring

Again, we characterize the equilibrium payoff space in two steps. First we look at sta-
tionary grim-trigger strategies, and then consider non-stationary ones. We show that the
set of equilibrium payoffs is again the full set of feasible and individually rational payoffs.
This is due to our choice of parameters, and also our special monitoring structure, which
does not have full support. The harshest punishment possible will therefore take place
if the signal is outside of its expected support, and this is enough to prevent deviations
and recover the whole payoff space in equilibrium.

Stationary grim-trigger

First, we consider the payoffs sustainable using the following stationary grim trigger strat-
egy: play (c1, c2) forever, where c1+c2 = 2c∗, unless the signal falls bellow (c1 + c2) (1−r),
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u1

u2

(2π1c
∗, 2π2c

∗)
played in t = 0

Equilibrium payoff

played for t ≥ 1
F∗

Figure 5: Equilibrium in which one player gets a payoff of zero using a non-stationary
grim-trigger strategy

in which case play (0, 0) forever. That is, players only punish if they know with certainty
that one of them deviated.

Let us check under which condition there is no profitable one-shot deviation for P1.
If P1 follows the strategy, his payoff is given by

π1c1 + π2c2.

Now consider a one-shot downward deviation c1 − x, where x ∈ [0, c1]. The proba-
bility that this deviation is detected is given by P

[
(c1 − x+ c2) ε ≤ (c1 + c2) (1 − r)

]
=

min
{

1, 1
2

x
c1−x+c2

1−r
r

}
, so that for moderate levels of deviation13 the payoff is given by

(1− δ)
[
π1(c1 − x) + π2c2

]
+ δ

2(c1 + c2)r − x(1 + r)
2r(c1 + c2 − x)

[
π1c1 + π2c2

]
.

Differentiating with respect to x gives

−(1− δ)π1 − δ(π1c1 + π2c2)
(1− r)(c1 + c2)
2r(c1 + c2 − x)2 . (1)

For r < 1, this expression is decreasing in x. Therefore if P1 had a profitable deviation,
it can occur either for either x = c1 or for a very small deviation. The latter kind is not

13That is, as long as 1
2

x
c1−x+c2

1−r
r ≤ 1.
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profitable if and only if (1) evaluated at x = 0 is non-positive. This gives

c1 ≤
π2δ(1− r) + 2rπ1(1− δ)
−π1[δ(1− r) + 2r(1− δ)]c2 ≡ Kc2, (2)

and the corresponding constraint for payoffs is given by u1 ≥ Kπ1+π2
π1+Kπ2

u2.
If the deviation is large enough - so that it is detected with probability 1, then the

best deviation is not to contribute and the corresponding constraint is similar to the case
with perfect monitoring.

Given our choice of parameters, K ≥ π2
−π1

δ. Furthermore recall that in the case
of perfect monitoring, a stationary grim-trigger strategy profile with c1 ≥ c2 is be an
equilibrium if c1 ≤ π2

−π1
δc2. Hence any stationary grim-trigger equilibrium in the case of

perfect monitoring is also a stationary grim-trigger equilibrium in the case of imperfect
monitoring.

Modified grim-trigger

We now consider the non-stationary grim-trigger strategy studied in the case of perfect
monitoring. In period 0, Pi plays ci,0 = 2c∗ and Pj plays 0. From period 1 onward players
plays ci = −π1

δ(π2−π1)2c
∗ and cj = 2c∗ − ci = δπ2+π1(1−δ)

δ(π2−π1) 2c∗. Any identified deviation leads
to a constant play of (0, 0) forever.

For this to be an equilibrium from period 1 onward, it must be the case that ci ≤ Kcj

(see (2)), which as we have argued will hold given our choice of parameters.
We now check whether Pi wants to deviate in period 0. Again, his options are devi-

ating all the way to 0 or deviating slightly from 2c∗. The former was already shown not
to be profitable, so we only consider the case of a small deviation.

The deviation payoff in period 0 can be written as

(1− δ)
[
π1(ci,0 − x) + π2c2,0

]
+ δ

2(c1,0 + c2,0)r − x(1 + r)
2(c1,0 − x+ c2,0)r

[
π1c1 + π2c2

]
.

We can see that this deviation is not profitable by comparing the above value with
that from stationary grim trigger. First, the benefit from deviation (the first term) is
independent of contribution level c1,0. Second, the probability of being detected only
depends on the sum of contributions, which we have set to equal 2c∗. Finally, the con-
tinuation payoff is the same. So as long as the stationary grim trigger after period 1 is
sustainable, this strategy profile is an equilibrium.
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A.4 Proof of Proposition 3: Irreversibility and perfect moni-
toring

Cooperation becomes more difficult with the irreversibility constraint. Under perfect
monitoring, players must gradually increase their contributions (LT). Intuitively, since
players cannot reduce contributions, the only way to be able to punish deviations is to
always hold back a fraction of contribution from the efficient level. Hence, players follow
an increasing contribution path and threaten to stop the increase should a deviation
occur. This gradualism means that the efficient frontier shifts inward.

Consider an equilibrium path (c1,t, c2,t)t≥0, and let Vi,t denote the period t non-
normalized payoff from this path: Vi,t = π1ci,t + π2cj,t + δ[π1ci,t+1 + π2cj,t+1] + . . .

The best deviation in any period, because of irreversibility, is to not increase contri-
butions, and the harshest punishment is that both players maintain their contributions
constant in every subsequent period, which is an equilibrium given that it is strictly dom-
inated to increase contributions. Therefore for (c1,t, c2,t)t≥0 to be an equilibrium, we must
have

π1ci,t−1 + π2cj,t ≤ (1− δ)
[
π1ci,t + π2cj,t + δ[π1ci,t+1 + π2cj,t+1] + . . .

]
, (3)

for i = 1, 2 and t ≥ 1.
The left-hand side of (3) is the payoff from the optimal deviation, given that the other

player then maintains contributions at a level of cj,t in the future. The right-hand side of
(3) is the payoff from following the equilibrium path.

Binding constraints

We first consider the case in which (3) is binding for i = 1, 2 and any t ≥ 1. Consider
two successive constraints:

π1ci,t−1 + π2cj,t = (1− δ)
[
π1ci,t + π2cj,t + δSi,t+1

]
π1ci,t + π2cj,t+1 = (1− δ)Si,t+1.

We can combine those two equations to get rid of Si,t+1, which gives us the following
system of second-order difference equation:

ci,t+1 − ci,t = a[cj,t − cj,t−1]

cj,t+1 − cj,t = a[ci,t − ci,t−1],

where a = −π1
δπ2

< 1 given our assumption about the discount factor.
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Given initial contribution levels ci,0 and cj,0, the solution of this system is given by

ci,t =


1

1−a2 [ci,0(1− at+1) + acj,0(1− a)t−1)], t even
1

1−a2 (1− at)[ci,0 + acj,0], t odd

Taking the limits as t→∞, we find the asymptotic contribution levels to be
ci,∞ = 1

1−a2 [ci,0 + acj,0]

cj,∞ = 1
1−a2 [cj,0 + aci,0].

We can also express initial contribution levels as a function of the limit contribution
levels: ci,0 = ci,∞ − acj,∞

cj,0 = cj,∞ − aci,∞.

We have an equilibrium if ci,∞ + cj,∞ ≤ 2c∗ and ci,0 ≥ 0, cj,0 ≥ 0.
Substituting contribution levels back into payoffs, we find the equilibrium payoff

Vi = [1− (1− δ)(a+ a2δ)
1− a2δ2 ](π1ci,∞ + π2cj,∞),

so that
V1 + V2 = φ(δ)(π1 + π2)(ci,∞ + cj,∞),

where
φ(δ) = [1− (1− δ)(a+ a2δ)

1− a2δ2 ].

When ci,∞ + cj,∞ = 2c∗, then V1 + V2 = φ(δ)(π1 + π2)2c∗, which is constant. The
payoff-frontier from such strategies is therefore a line with slope −1 and endpoints A and
B defined by the restrictions ci,0 ≥ 0, i = 1, 2.

It can then be showed (see LT) by considering the efficient symmetric path and from
convexity considerations that this frontier is indeed part of the equilibrium payoff frontier.
Note that it is bounded away from the payoff frontier without irreversibility, since φ(δ) <
1.

Equilibrium in which one player gets a zero payoff

Consider the point A of Figure 6, which is at the bottom-right corner of the efficient
frontier with binding constraints. In the contribution path that leads to A, in period 0,
Player 1 plays 0 while Player 2 plays c2,0 = c2,∞ − ac1,∞ = 2c∗(1 − a). This latter value
acts as the upper bound for player 2’s “upfront” payments.
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Figure 6: Equilibrium payoff frontier with irreversibility when all incentive constraints
are binding

Fix an integer k ≥ 1 and a contribution level x ∈ [0, 2c∗(1 − a)], and consider the
following strategy: first, players contribute (0, x) for a fixed number of periods k, and
then they switch to the path that leads to A. That is, P2 makes an upfront payment of
x for k periods, after which players start the path that generates point A. For x = 0,
this is simply a delay in starting the path that leads to point A, and both players will
have positive payoffs. For each k, let x(k) ∈ [0, 2c∗(1 − a)] be the highest contributions
such that the previous strategy gives a non-negative payoff to P2.

It is not difficult to see that all incentive constraints will now be satisfied. First,
after period k − 1, players start playing the path that leads to A, for which we know
that all incentive constraints hold (with equality). Prior to that, P1 does not contribute,
so we only need to consider incentives for P2. In t = 0, P2 gets a non-negative payoff
by following the strategy, and a payoff of zero if he deviates. Therefore there are no
incentives to deviate. For 0 < t ≤ k − 1, P2 does not have a possible deviation, as his
contribution remains constant.

In our parametric setup, we use k = 1 and k = 2, and find x(1) = 2c∗(1−a) = 63 and
x(2) ∼ 32.6, which gives repeated game payoffs of (182, 0.6) and (165.4, 0) respectively.
This allows us to give a lower bound on the set of equilibrium payoffs, which is depicted in
Figure 7. The solid red set is contained in the equilibrium payoff set, and the equilibrium
payoff set is contained in the union of the solid red set and the dotted red set.
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Figure 7: Bounds for the equilibrium payoff frontier with irreversibility and perfect mon-
itoring
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