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Abstract

We propose a test of the conditional stochastic dominance in the presence of

growing numbers of covariates. Our approach builds on a semiparametric location-

scale model, where the conditional distribution of the outcome given the covariates

is characterized by nonparametric mean and skedastic functions with independent

innovations from an unknown distribution. The nonparametric regression functions

are estimated by the `1-penalized nonparametric series estimation with threshold-

ing. Deviation bounds for the regression functions and series coefficients estimates

are obtained allowing for the time series dependence. We propose a test statistic,

which is the supremum of a composite of the estimated regression functions and

the residual empirical distribution, and introduce a smooth stationary bootstrap to

compute p-values. We investigate the finite sample performance of the bootstrap

critical values by a set of Monte Carlo simulations. Finally, our method is illus-

trated by an application to stochastic dominance among portfolio returns given all

the past information.

Keywords: Conditional stochastic dominance, Semiparametric location scale

model, Home bias, LASSO, Power boosting

JEL: C10, C12,C15, C15

∗Thanks to Yookyung Lee, Suyeol Kim, Seok Young Hong, and Zhenkai Ran for help with the

numerical work. This work was supported by the Cambridge INET, the Ministry of Education of the

Republic of Korea and the National Research Foundation of Korea (NRF-2018S1A5A2A01033487) and

the Seoul National University Research Grant in 2019.
†Faculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue, Cam-

bridge, CB3 9DD. Email: obl20@cam.ac.uk. Seoul National University. Email: myunghseo@snu.ac.kr.

Seoul National University. Email: whang@snu.ac.kr.

1



1 Introduction

The main purpose of this paper is to provide methodology to test stochastic dominance

hypotheses in the presence of conditioning information. The first order dominance

hypothesis (FSD) we consider is

H0 : Pr (ytj ≤ y|Ft−1) ≤ Pr (ytl ≤ y|Ft−1) (1)

almost surely for all y ∈ R, where ytj and ytl denote the outcomes of interest to compare,

and Ft−1 is information observed at time t − 1. If this hypothesis holds, then we may

conclude that ytj should be preferred to ytl by a large class of individuals who prefer

more to less, Levy (2016). The alternative hypothesis we test against is the negation of

H0.

An additional hypothesis of interest is the second order stochastic dominance (SSD)

hypothesis that ∫ x

−∞
Pr (ytj ≤ y|Ft−1) dy ≤

∫ x

−∞
Pr (ytl ≤ y|Ft−1) dy (2)

almost surely for all x ∈ R. In this case we may conclude that series ytj should be

preferred to ytl by a large class of risk averse individuals. Stochastic dominance is

central in a number of decision-making contexts, Levy (2016) and Whang (2019).

Allowing for conditioning information is essential in many applied contexts. Gon-

zalo and Olmo (2014) developed some tests of conditional stochastic dominance for the

low dimensional case. In fact, there is nowadays a plethora of available data for both

decision-makers and econometricians. We allow the dimensionality of Ft−1 to be large

and we allow a general functional form for the conditional c.d.f.’s of the outcome vari-

ables. In particular, we propose a location-scale model for the observed outcomes with

i.i.d. shocks of unknown distribution. The proposed model is semiparametric in the

sense that the location and scale functions can be fully nonparametric functions of a

finite number of conditioning covariates or can be linear functions of a large number

of conditioning covariates, while the unknown error distribution is also left unspecified.

The sparsity assumption plays a fundamental role in high-dimensional data analysis.

Under this assumption, the information on the large set of conditioning variables can

be effectively represented by a small subset of variables, although their identities are

unknown to researchers. This plays a key role in determining how to construct a test of

the conditional stochastic dominance hypothesis under the high-dimensional setup. In

our application below we consider one series to be the return on the US stock market

and the other series to be the return on the Rest of the World or Global stock market.

We consider a large class of available information Ft. We use modern data techniques to

reduce the dimensionality of Ft to the most essential components, whose dimensionality,
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nevertheless, is allowed to grow with sample size.

We estimate the unknown location and scale functions by the regularized least

squares and the error distribution by the empirical distribution. Specifically, the un-

known location function is estimated by Tibshirani’s (1996) least absolute shrinkage and

selection operator (LASSO). It is commonly employed for the sparse high-dimensional

regression and its statistical properties have been intensely studied for cross sectional

data, see e.g. Bickel et al. (2009), but not much work has been published for time

series data, Medeiros and Mendes (2016) being an exception. The scale function is

also estimated by the LASSO in the regression of the absolute value of the first step

residuals. Unlike in other skedastic regressions, we find that the scale normalization by

the modulus is more convenient than by the square of the residuals. Then, the error

distribution is estimated by the empirical distribution function of the rescaled residuals.

To characterize the sharp weak limit of the empirical distribution, however, we need

to regularize the residuals by thresholding so that we can control the random variation

arising from the imperfect selection of the smallish coefficients. Therefore, we reestimate

the location and scale functions by the ordinary least squares with the selected variables

by the thresholding. The precise conditions on the thresholding are presented as well as

the additional regularity conditions to validate the thresholding.

We develop a time series extension of an exponential inequality that proves use-

ful to obtain deviation bounds for LASSO estimators, which in turn yields tightness

of the residual empirical process. The deviation bounds for the LASSO and variants

have been developed for random samples by Bickel et al. (2009), Belloni et al. (2012),

among many others. See also reviews by Bühlman and van der Geer (2011) and Belloni

and Chernozhukov (2013) for instance. They justify the selection consistency based on

thresholding the LASSO estimates, provided that so-called beta-min conditions are met.

The weak convergence of an empirical process of residuals from a linear regression with

increasing numbers of regressors has been studied by many others, e.g. Mammen (1996)

and Chen and Lockhart (2001). More recently by Chatterjee et al. (2015) who con-

sidered a high-dimensional penalized regression with homoskedastic errors. Our work

extends the literature by allowing for dependent data and for the rescaled residuals

from a nonparametric location scale regression model. Building on the aforementioned

generalizations, we obtain the weak convergence of estimates of the conditional distri-

bution functions and provide the asymptotic distribution of a supremum statistic for

the conditional stochastic dominance test.

Our statistic for FSD is the maximum deviation of one estimated conditional distri-

bution function from the other. The conditional distribution functions in our specifica-

tion are defined on unbounded dimensions because a conditional distribution function is

given by the composite of the distribution function and the regression functions, whose

domains may belong to an infinite-dimensional space. This is a different feature of our

test from the previous finite-dimensional stochastic dominance tests. We establish the
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weak convergence of the properly centered and scaled estimated conditional distribution

functions. The statistic for SSD is the maximum deviation between the unweighted

integrals of the estimated conditional distribution functions. The unweighted integral of

an empirical distribution function does not exhibit weak convergence but the difference

can be shown to be tight. Then, the statistic converges by the continuous mapping

theorem to the supremum of a Gaussian process, which is not pivotal and cannot be

tabulated without knowledge of the underlying data distribution.

We propose a smoothed stationary bootstrap to compute the p-value of the statistic.

Several issues need to be taken care of to implement the bootstrap correctly due to the

high-dimensional time series data and the use of the empirical distribution function.

The stationary bootstrap proposed by Politis and Romano (1994) is suitable to control

the serial dependence in the observed variables and errors. We do not need to impose

the martingale difference condition for the errors. The smoothing is used to impose the

smoothness of the error distribution on the bootstrap distribution as in e.g. Neumeyer

(2009). Both methods are combined to generate bootstrap samples. Furthermore, the

location and scale functions for the bootstrap sample are estimated by the ordinary

least squares conditioning on the selection at the original sample, since bootstrapping

the LASSO is known to be inconsistent, Chatterjee and Lahiri (2011). Thus, the com-

putational burden is lowered by not implementing the LASSO at the bootstrap.

We investigate the finite sample performance of the bootstrap critical values in some

Monte Carlo simulations. We find that the performance is satisfactory even for quite

modest sample sizes. Finally, we illustrate our method by an application to the home bias

puzzle, which is why investors are so overweighted on the US market. In particular we

test whether a Global return series dominates the return on the US market conditioning

on a large set of variables available to investors. We find that generally the US market

does not dominate the rest of the world when conditioning on available variables but

there are some periods where it does.

The paper is organized as follows. The following section introduces our model and

the preliminary estimators. The test statistics for FSD and SSD are defined and their

asymptotic distributions are derived in Section 3. The smooth stationary bootstrap is

introduced in Section 4 and its finite sample property is explored through Monte Carlo

simulation in Section 5. A few proposals to improve the power are discussed in Section

4.2. Section 6 illustrates the new test by an application to the home bias puzzle. All the

proofs are delegated to the Appendix and online Appendix, where we establish the weak

convergence of the residual empirical processes from the (moderately) high-dimensional

time series regression and the (conditional) weak convergence of the aforementioned

smooth stationary bootstrap residual empirical process. Each of the results in these

sections may be of independent interest and thus the results are presented self-contained.

For these two sections, we consider a model of moderately high-dimension in the sense

that the number of parameters increases but not as fast as to make the OLS infeasible.
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Notation: for a vector x ∈ Rs, |x|q := (
∑n

i=1 |xi|
q)1/q denotes the `q-norm of the

vector x and |x| := |x|2. And for an index set S, xS := (xi : i ∈ S) denotes a subvector of

x. Let S (β) denote the support of a given vector β, that is, S (β) = {i : βi 6= 0}, and let

|S| denote the cardinality of an index set S. All the observations are arrays of variables,

whose distributions and dimensions may depend on n, but we suppress the dependence

on n and do not introduce the subscript n for notational simplicity, unless it is necessary

to evade confusion. In particular, Xt denotes the vector of p basis transformations of qt,

while xt is a subvector of Xt that collects truly relevant elements among Xt. But we use

β to indicate the coefficients of both Xt and xt to ease notation. Thus, if β̂ is defined

as the OLS estimate in the regression of yt on xt, then X
ᵀ

t β̂ should be understood as

X
ᵀ

t,S β̂.

2 Model

We suppose that the following location scale model generates each outcome variable:

ytj = gj (qt) + σj (qt) εtj , t = 1, . . . , n, (3)

where the innovation εtj is an i.i.d. sequence with a marginal distribution F j and

first moment equal to zero. The observed covariate vector qt ∈ Rk may include lagged

outcome variables, and its dimension can be large (increases to infinity as n increases

to infinity). The functions gj , σj : Rk → R are unknown but we specify below some

restrictions on them. We suppose that the skedastic functions σj are bounded away

from zero and εtj is non-degenerate so that the mean regression error et = σtεt is

nonzero with probability one. We assume that εtj and qt are mutually independent in

which case the conditional distribution of ytj given qt is characterized by the distribution

of εtj and the functions gj , σj . From here on, we omit the outcome index j when we

discuss common features. We will add the superscripts when it is necessary to avoid

confusion. Under our assumptions, for a given y and q, the conditional distribution of

the typical outcome variable is

F (y|q) := Pr (yt ≤ y|qt = q) = F

(
y − g (q)

σ (q)

)
.

The c.d.f.’s F j are of unknown functional form and so are the functions gj , σj .

However, we further suppose that there exists a large dimensional observed vector Xt :=

(Xt1, . . . , Xtp)
ᵀ

:= (X1 (qt) , . . . , Xp (qt))
ᵀ

= X (qt) ∈ Rp such that

g(qt) = β
ᵀ

0Xt + rgt, (4)

where β0 is sparse (contains many zeros essentially) and the approximation error rgt → 0
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at a proper rate as the dimensionality of Xt expands with sample size. We do not need to

know a priori the exact identity of Xt, it suffices to have a superset of it. One prominent

model is that the regression function is partially linear g(qt) = g1(q1t)+α
ᵀ

gq2t, where q2t is

a vector of large dimensions, while q1t is of small, fixed dimensions, and g1 is of unknown

form so that g1(q1) =
∑∞

l=1 θlψl(q1), where ψl are known basis functions and θl are

unknown parameters, in which case we can take Xt to contain q2t, ψ1(q1t), . . . , ψm(q1t)

for some finite truncation m. The key question in practice is how to assign the elements

of q to q1 or q2, but our method and theory do not require us to take a position on this:

we can include a superset where we expand all continuous variables and the selection

will choose which ones essentially require nonlinear treatment.

An analogous assumption is imposed on the skedastic function σ so that

σt = σ (qt) = γ
ᵀ

0Xt + rσt, (5)

where γ0 is a sparse vector and the approximation error rσt → 0 as the dimension of Xt

grows. The vector Xt for the function σ may be different from Xt in the specification

of g in (4) but we let them be the same for notational simplicity. It may be viewed as

the union of the two if they are different.

We allow σ to determine the scale of the overall error term and impose the scale

normalization on the distribution of εt, specifically we suppose that E |εt| = 1.1

2.1 Estimation

The dimension p of the series terms Xt can be potentially huge because the dimension

of qt itself may be high or the number of the basis transformations that are employed

may be large. The series can be composed of various interactions, their dummies, poly-

nomials, and B-splines and even interactions of the basic series transformations. Thus,

it is generally not feasible to estimate β by unrestricted least squares; we estimate the

coefficients β by a regularized least squares. Our procedure takes three steps. We first

employ a weighted LASSO procedure, and then select elements of Xt by thresholding,

and finally reestimate β by the OLS on the selected variables.

First, we describe the weighted LASSO, i.e., the `1-penalized least squares with

penalty varying for each element in β, which is

min
β∈Rp

1

n

n∑
t=1

∣∣yt −Xᵀ

t β
∣∣2
2

+ λ |Dβ|1 , (6)

where D is a diagonal weighting matrix and λ is a tuning parameter. For instance, in

1Since E |et|i = E |σt|iE |εt|i, it does not matter which moment of |εt| we choose to normalize. In
the case where εt ∼ N

(
0, σ2

ε

)
, E |εt| = σε

√
2/π, i.e., we would normalize σε =

√
π/2 instead of 1.

Note that the function σt is still viewed as the conditional variance of the error et given qt upto a scale
adjustment, since E

(
e2t |Ft−1

)
= σ2

t · Eε2t . While i = 2 is more common in the GARCH literature, we
let i = 1 as it is more convenient for our test procedure later on.
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the standard scale normalization D’s j-th diagonal element is (n−1
∑n

t=1X
2
tj)

1/2. Song

and Bickel (2011) proposed a lag-order dependent penalty k or k2 when Xtj = yt−k.

Let β̂lasso denote the resulting LASSO estimate. Second, we threshold this estimator

further. Let

Ŝ =
{
j :
∣∣∣β̂lasso,j∣∣∣ > λthr

}
(7)

where the threshold parameter λthr is strictly bigger than the LASSO parameter λ.

Third, we re-estimate β by the OLS method on the selected variables defined by Ŝ.

Specifically,

β̂Tasso = arg min
β:βj=0,j /∈Ŝ

n∑
t=1

(
yt −X

ᵀ

t β
)2
, (8)

that is, β̂
Tasso,Ŝ

is equivalent to the OLS estimator2 β̂ from the linear regression of yt

on x̂t := X
t,Ŝ

. Then, we set

ĝt = ĝ (qt) = X
ᵀ

t β̂Tasso = x̂
ᵀ

t β̂,

and define the residual êt = yt − ĝt for each t.

To estimate γ, note that under our scale normalization we have |et| = σ (qt) + ηt =

γ
ᵀ

0Xt+ rσt+ ηt, where E [ηt|qt] = 0. We replace the unobserved et by the residual êt and

proceed as for the estimation of β. Specifically, let

γ̂lasso := argmin
γ∈Rp

1

n

n∑
t=1

(
|êt| −X

ᵀ

t γ
)2

+ µ |Qγ|1 , (9)

whereQ is a weight matrix such as the diagonal matrix whose j-th element is (n−1
∑n

t=1w
2
tj)

1/2

and µ is a penalty parameter. Then, apply the thresholding to determine a selection

Ŝγ = {j : |γ̂lasso,j | ≥ µthr} ,

for some µthr. Next, let ŵt = X
t,Ŝγ

and γ̂ denote the OLS estimate of |êt| on ŵt. We

may also define γ̂Tasso as the thresholded LASSO estimate as for β̂Tasso. Then, we may

set

σ̂t = σ̂ (qt) = X
ᵀ

t γ̂Tasso = ŵ
ᵀ

t γ̂,

provided that w
ᵀ

t γ̂Tasso > 0. In the event that w
ᵀ

t γ̂Tasso ≤ 0, which happens with low

probability, we set σ̂t =
∑n

t=1 |êt| /n.
2There is some abuse of notation in defining β̂Tasso and β̂ as the two have different dimensions. That

is, β̂Tasso denotes the estimate of the coefficient of Xt while β̂ corresponds to that of x̂t, which is a
subset of Xt due to the selection. We keep this notation as it simplifies the notation without much
confusion.
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3 Test Statistics

This section introduces our test statistics for the FSD and SSD hypotheses and then

develops their asymptotic distributions.

We observe the dataset {yt1, yt2, qt}nt=1 . The testing proceeds as follows.

1. For each j = 1, 2, run the regression of ytj on Xt by the thresholded LASSO as

described in Section 2.1 to get Ŝj .

2. Let Ŝ = Ŝ1 ∪ Ŝ2 and define x̂t := X
t,Ŝ
, i.e. the collection of selected elements of

Xt in at least one of the two regressions, and x̂ (q) = X
Ŝ

(q).

3. Let β̂j denote the OLS estimate3 in the regression of ytj on x̂t and define the

residual êtj = ytj − x̂
ᵀ

t β̂
j .

4. Likewise, for each j = 1, 2, run the skedastic regression of |êtj | on Xt as explained

in Section 2.1 and compute Ŝσ, ŵt, ŵ (q) , and γ̂j analogously to Ŝ, x̂t, x̂ (q) , and

β̂j in the preceding steps, respectively.

5. For each j = 1, 2, construct the scaled residual ε̂tj = (ytj − x̂
ᵀ

t β̂
j)/σ̂jt , its empirical

distribution function

F̂ j (τ) =
1

n

n∑
t=1

1 {ε̂tj ≤ τ} ,

and let τ̂ j (y, q) = (y − x̂ (q)
ᵀ
β̂j)/σ̂j (q) .

6. Construct the test statistic4 for the FSD hypothesis

Tn =
√
n sup

y,q

(
F̂ 1
(
τ̂1 (y, q)

)
− F̂ 2

(
τ̂2 (y, q)

))
,

and, for the SSD hypothesis,

Un =
√
n sup

y,q

∫ y

−∞
F̂ 1
(
τ̂1 (u, q)

)
du−

∫ y

−∞
F̂ 2
(
τ̂2 (u, q)

)
du

= sup
y,q

1√
n

n∑
t=1

[
σ̂1 (q)

(
τ̂1 (y, q)− ε̂t1

)
+
− σ̂2 (q)

(
τ̂2 (y, q)− ε̂t2

)
+

]
.

We may also by analogy construct tests for stochastic maximality in the case with

multiple prospects, McFadden (1989).

3There is some abuse of notation in defining β̂Tasso and β̂ as the two have different dimensions. That
is, β̂Tasso denotes the estimate of the coefficient of Xt while β̂ corresponds to that of x̂t, which is a
subset of Xt due to the selection. We keep this notation as it simplifies the notation without much
confusion.

4In practice, the supremums are approximated by the maximums over some grid of (y, q) . This grid
search becomes computationally challenging as the dimension of q grows.

8



3.1 Asymptotic Distribution

We next present the large sample distributions of the test statistics. Define the following

empirical processes:

T̄n (y, q) =
√
n
[
F̂ 1
(
τ̂1 (y, q)

)
− F̂ 2

(
τ̂2 (y, q)

)
−
(
F 1
(
τ1 (y, q)

)
− F 2

(
τ2 (y, q)

))]
,

Ūn (y, q) =

∫ y

−∞
T̄n (u, q) du.

Note that Tn = supy,q T̄n (y, q) and Un = supy,q Ūn (y, q) under the least favorable case

of the null hypothesis (i.e., when F 1 = F 2).

First, we collect the regularity conditions. Recall that we assume the array structure.

Assumption 1 Suppose that (3), (4), (5), and the following hold for each n:

1. {Xtet, t = 1, 2, . . .} is a β-mixing array with coefficient β (m) satisfying that for

some positive h1, h2, b, and c,

β (m) ≤ exp
(
−cmh1

)
Pr (|Xtiet| > τ) ≤ H (τ) := exp

(
1− (τ/b)h2

)
for all i (10)

h :=
(
h−1

1 + h−1
2

)−1
< 1, (11)

log p = O
(
nh1∧(1−2h1(1−h)/h)

)
. (12)

2. The marginal distribution functions F j of εtj and the regression functions gj and

σj are twice continuously differentiable with uniformly bounded derivatives. Fur-

thermore, the density functions f j of εtj are strictly positive throughout R.

3. The processes σt and σ−1
t are bounded almost surely.

4. E supt (|rgt|+ |rσt|) = o
(
n−1/2

)
.

5. The sparsity parameter s = |S(β0)| + |S(γ0)| satisfies: s4 log3 s = o (n), λthr =

o (min {|β0j | : β0j 6= 0}) and µthr = o (min {|γ0j | : γ0j 6= 0}).

The definition for the β-mixing coefficient is given in Section C, which provides more

discussion regarding the mixing rate restriction. The β-mixing condition is known to

be more convenient to work with than the strong α-mixing condition as it allows for

decoupling as in Berbee’s lemma, see e.g. Doukhan et al. (1995). We impose this to

establish the weak convergence of the residual based empirical processes of time series

data. Otherwise, the weaker strong mixing condition will be sufficient.

There is a trade-off between the decay rate of the mixing coefficients and that of the

tail probability. As h < 1 due to (11), we need

h1 (h− 1) /h > −α, (13)
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for some α < 1/2 to allow p in (12) to grow. If h2 < 1, this and (11) cannot be met

simultaneously. And for h2 > 1, this condition implies that h1 > (1−α)h2/(h2−1).Thus,

the smaller h2, the larger h1 is needed, that is, a trade-off between h1, the mixing decay

rate, and h2, the tail decay rate. Refer to Merlevede et al. (2011) for more discussion

on the case h ≥ 1. The tail condition (10) is a weaker form of E exp
(
δ |vt|h2

)
<∞ with

some positive δ due to the Markov inequality.

The condition on the approximation error in Assumption 1.4 appears more stringent

than the usual condition of op (s/n) but it is required to control the error in approximat-

ing F by the distribution function of σ−1
t (et+rgt). In addition, it seems natural to expect

that the approximation error gets smaller as the number of terms used in the approxi-

mation increases as described in condition 5. This is the so-called sparsity assumption.

In fact, this condition also imposes the so-called beta-min condition that the size of the

minimal signal is well-separated from zero so that the selection by thresholding can be

perfect asymptotically.

However, the identity of those terms is unknown and not unique. One way to un-

derstand the target value β0 is via the following oracle problem:

s = min

{
argmin

s′

(
min
|β|0=s′

E
(
g (qt)−X

ᵀ

t β
)2)

+ σ2
e

s′

n

}

β0 ∈ argmin
|β|0≤s

E
(
g (qt)−X

ᵀ

t β
)2
.

See e.g. Belloni and Chernozhukov (2013). Without a proper rank condition on Xt,

β0 is not unique. In fact, we do not need any unique approximation but any approx-

imation that satisfies condition Assumption 1.4. It is in fact more flexible than the

conventional series estimation of the regression functions since it does not demand the

identity of the more important series terms. Furthermore, it even allows for combining

very different bases such as polynomials and B-splines. The same comments apply to

the approximation of σ (·).
The beta-min condition is a strong assumption that enables weak convergence of

our test statistic. It is a sufficient but not necessary condition. It is an interesting

future research topic to relax this. It has been relaxed in some special cases such as

Chernozukov et al. (2017, 2018). Here, we discuss some challenges that lie in wait for

this extension in our testing problem. First, our test concerns not a finite dimensional

parameter but whole conditional distribution functions whose number of conditioning

variables diverges. There should be a strict restriction on the number of conditioning

variables due to the curse of dimensionality. The beta-min condition imposes this re-

striction. Second, our test builds on the empirical distribution function of the growing

dimensional regression residuals. It is well established by Mammen (1996) and Chen

and Lockhart (2001) that the dimension cannot be bigger than the sample size raised

to a power less than one half for the tightness of the empirical process. Thus, there
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might not be a weak limit without the beta-min or similar condition. Third, a finite

sample Gaussian approximation may be considered instead of the weak limit of the test

statistic. For instance, Chernozhukov et al. (2014) develop a Gaussian approximation

to the empirical process which may not be P-Donsker at its supremum. However, the

extension from their setting to the residual empirical process from the high dimensional

time series regression is challenging, if it is even possible.

Although a full rank condition for Xt is impossible for high-dimensional regression,

a reasonable rank condition is required to guarantee a good performance of the LASSO

and the OLS after thresholding. Thus, we introduce the following definition.

Definition 1 A p × p matrix Σ is compatible for an index set S with a compatibility

constant φ > 0, if

|S| b
ᵀ
Σb

|bS |21
≥ φ2,

for any b ∈ Rp such that |bSc |1 ≤ 3 |bS |1.

Sufficient conditions for the compatibility condition are extensively discussed in

Bühlmann and van der Geer (2011, Section 6) and are given by Basu and Michai-

lidis (2015) for certain dependent data. In view of Bühlmann and van der Geer (2011,

Corollary 6.8), the compatibility condition does not have to hold for the Gram matrix

n−1
∑n

t=1XtX
ᵀ

t with a uniform compatibility constant almost surely. It is sufficient to

assume the following conditions:

Assumption 2 The matrix EXtX
ᵀ

t is compatible for S (β0) with some φβ.

Assumption 3 Assume that EXtX
ᵀ

t is compatible for S (γ0) with some φγ.

The tuning parameters λ, λthr, µ, and µthr need to diminish as the sample size n

diverges. More, precisely, we require that√
log (np)

n
= o (λ) , (14)

which is a lower bound for λ. In practice, the cross validation method is commonly used

for the selection of λ.

Next, λthr needs to satisfy the following lower bound

λs = o (λthr) . (15)

Since the deviation bound for |β̂lasso−β0|1 is Op (λs) , as shown in Theorem 6 in Section

D, the proposed threshold makes Ŝ collect only the relatively significant variables. Other

popular alternatives include the smoothly clipped absolute deviation penalty (SCAD),

Fan and Li (2001), and the adaptive LASSO, Zou (2006). We have chosen the thresh-

olded LASSO mainly because it is explicit about its selection and is computationally

11



more efficient since it is a convex optimization. The adaptive LASSO is more difficult

to analyze theoretically as it is not explicit about its variable selection. The estimation

of the support of a coefficient vector is a challenging problem. See van der Geer et al.

(2011).

A notable difference in the LASSO estimation of the feasible skedastic regression is

that the LASSO penalty term µ needs to be bigger than λ, the LASSO penalty in the

mean regression. This is because the estimation error in the dependent variable |êt| in

the feasible skedastic regression inflates the standard error of the estimator so that we

need

λ
√
s = o (µ) and µsγ = o (µthr) . (16)

To characterize the asymptotic distributions, recall that xt = Xt,S and wt = Xt,Sγ

and define

D (y, q) = D (y, q) + f (τ (y, q))D1 − τ (y, q) f (τ (y, q))D2,

where τ (y, q) = (y − g (q)) /σ (q) , and D and D = (D1, D2)ᵀ are centered Gaussians

with covariance kernels specified as follows:

ED (y1, q1)D (y2, q2) = cov (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1} , 1 {εt1 ≤ τ2} − 1 {εt2 ≤ τ2})

with τi = (yi − g (qi)) /σ (qi), i = 1, 2, and

EDD
ᵀ

= lim
n→∞

E

[
x̃2
t (εt1 − εt2)2 , x̃t (εt1 − εt2) w̃t (|εt1| − |εt2|)

· w̃2
t (|εt1| − |εt2|)2

]

ED (y1, q1)D = lim
n→∞

E (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1})

(
x̃t (εt1 − εt2)

w̃t (|εt1| − |εt2|)

)
,

with x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

We denote by “=⇒” the weak convergence in `∞(R×Q) that is uniform over the

distributions of conditioning variables and errors in the sense of Theorem 2.8.2 of van

der Vaart and Wellner (1996). Then, the following theorem establishes the uniform

P -Donsker property of our statistics.

Theorem 1 Suppose that Assumptions 1 - 3 and conditions (14), (15), and (16) hold.

Then, as n→∞

T̄n (·, ·) =⇒ D (·, ·) , Ūn (·, ·) =⇒
∫ ·
−∞
D (u, ·) du, .

The theorem involves several nontrivial extensions of the existing statistical conver-

gence results concerning the weak convergence of the empirical distribution functions

of high-dimensional regression residuals, the deviation bounds for the weighted lasso

12



estimator for the time series regression and for the skedastic regression, and the weak

convergence of functions defined on an unbounded domains. These results may be of

independent interest and thus are presented in the Appendix in a more self-contained

manner. Building on these results, the convergence of Tn follows from the continuous

mapping theorem.

The weak convergence of the SSD statistic cannot result from applying the continu-

ous mapping theorem to the residual empirical process unless the support of the integral

is bounded. It is well-known that the sample analogue higher order stochastic dominance

test statistics needs proper weighting functions to control the tail behavior. In the case

of the SSD hypothesis, Horvath et al. (2006) illustrate that the weak convergence can

be achieved without a weighting function in a simpler case where one can observe ε1t’s

and ε2t’s directly, while the previous literature like Linton et al. (2005) has assumed a

bounded support, which is a special case of a weighting function of an indicator for a

bounded set. Later, Linton et al. (2010) reintroduced a weighting function to study the

bootstrap of the stochastic dominance test using residuals.

3.2 Local Power

To analyze the power of the test, we study the centering terms in T̄n and Ūn, that is,
√
n
(
F 1 (y|q)− F 2 (y|q)

)
and its integrated version. Let:

g2 (q) = g1 (q) + δ1n (q) (17)

σ2 (q) = σ1 (q) + δ2n (q) (18)

F 2 (τ) = F 1 (τ) + δ3n (τ) , (19)

where recall that
∫
τdF 2 (τ) =

∫
τdF 1 (τ) = 0 and

∫
|τ | dF 2 (τ) =

∫
|τ | dF 1 (τ) = 1. We

allow F j (y|q) to change with the sample size n, but have suppressed the dependence of

F j (·) , gj (·) , and σj (·) on the sample size n for the sake of notational simplicity. By

the mean value theorem, for any given y and q,

F 1 (y|q)− F 2 (y|q) = −F 2
(
τ2
)

+ F 2
(
τ1
)
− F 2

(
τ1
)

+ F 1
(
τ1
)

=
∂F 2 (τ̄)

∂τ

(
1

σ̄ (q)

)
(δ1n (q) + τ̄ δ2n (q))− δ3n

(
τ1
)
,

where τ̄ = (y − ḡ (q)) /σ̄ (q) and (ḡ (q) , σ̄ (q)) is a mean value between
(
g1 (q) , σ1 (q)

)
and

(
g2 (q) , σ2 (q)

)
. If δin = 0, for all i = 1, 2, 3,then it corresponds to the least favorable

case of the null hypothesis.

We derive the asymptotic distribution of the test statistic Tn under the drifting

sequence of models

(δ1n (q) , δ2n (q) , δ3n (τ)) =
1√
n

(δ1 (q) , δ2 (q) , δ3 (τ)) , (20)

13



for all n, where δi is continuous and bounded for all i, q, and τ . Here, δ3 (τ) stands for

the deviation of the distribution functions of εtjs, which satisfy Eεtj = 0 and E |εtj | =
1. Thus, it should satisfy some regularity conditions. First, the continuity of F j (τ)

means that δ3(τ) → 0 as τ → ±∞. As Eεtj = 0,
∫ 0
−∞ F

j (y) dy =
∫∞

0

(
1− F j (y)

)
dy

by the integral-by-parts, yielding
∫ 0
−∞ F (y) + δ3n (y) dy =

∫∞
0 (1− F (y)− δ3n (y)) dy

and thus
∫ 0
−∞ δ3 (y) dy = −

∫∞
0 δ3 (y) dy and

∫∞
−∞ δ3 (y) dy = 0. Similarly, applying the

integral-by-parts to the restriction that E |εtj | = 1, we further restrict δ3 to satisfy∫∞
−∞ δ3n (y) dy = 2

∫∞
0

(
F 2 (y)− F 1 (y)

)
dy = 2

∫∞
0 δ3n (y) dy. Unless δ3 (τ) = 0 for all

τ , δ3 (·) should take both positive and negative values. Our discussion is summarized in

the following theorem.

Theorem 2 Suppose that Assumptions 1 - 3 and conditions (14), (15), and (16) hold.

Then, under (20) as n→∞

Tn =⇒ sup
y,q

[D (y, q) + B (y, q)] ,

Un =⇒ sup
y,q

∫ y

−∞
[D (u, q) + B (u, q)] du.

This theorem derives the asymptotic distribution under a sequence of alternative

hypotheses. When B (y, q) ≤ 0,the sequence obeys the null hypothesis. Thus, the de-

terministic non-centrality function B (y, q) determines the local power of the test. For

a given critical value cα of significance level α from the distribution of supy,q D (y, q) or

supy,q
∫ y
−∞D (u, q) du a non-trivial test demands that the probability of supy,q [D (y, q) + B (y, q)] or

supy,q
∫ y
−∞ [D (u, q) + B (u, q)] du greater than cα exceeds α. Equivalently, B (ŷ, q̂) and∫ ŷ

−∞ B (u, q̂) du are greater than 0 with a probability bigger than α, where (ŷ, q̂) denotes

the maximizers of the stochastic processes, [D (y, q) + B (y, q)] or its integrated process,

respectively.

We discuss some sufficient conditions for this. To begin with, suppose δ1 (·) > 0

while5 δ2 (·) = 0, and δ3 (·) = 0. Then, as ∂F (τ)
∂τ

1
σ(q) > 0 for any y and q, B (y, q) > 0

for all y and q thus implying a non trivial power. Similarly, if δ3 (·) < 0, the tests have

non trivial powers. When δ2 (q) 6= 0, we note that τ = (y − g (q)) /σ (q) can take both

positive and negative values for any q and so can τδ2 (q). Thus, B (y, q) < 0 for some y

and q and B (y, q) > 0 for others, with δ1 and δ3 held fixed at zero. The local power in

this case depends on the joint distribution of B (ŷ, q̂) and (ŷ, q̂) in a rather complicated

manner.

5In fact, it is well-known that FX (τ) ≤ FZ (τ) implies that EX ≥ EZ by the integral by parts
formula. Thus, the conditional mean relation g1 (q) < g2 (q) implies that F 1 (y|q) > F 2 (y|q) for some
y.
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4 Bootstrap for Inference

This section presents a bootstrap algorithm to approximate the p-values of our test

statistics. Our procedure, we name the smooth stationary bootstrap, combines two

separate methods in the literature to take care of the complexity of our test statistics

due to the temporal dependence and the highly nonlinear nature of the statistics. In the

Appendix we review the stationary bootstrap algorithm and the smooth bootstrap for a

generic sequence of variable Zn. Here, we combine them to approximate the distribution

of our residual based processes.

4.1 Bootstrap Test Statistic

The asymptotic distributions of Tn and Un are not pivotal hence the critical values

cannot be tabulated once and for all. Thus, we introduce a bootstrap procedure that is

based on the post-selection dataset {x̂t, ŵt, yt, t = 1, . . . , n}. The procedure is as follows

1. Fix constants an and πn within the interval (0, 1) and a smooth distribution func-

tion G and generate {i∗t , ηt} as follows

(a) Let dt and it, t = 1, . . . , n, be random draws from Bernoulli(πn) and Uniform{1, . . . , n}
distributions, respectively.

(b) Let i∗1 = i1. For t = 2, . . . , n, let

i∗t =
(
i∗t−1 + 1

)
(1− dt) + itdt

with the convention that i∗t−1 + 1 = 1 if i∗t−1 = n.

(c) Let ηt be i.i.d.

2. For each j = 1, 2, construct the bootstrap sample
{
x∗t = x̂i∗t , w

∗
t = ŵi∗t

}
and {ε∗tj =

ε̂i∗t ,j + anηt}, respectively, and then compute

y∗tj = x∗
ᵀ

t β̂
j + w∗

ᵀ

t γ̂
j · ε∗tj , t = 1, . . . , n.

3. For each j = 1, 2, obtain the OLS estimates β̂j∗ with the bootstrap sample

{x∗t , y∗tj}, i.e.,

β̂j∗ =

(
n∑
t=1

x∗tx
∗ᵀ
t

)−1 n∑
t=1

x∗t y
∗
tj ,

and compute the bootstrap OLS residuals ê∗tj = y∗t −x∗
ᵀ

t β̂
j∗, t = 1, . . . , n. Then,

compute:

γ̂j∗ =

(
n∑
t=1

w∗tw
∗ᵀ
t

)−1 n∑
t=1

w∗t
∣∣ê∗tj∣∣ ,
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ε̂∗tj = ê∗tj
(
w∗

ᵀ

t γ̂
j∗)−1

, and τ̂ j∗ (y, q) =
(
ŵ (q)

ᵀ
γ̂j∗
)−1 (

y − x̂ (q)
ᵀ
β̂j∗
)
.

4. Define the empirical distribution functions:

F̂ j∗ (τ) =
1

n

n∑
t=1

1
(
ε̂∗tj ≤ τ

)
; F j∗ (τ) =

1

n

n∑
t=1

G

(
τ − ε̂tj
an

)
.

Then construct the bootstrap statistics, for the FSD test

T ∗n =
√
n sup

y,q

[
F̂ 1∗ (τ̂1∗ (y, q)

)
− F̂ 2∗ (τ̂2∗ (y, q)

)
−
(
F 1∗ (τ̂1 (y, q)

)
− F 2∗ (τ̂2 (y, q)

))]
,

and for the SSD test,

U∗n =
√
n sup

y,q

∫ y

−∞

[
F̂ 1∗ (τ̂1∗ (u, q)

)
− F 1∗ (τ̂1 (u, q)

)
−
(
F̂ 2∗ (τ̂2∗ (u, q)

)
− F 2∗ (τ̂2 (u, q)

))]
du.

The bootstrap critical value c∗α for a prespecified significance level α is then computed

from the distribution of T ∗n , which can be approximated from the empirical distribution

of the simulated bootstrap statistics by repeating steps 1-4. Also, the bootstrap p-value,

that is, the conditional probability that T ∗n > Tn, can be approximated as the proportion

of the generated {T ∗n} that are greater than equal to Tn. The same applies for the SSD

test.

We next make some remarks on our bootstrap procedure. First, note that the cen-

tering term of the bootstrap residual empirical process is not the empirical distribution

function F̂n of the original sample. The proper centering reflects the smoothing by ηt

and thus the c.d.f. F ∗ (·) is continuous unlike F̂n (·). Second, our bootstrap scheme mim-

ics the OLS steps only using the selected regressors. An alternative bootstrap scheme

is to resample both untransformed regressors qt and errors ε̃t and perform the thresh-

old LASSO for each bootstrap sample. This is computationally much more demanding

since each bootstrap iteration now involves LASSO estimation with high dimensional

variables. Thus, we do not pursue this route in this paper.

Next we establish the asymptotic validity of our bootstrap test.

Assumption 4 Let the i-th derivative of a function g be denoted by g(i) and assume

the following:

1. The function G is κ-times differentiable with κ ≥ 3 and the first derivative G(1) of

G is a (symmetric) probability density function such that
∫
G(1) (z) z2dz <∞ and

G(v) is bounded for all v ≤ κ and
∫
G(v) (z)2 dz <∞ for v < κ.

2. The bandwidth an satisfies that a4
nn→ 0 as n→∞.
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Theorem 3 Suppose that Assumptions 1 - 4 and conditions (14), (15), and (16) hold.

Let c∗α denote the bootstrap critical value of level α for Tn. Then, under H0, we have

lim sup
n→∞

Pr {Tn > c∗α} ≤ α

for any 0 < α < 1, while under H1,

Pr {Tn > c∗α} → 1

for any 0 < α < 1. The same holds true for Un.

This result shows the size control and power property of our test.

4.2 Boosting Power

Before concluding the description of our test, we note that Linton et al. (2010) proposed

the so-called contact set approach to improve the power of the unconditional stochastic

dominance test. It works well with the unconditional dominance testing because the

contact set is estimated on the real line. However, it is less practical in our setting since

we need to estimate the set for each value of conditioning variables whose dimension

grows. To mitigate this problem, we propose to apply a screening principle, which is to

test certain implications of the null hypothesis with a higher criticism. This approach

is advocated by e.g. Fan et al. (2015).

One implication of the first- and second-order stochastic dominance of y1
t over y2

t

(conditional on qt = q) is the dominance of the conditional means, i.e.,

E
(
Y 1
t |qt = q

)
≥ E

(
Y 2
t |qt = q

)
. (21)

The negation of this implication implies the negation of the null hypothesis. Using the

conditional mean function ĝ (qt) = X>t β̂Tasso, which is estimated to construct our main

test statistic Tn in Section 2.1, we can screen this implication for a sequence of values

of qt ∈ {q1, ..., qJ} or Xt ∈ {x1 = x (q1) , . . . , xJ = x (qJ)} by statistics

tk = 1

x
ᵀ
k

(
β̂2 − β̂1

)
σ̂k

> c∗

 , k = 1, . . . , J,

for some scaling σ̂k and a critical value c∗. If tk = 1 for any k, we can stop and conclude

that the null is rejected. Otherwise, we resort to our test statistic Tn. To justify this

initial screening, the value c∗ needs to satisfy the high criticism property that

lim
n→∞

Pr

 max
k∈{1,2,...,J}

xᵀk

(
β̂2 − β̂1

)
σ̂k

≤ c∗
 = 1
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under the null hypothesis.

For sieve nonparametric regression with dependent data, Lemma 2.4 in Chen and

Christensen (2015) provides a uniform deviation bound ||ĥ−h0||∞ ≤ Op(ζnλn
√
n−1 log n)+ bias,

where ĥ and h0 stand for the estimated and true regression functions, respectively,

λn = λ
−1/2
min (EX (qt)X (qt)

ᵀ), and ζn is the size of the regressor vector supq ‖X (q)‖.
When the support of qt is bounded, ζK,nλK,n = O(

√
K) for commonly used linear sieves,

see Chen and Christensen (2015) for more detailed discussion. When testing (21), the

biases will cancel out or negative. Thus, we may set c∗ = ζnλn
√
n−1 log n log logn.

As for xk, good candidates are those that promote the sparse alternatives. However,

we do not consider the k-th unit vector ιk = (0, . . . , 0, 1, 0, . . . , 0)ᵀ, under which tk

would concern the significance of each elementwise difference in β̂j , because Xt = X (qt).

Rather, we consider xk of the form X (qk) for a grid of {qk}.
Choosing a proper scaling is a challenging issue in high-dimensional inference. We

suggest to set σ̂2
k = n

∑J
i=1 x

2
ki

(∑n
t=1X

2
ti

)−2∑n
t=1X

2
ti

(
x>k γ̂

)2
π/2, which corresponds to

the case where there is no correlation among the Xti’s. These estimates are uniformly

bounded.

5 Monte Carlo Simulation

In this section, we provide Monte Carlo simulation results that evaluate the finite sample

performance of our statistic. We generated the data for j = 1, 2 as follows:

yjt = βjq1,t + cv · (|q1,t|+ 1) · εt,

where cv = 0.3, εt is an i.i.d. normal error term with mean 0 and E[|εt|] = 1. On the

other hand, the explanatory variables qi,t are generated by following time series process:

qi,t = a+ bqi,t−1 + ei,t

where i = 1, 2, a = 0, b = 0.5, and t = 1, 2, . . . , n. Here t starts from −99 and thus the

first 100 observations are discarded. We estimate the model based on Xt = X(q1,t, q2,t),

which are transformations of q1,t, q2,t and are common for j = 1, 2. They are powers and

interaction terms of q1,t, q2,t up to polynomial order of 10. Hence, Xt has 65 variables

excluding the intercept. We also add additional variables for Xt so that the high-

dimensional setting n << p holds. The additional variables may vary according to

subsections.

Through this section, the parameters for LASSO is λ = cv′ ·
√

log p/n where n is

the sample size, p is the number of covariates, and cv′ ∝ cv. Any variable is selected by

LASSO if its estimated coefficient is larger than 2.0 · λ. Then we again run OLS with

selected variables.
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5.1 Size Simulation

We increase p by adding more terms to Xt with three different ways. First, we grow the

polynomial order of q1,t, q2,t constructing Xt. Second, we can generate more q3,t, q4,t, . . .

pairs and add them to Xt. Finally, we add lagged q1,t, q2,t terms and its powers (up to

10). We draw 105 random grid points from the uniform distribution of grid support.

Then to obtain the supremum of our objective function, we evaluate the object at each

point and take maximum.

We report the rejection rate at the significance level of α = 0.05 with the true

parameter value of β1 = β2 = 1 out of 1000 simulation iterations. Tables 1, 2, and 3

report the rejection frequencies for each case.

Table 1: Rejection probability with higher polynomial orders
order 10 15 20 25 30 35 40
n \ p 65 135 230 350 495 665 860

100 0.077 0.062 0.065 0.073 0.068 0.082 0.084
200 0.075 0.048 0.060 0.055 0.048 0.060 0.047
300 0.055 0.043 0.048 0.053 0.058 0.045 0.051
400 0.052 0.056 0.055 0.041 0.047 0.051 0.044
500 0.048 0.051 0.047 0.045 0.051 0.039 0.046

Table 2: Rejection probability with additional q pairs
New Pairs 1 3 5 7 10 13 15
n \ p 130 260 390 520 715 910 1040

100 0.071 0.070 0.073 0.085 0.058 0.063 0.068
200 0.061 0.062 0.064 0.057 0.062 0.056 0.061
300 0.058 0.070 0.062 0.044 0.072 0.054 0.055
400 0.048 0.067 0.062 0.057 0.069 0.075 0.052
500 0.048 0.054 0.058 0.062 0.067 0.065 0.054

Table 3: Rejection probability with lagged q terms
Max lag 5 10 15 20 25 30 35 40
n \ p 165 265 365 465 565 665 765 865

100 0.072 0.072 0.082 0.095 0.088 0.070 0.079 0.078
200 0.064 0.075 0.071 0.070 0.067 0.045 0.067 0.070
300 0.048 0.074 0.082 0.091 0.077 0.060 0.084 0.070
400 0.070 0.073 0.068 0.068 0.071 0.072 0.062 0.070
500 0.063 0.071 0.078 0.070 0.086 0.087 0.075 0.067

We also experiment with different values of b = 0.3, 0.4, . . . , 0.9 to examine the effect

of higher serial correlation in qt. See Table 4 for the results, which reports minor over

rejection tendency for bigger values of b.
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Table 4: Rejection probability with different AR coefficients b
n \ b 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100 0.082 0.089 0.087 0.093 0.089 0.088 0.132
200 0.068 0.072 0.080 0.073 0.090 0.088 0.089
300 0.076 0.077 0.082 0.068 0.078 0.070 0.092
400 0.082 0.093 0.057 0.086 0.079 0.081 0.083
500 0.088 0.085 0.072 0.066 0.079 0.060 0.094

5.2 Power Simulation

In this section, we fix Max Lag = 30 so that p = 665. All other settings are same with

the size simulation. Then we evaluate the power performance of our test in three ways.

First, by changing β2 = 1.0, 1.1, . . . , 2.0. Second, we shift y2 by adding α = 0.1, . . . , 1.0.

We only report the simulated rejection probability up to the case β2 = 1.5 or α = 0.5

since beyond the value the rejection probabilities are almost identical to 1. Tables 5

and 6 report the results for each case. As expected the rejection frequencies grow as the

sample size increases and as the alternative models move away from the null model.

Table 5: Rejection probability with β2 being 1.0, 1.1, · · · , 1.5
n \ β2 1.0 1.1 1.2 1.3 1.4 1.5

100 0.090 0.124 0.284 0.433 0.636 0.801
200 0.065 0.135 0.357 0.625 0.816 0.935
300 0.079 0.181 0.465 0.764 0.936 0.976
400 0.091 0.192 0.557 0.866 0.969 0.981
500 0.082 0.238 0.686 0.933 0.977 0.987

Table 6: Rejection probability after shifting y2 by α
n \ α 0.0 0.1 0.2 0.3 0.4 0.5

100 0.070 0.251 0.488 0.741 0.918 0.988
200 0.086 0.324 0.764 0.970 0.987 0.994
300 0.079 0.452 0.860 0.983 0.994 0.986
400 0.082 0.530 0.933 0.981 0.989 0.994
500 0.081 0.581 0.968 0.983 0.992 0.998

Third, we change the error distribution by letting ε2
t follow (Z2−1)/0.9680, i.e. chi-

square with one degrees of freedom normalized to mean 0 and the first absolute moment

1. The following Figure 1 compares it with normal distribution with mean 0 and the

first absolute moment 1.

Table 7 shows that the power improves as the sample size increases.
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Figure 1: Distributions

Table 7: Rejection probability of normal vs. chi-square error distribution
n 100 200 300 400 500

Rejection Prob. 0.043 0.094 0.182 0.327 0.417

6 Application

We apply our method to the comparison of US and Global equity returns. The home

bias puzzle has been investigated by a number of authors including Chan, Covrig, and

Ng (2005), French and Poterba (1991), and Lewis (1999). Levy and Levy (2014) argue

that despite a significant reduction in implicit and explicit transaction costs around

the world, the US home bias in stock and bond returns has not disappeared, that

is, domestic investors invest a higher fraction of their wealth in domestic stocks than

is warranted by the global mean variance trade-off. We shed some light on this by

comparing the conditional return distributions of US stocks and international stocks to

see whether such domestic biased strategies could be justified when accounting for many

conditioning variables in a general way and when adopting stochastic dominance rather

than mean variance as the criterion.

The dataset we use is the Fama-French US and Global risk premium daily series

from 7 August 1992 to 30 June 2016 obtained from Kenneth French’s Data Library

(6020 sample data in total, with extra 20 observations in use to accommodate lagged

returns). The two return series have contemporaneous correlation of around 0.842. The

sample statistics are reported in Table 8.

Table 8: Sample Statistics
Mean Std Skew Kurt ρ(1) ρ(2)

US 0.0314 1.134 -0.126 10.979 -0.0285 -0.0431
Global 0.0191 0.916 -0.216 10.306 0.1519 -0.0376

We next test the conditional dominance of the US series over the global series with
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674 conditioning variables detailed below in Table 9.6 We provide more detail on the

variables in the appendix.

Table 9: Description of the conditioning variables
Index Description

# 1-40 Lagged returns (max. lag = 20)
# 41-200 Powers of lags
# 201-600 Interactions
# 601-638 Momentum measures
# 639-657 Changes in trading volume
# 658-665 Relative strength Indices
# 666-669 Moving average oscillators
# 670-674 Day of the week dummy variables

We conduct a non-overlapping rolling window analysis of size 500, roughly two years,

to allow for nonstationarity. We plot the series of p-values reported from 12 windows

below in Figure 2. Throughout, λ is set to be
√

log(np)/n = 0.1595, the lower bound

given in (14), and the LASSO threshold constant is set to be 0.1. The result reveals

that the null hypothesis suggesting the conditional dominance of the US series over the

global series is rejected at the 5% level of significance, except for the periods of 1992-

1994, 2004-2006, and 2008-2012 where we do not have sufficient statistical evidence to

so conclude. It appears that those years have been somewhat different relative to the

rest of the sample.

We next investigate the selection process, i.e., which covariates survived. For the

period from 07/08/2000 to 06/08/2002, we calculate the sample correlations between

the conditioning variables and the US series, and rank them in descending order of

the absolute value of the correlations. Table 10 reports the correlations of 7 “selected

variables” from the mean regression (cf. Figure 3); the result suggests that the selected

variables tends to be those with high correlations in general, with 6 out of 7 variables

listed on top 9 out of 674.

Table 10: Correlations of the selected variables, an example
Variable Index Rank Correlation (abs.) Sign of the correlation

# 256 1 0.169272187 +
# 234 2 0.151388803 +
# 424 3 0.145195343 −
# 253 4 0.143038571 −
# 351 6 0.137275434 +
# 650 9 0.129063574 +
# 1 291 0.042979460 +

6We carried out Linton, Maasoumi and Whang’s (2005) LMW test of stochastic dominance using
subsampling based critical values. We cannot reject the SSD hypothesis unconditionally.
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Figure 2: Tests: p-values from the rolling window analysis
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7 Conclusion

The concept of stochastic dominance has been playing an indispensable role in various

economic analyses. This paper extends the econometric literature to the data rich en-

vironment by considering an abundant set of conditioning information that a rational

investor may take account of. We achieve this by working with a location and scale semi-

parametric model, which allows for very general specification of the mean and variance in

terms of a large number of conditioners, while using conventional nonparametric meth-

ods to estimate the error distribution. Although we focus on the stochastic dominance

in every possible scenario by considering the supremum statistic over all realizations of

conditioning variables, the results readily carry over to the supremum statistics over a

particular event of interest. There are a number of other extensions that we are inter-

ested in pursuing. Firstly, the case where the outcome is the same random variable but

the conditioning information sets may be different or nested is of interest. This poses

some unique problems when selection is employed to choose relevancy of predictors.

Secondly, we may consider the case where there are many outcome variables and the

hypothesis of interest is stochastic maximality, McFadden (1989).

23



Figure 3: Selection: Number of selected variables from the mean regression
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A Data series used in application

Suppose that Yt is the daily return on the benchmark and Rt is the daily return on

the alternative. We consider the following price based predictors: Lagged returns

Yt−j , Rt−j , j = 1, . . . , 10; Powers of lags Y k
t−j , R

k
t−j ; j = 1, . . . , 10, k = 2, 3, 4, 5; In-

teractions Yt−jRt−k, j, k = 1, . . . , 10; Momentum measures
∑k

j=1 Yt−j ,
∑k

j=1Rt−j for

k = 2, 3, . . . , 11; Local trends of window periods of 5, 10, 15, 20 days, respectively. For ex-

ample, fit the linear regression logPY i = α+β·i+εi,using the data i = t−1, t−2, . . . , t−k.
Then include the return forecast α̂ + β̂t − logPt−1. Relative strength indices which

are the percentages of the previous 5, 10, 15, 20 days that returns were positive, re-

spectively. Moving average oscillators, each of which is the difference between an av-

erage of the closing prices over the previous q1 days and that over the previous q2

days, where q1 < q2, q1 = 1, 5, 10, 15 and q2 = 5, 10, 15, 20. Nonparametric regressions

E(Yt|Zt−j), E(Rt|Zt−j), where Z is an observed state variable, for example Zt−j = Yt−j .

We also included additional nonprice based variables such as: Trading Volume Changes

log Vt−j−log Vt−j−1, j = 1, . . . , 10; Day of the week dummies; Term spread; Junk spread;

Industrial production and inflation (at best these are monthly observed); Rescaled time

t/T. For changes in trading volume and the moving average oscillators, we take the S&P

500 daily trading volume and closing prices data from Yahoo Finance, respectively.
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We plot in Figure 4 the estimated conditional means of the two series across the

rolling window period, which shows how closely the conditional means move.

Figure 4: Estimated Conditional Means

B Smooth Stationary Bootstrap

The stationary bootstrap of a sequence of variable Zn = {v1, . . . , vn}, Politis and Ro-

mano (1994), may be understood as a way to generate random sequences of indexes {i∗t } ,
with parameter 0 < πn < 1, to guarantee the stationarity of the resulting sequence

{
vi∗t
}

.

Specifically,7

1. Let dt and it, t = 1, . . . , n, be random draws from Bernoulli(πn) and Uniform{1, . . . , n}
distributions, respectively.

2. Let i∗1 = i1.

3. For t = 2, . . . , n, let i∗t =
(
i∗t−1 + 1

)
(1− dt) + itdt, where i∗t−1 + 1 = 1 if i∗t−1 = n.

The smooth bootstrap by Neumeyer (2009) adds a continuous variable to the original

nonparametric bootstrap sample to make the resulting bootstrap variable continuous.

The smoothing is introduced when the continuity of the distribution is a key condition

to characterize the asymptotic distribution of the statistic of interest, as in for example

the residual empirical process. Let ηt be generated from a continuous distribution G (·),
7Strictly speaking, we can set πn = 1 since the innovations in our model come from an independently

distributed sequence and the serial correlations in the conditioning variables do not affect the limit
distribution. This added generality, however, may mitigate the effect of such serial correlations coming
from the approximation errors in finite samples.
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which is independent of both {i∗t } and Zn. The idea of the smooth stationary bootstrap

is to construct the bootstrap sample as follows: for t = 1, , . . . , n let

v∗t = vi∗t + anηt,

where an → 0 as n → ∞ is a smoothing parameter. Neumeyer’s work is for i.i.d. data

and we extend it to dependent samples by combining it with the stationary bootstrap.

Remarks on smooth stationary bootstrap:

1. Another way to describe the smooth stationary bootstrap scheme is that, when

v∗t−1 = vi∗t−1
, v∗t is determined as anηt plus a random draw from Zn with probability

πn or the next observation vi∗t−1+1 of v∗t in Zn with probability 1− πn. That is,

v∗t =

{
vit + anηt with probability πn

vi∗t−1+1 + anηt with probability 1− πn.

2. Note that the (stationary) marginal distribution of i∗t−1 is Uniform{1, . . . , n} and

that
{
i∗t−1

}
is serially dependent.

3. Suppose that vt is univariate. According to Politis and Romano (1994) and

Goncalves and Politis (2011), this bootstrap sample’s distribution, conditional on

the original sample, is also a strictly stationary Markov chain. The conditional dis-

tribution G∗ (s) := Pr {v∗t ≤ s|Zn} of v∗t , conditioning on the original observation

Zn, is given by

G∗ (s) =
1

n

n∑
j=1

G

(
s− vj
an

)
.

4. The choice of smoothing parameter πn is a challenging issue. Politis and Romano

(1994) showed that the optimal rate in terms of the mean squared error of the

sample mean is n−1/3, but suggested πn = 1/b where b is the block length in the

moving block bootstrap.

5. The moment of 1 {v∗t ≤ s} and the inner products of 1
{
v∗t1 ≤ s1

}
and 1

{
v∗t2 ≤ s2

}
converges to the corresponding moment and inner products of 1 {vt ≤ s} and

1 {vt1 ≤ s1} and 1 {vt2 ≤ s2}, respectively, as an → 0.

6. The weighting constant an is similar to the smoothing parameter in the kernel

density estimation. Neumeyer (2009) employed an = n−1/4 and 0.5n−1/4.
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C Residual Empirical process from high-dimensional time

series regression

This section can be read independently and extends Mammen (1996) and Chen and

Lockhart’s (2001) residual empirical process with many parameters results to the setup

of time series regression with conditionally heteroskedastic errors. The cases for residuals

from parametric linear or nonlinear models have been considered by Koul (1970) and

Loynes (1980). The extension to the time series case was made by Boldin (1983), Bai

(1994), Ling (1998) and Schick and Wefelmeyer (2002). For the empirical distribution

of non-parametrically or semi-parametrically estimated residuals from cross sectional

regression models, see Akritas and Van Keilegom (2001) for instance. The challenge in

our case where we have dependent observations and a growing numbers of parameters

lies in the limited availability of a proper maximal inequality.

Specifically, we consider

yt = x
ᵀ

tβ0 + rgt + et, et = σtεt (22)

and

σt = w
ᵀ

t γ0 + rσt

where {xt, wt} and {εt} can be serially correlated but mutually independent of each other

and rgt and rσt are approximation errors. Compared to our main model characterized

in (3), (4), and (5), this model imposes the sparsity and the regression is performed only

for those relevant variables. Recall the notation that xt = Xt,S and wt = Xt,Sγ .

Let the OLS residual be denoted by êt = yt − x
ᵀ

t β̂, where β̂ is the OLS estimate.

Next, the unknown parameter γ0 can be estimated by regressing |êt| on wt (the skedastic

regression). Then, let σ̂t = w
ᵀ

t γ̂ and introduce the scaled residual ε̂t = σ̂−1
t êt, and the

(scaled) residual empirical process

Ẑn(τ) =
1√
n

n∑
t=1

(1 {ε̂t ≤ τ} − F (τ)) . (23)

This process has some distinct features from previous works in that it allows for the

conditional heteroskedasticity of unknown form and the time series dependence.

We define the infeasible empirical process of the unobservable error term εt,

Zn(τ) =
1√
n

n∑
t=1

(1 {εt ≤ τ} − F (τ)) .

We also define a correction term that is due to the estimation error in the first step:

B̃n (τ) = f (τ)µ
ᵀ

x

√
n
(
β̂ − β

)
− τf (τ)µ

ᵀ

w

√
n (γ̂ − γ) ,
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where
(
µ

ᵀ

x, µ
ᵀ

w

)ᵀ
= Eσ−1

t

(
x

ᵀ

t , w
ᵀ

t

)ᵀ
. It can be shown that (see e.g. Theorem 2.8.3 in van

der Vaart and Wellner 1996)(
Zn(τ)

B̃n (τ)

)
=⇒

(
Z(τ)

f (τ)Z1 − τf (τ)Z2

)
,

where ⇒ signifies the weak convergence as introduced ahead of Theorem 2 and Z(τ)

and Z = (Z1, Z2)
ᵀ

are a centered Gaussian process and a centered bivariate Gaussian

vector, respectively, whose covariances are characterized by

EZ(τ1)Z(τ2) = cov (1 {εt ≤ τ1} , 1 {εt ≤ τ2})

EZ(τ)Z
ᵀ

= lim
n→∞

E [(x̃tεt, w̃t (|εt| − 1)) 1 {εt ≤ τ}]

EZZ
ᵀ

= lim
n→∞

E

[
x̃2
t ε

2
t , x̃tεtw̃t (|εt| − 1)

· w̃2
t (|εt| − 1)2

]
,

where x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

Theorem 4 Suppose Assumption 1 holds. Then,

sup
τ∈R

∣∣∣Ẑn(τ)− Zn(τ)− B̃n (τ)
∣∣∣ = op (1) (24)

sup
τ∈R

∣∣∣∣∫ τ

−∞
Ẑn −

∫ τ

−∞
Zn −

∫ τ

−∞
B̃n

∣∣∣∣ = op (1) . (25)

Furthermore,

Ẑn(τ) =⇒ Z(τ) + f (τ)Z1 − τf (τ)Z2. (26)

The conditions in Assumption 1-1 can be weakened so that the random vector qt

is strictly stationary β-mixing with mixing coefficient of order βm = O (ρm) for some

0 < ρ < 1 and has bounded fourth moments. The rather strong tail condition is to

control the behavior of the lasso estimator for the high-dimensional regression, which

can be weakened when we do not need selection using the lasso. Note that it is not clear

if there exists a weak limit of
∫ τ
−∞ Zn as the natural semi-metric of L2-norm does not

make the functions space of this empirical process totally bounded due to the integration.

And this difficulty can be mitigated later when we consider the differences for the second

order stochastic dominance.

Proof of Theorem 4. To begin with, it is useful to note that

{ε̂t ≤ τ} = {êt − τ σ̂t ≤ 0}

=
{
εt + σ−1

t rgt − σ−1
t x

ᵀ

t

(
β̂ − β

)
− τσ−1

t σ̂t ≤ 0
}

=
{
εt + σ−1

t rgt + τσ−1
t rσt ≤ τ + σ−1

t x
ᵀ

t

(
β̂ − β

)
+ σ−1

t w
ᵀ

t (γ̂ − γ) τ
}
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and that, as Pr
{
εt + σ−1

t rgt + τσ−1
t rσt ≤ c

}
= EF

(
c− σ−1

t rgt − τσ−1
t rσt

)
,

sup
τ,c

∣∣Pr
{
εt + σ−1

t rgt + τσ−1
t rσt ≤ c

}
− F (c)

∣∣
≤ f̄E sup

τ

∣∣σ−1
t rgt + τσ−1

t rσt
∣∣ = o

(
n−1/2

)
, (27)

where the first equality follows from the independence of εt from xt, the inequality is

due to the boundedness of the density of εt and the last equality is due to Assumption

1 and the boundedness of τ and σ−1
t . For the same reason,

Pr

{
sup
τ

∣∣σ−1
t rgt + τσ−1

t rσt
∣∣ ≤ b−1

n

}
→ 1

with bn = n1/2 (s log s)−1/2 .

Let rt = σ−1
t rgt + τσ−1

t rσt and consider the following process

Zn(b, g, τ) =
1√
n

n∑
t=1

(
1
{
εt ≤ τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
}
− F (τ)

)
,

on Θn =
{
|b| , |g| ≤ Cb−1

n , |τ | ≤ C
}

for a given C < ∞. Here the size of the index set

reflects the rate, at which the estimators β̂ and γ̂ converges to the true value β0 and γ0.

And note that Zn
(
β̂ − β0, γ̂ − γ0, τ

)
= Ẑn (τ). Then, write

Zn(b, g, τ) = Zn(b, g, τ)− Zn(τ) + Zn(τ)

= Mn(b, g, τ)−Mn(τ) + EZn(b, g, τ) + Zn(τ), (28)

where Mn(b, g, τ) = Zn(b, g, τ) − EZn(b, g, τ) is an empirical process and Mn (τ) =

Mn (0, 0, τ). Note that Zn(τ) = Zn(0, 0, τ) and EZn(τ) = 0. First, we show that

E sup
b,g,τ
|Mn(b, g, τ)−Mn(0, 0, τ)| → 0, (29)

where the supremum is over Θn. We can apply Lemma 2 and a truncation argument to

verify (29). Note that for any C1n and C2,

{
1
{
εt ≤ τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
}
− 1 {εt ≤ τ} : |τ | ≤ C1n, |b| , |g| ≤ C2b

−1
n

}
⊂ Gn =

{
gtτθ = 1

{
εt − τ − ζ

ᵀ

t θ ≤ 0
}
− 1 {εt ≤ τ} : |τ | ≤ C1n, |θ| ≤ b−1

n C2C1n

}
,

where ζt =
(
σ−1
t x

ᵀ

t , σ
−1
t w

ᵀ

t , rt
)ᵀ

. Then, apply Lemma 2 by setting δ proportional to

b−1
n C1n and s = o

(
n1/2

)
. Then, the resulting bound becomes O

(
n−1/4s (log s)3/4

)
,

since
√
s log s−log δ

s1/4
√
δn

= o (1) for s/
√
n = o (1). This allows for s order up to n1/4 aside from

the logarithmic factor. Furthermore, for τ < −C1n, for any ε > 0, the following holds
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for sufficiently large n

E
(
1
{
εt − τ − ζ

ᵀ

t θτ ≤ 0
}
− 1 {εt ≤ τ}

)
= E

∣∣F (τ + ζ
ᵀ

t θτ
)
− F (τ)

∣∣
≤
∫
f (τ (1 + z̄)) zp

(
z

an

)
1

an
dz

≤ f (−C1n (1− ε)) an = o
(
n−1/2

)
, (30)

where p (·) denotes the maximum of densities of ζ>t a over the unit vectors a and an =

b−1
n C1n, by the change of variables. The argument for the case τ > C1n is similar and

thus omitted.

Next, the standard Taylor series expansion for EZn(b, g, τ) yields that

EZn(b, g, τ) =
1√
n
E

n∑
t=1

(
F
(
τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ − rt
)
− F (τ)

)
=

1√
n
E

n∑
t=1

f (τ̂)
(
σ−1
t x

ᵀ

t b+ σ−1
t w

ᵀ

t τg − rt
)

for some value τ̂ between τ and τ + σ−1
t x

ᵀ

t b + σ−1
t w

ᵀ

t gτ + rt. And the boundedness of

the first derivative of f means that

1√
n

∣∣∣∣∣E
n∑
t=1

f (τ̂)σ−1
t x

ᵀ

t b− f (τ)Eσ−1
t x

ᵀ

t b

∣∣∣∣∣
≤ C 1√

n
E

n∑
t=1

(∣∣σ−1
t x

ᵀ

t b+ σ−1
t w

ᵀ

t gτ − rt
∣∣ ∣∣σ−1

t x
ᵀ

t b
∣∣) = o (1)

if
√
nEr2

t , n
−1/2E

∑n
t=1

(
σ−1
t w

ᵀ

t g
)2
, and n−1/2E

∑n
t=1

(
σ−1
t x

ᵀ

t b
)2

are o (1) , by the Cauchy

Schwarz inequality. However,
√
nEr2

t = o (1) by assumption and n−1/2E
∑n

t=1

(
σ−1
t x

ᵀ

t b
)2

is

bounded by Cn−1/2E
∑n

t=1

(
x

ᵀ

t b
)2

by the boundedness of σ−1
t , which is o (1) as |b| ≤

b−1
n = n−1/2 (s log s)1/2. By proceeding similarly for the term with w

ᵀ

t τg and due to

(27), we can conclude

∣∣EZn(b, g, τ)− f (τ)E
(
σ−1
t x

ᵀ

t

√
nb+ σ−1

t w
ᵀ

t τ
√
ng
)∣∣ = o (1) ,

uniformly in b, g,and τ on Θn. By setting b =
(
β̂ − β0

)
and g = (γ̂ − γ0) and applying

Lemma 5 yields the weak limit (26).

The proof of (25) is analogous. We can redefine Zn(b, g, τ) in (28) as

Zn(b, g, τ) =
1√
n

n∑
t=1

((
−εt + τ + σ−1

t x
ᵀ

t b+ σ−1
t w

ᵀ

t gτ + rt
)

+
− E (−εt + τ)+

)
,

and proceed to show (29) by applying Lemma 3 similarly for the proof of (24) us-

30



ing Lemma 2 in there. The truncation argument is applied by showing Mn(b, g, τ) −
Mn(0, 0, τ) − (Mn(b, g, C1n)−Mn(0, 0, C1n)) is op (1) uniformly over |τ | > C1n for the

same reason as (30).

D Proofs of Main Theorems

Proofs of Theorem 1 and Theorem 2 in Section 3 are given in this section. The

latter is a consequence of the continuous mapping theorem and Theorem 1. Since Ŝ = S

with probability approaching one due to Theorem 6, we assume Ŝ = S without loss of

generality and thus we define ĝj (qt) = x
ᵀ

t β̂
j .

Convergence of T̄n. Recall that

Ẑj
n

(
y − ĝj (q)

σ̂j (q)

)
=
√
n
(
F̂ j (y|q)− F j (y|q)

)
and let τ j (y, q) = y−gj(q)

σj(q)
for each j =1, 2. Since the sum of uniform P -Donskers is

a uniform P -Donsker, to derive the limit distribution of Tn, we first show that for

each j = 1, 2 the process Ẑj
n

(
y−ĝj(q)
σ̂j(q)

)
is a uniform P -Donsker, then derive the limit

of
√
n
(
F 2 (y|q)− F 1 (y|q)

)
explicitly and the limit covariance kernel of Ẑ1

n

(
y−ĝ1(q)
σ̂1(q)

)
−

Ẑ2
n

(
y−ĝ2(q)
σ̂2(q)

)
, finally apply the uniform continuous mapping theorem in Linton, Song,

and Whang (2010) since the supremum is a Lipschitz continuous operator.

However, Lemma 1 below shows the uniform weak convergence of Ẑj
n

(
y−ĝj(q)
σ̂j(q)

)
to

the limit Gaussian process Zj
(
y−g(q)
σ(q)

)
+Bj

(
y−g(q)
σ(q)

)
for each j. Furthermore, a direct

computation of the covariance terms as in the proof of Theorem 4 yields the desired

form of the limit Gaussian process.

Convergence of Ūn Since Theorem 4 establishes an asymptotic equivalence, we

need to derive (i) the weak convergence of B̃n (τ) = EZ1
n(b1, g1, τ)−EZ2

n(b2, g2, τ) when

bj = β̂j − βj0 and gj = γ̂j − γj0 for j = 1, 2 and (ii) the weak convergence of

An (τ) =

∫ τ

−∞
Z1
n (u)− Z2

n (u) du, τ ∈ R.

The former follows from the Taylor series expansion of EZn(b, g, τ) and the standard

CLT as in Lemma 5, analogously as for FSD. Note that An (τ) is an empirical process

indexed by functions of (τ − ε1t)+− (τ − ε2t)+ with τ ∈ R. It is easy to see that we can

set F = |ε1t − ε2t| as an envelope, whose second moment is bounded. Also, note that

this class of functions is a V-C subgraph class as the index τ varies the function values

monotonically. Thus, we can apply the uniform weak convergence result as in Theorem

2.8.3 in van der Vaart and Wellner (1996).
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To deal with the composite process where we plug in τ̂1 (y, q) and τ̂2 (y, q) , we

consider a generalized version of An (τ), that is,

An (τ, τ1) =

∫ τ

−∞
Z1
n (u)−

∫ τ+τ1

−∞
Z2
n (u) du, τ ∈ R and τ1 ∈ (−δ, δ)

for some δ > 0. As for An (τ) , we can see that we can set the envelope F = |ε1t − ε2t|+δ
and the argument for V-C subgraph class remains valid as τ1 is bounded. Then, the

equivalence relation∫ τ̂1(y,q)

−∞
Ẑ1
n (u)−

∫ τ̂2(y,q)

−∞
Ẑ2
n (u) du

=

∫ τ̂1(y,q)

−∞
Ẑ1
n (u)−

∫ τ̂2(y,q)

−∞
Ẑ2
n (u) du−

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du

+

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du

=

∫ τ(y,q)

−∞
Ẑ1
n (u)− Ẑ2

n (u) du+ op (1) ,

follows similarly as in Lemma 1, which also shows that τ̂ j (y, q)
p−→ τ (y, q) uniformly

in y and q, for both j = 1, 2. �

Now, we present the lemma cited above. Here, we omit the superscript j.

Lemma 1 Under the assumptions of Theorem 2,

Ẑn
(
y − ĝ (q)

σ̂ (q)

)
⇒ Z

(
y − g (q)

σ (q)

)
+B

(
y − g (q)

σ (q)

)
.

Proof. Recall from Theorem 4 that

Ẑn (τ) = Zn (τ) + B̃n (τ) + op (1) (31)

and

Zn (τ) + B̃n (τ)⇒ Z (τ) +B (τ)

over the real line due to due to the standard CLT and uniform weak convergence of

empirical distribution functions, see e.g. Theorem 2.8.3 in van der Vaart and Wellner

(1996). To extend this result, introduce semimetrics

ρ̇ (τ1, τ2) =
(
E (1 {εt ≤ τ1} − 1 {εt ≤ τ2})2

)2
= |F (τ1)− F (τ2)|1/2

ρ̈ (z1, z2) =
(
E (1 {εt ≤ τ (z1)} − 1 {εt ≤ τ (z2)})2

)2

with z = (y, q) . Certainly, the semimetric space (R, ρ̇) is totally bounded. Since

ρ̇ (τ1, τ2) = ρ̈ (z1, z2) for τi = τ (zi), (R∞, ρ̈) is totally bounded. Also, the stochastic
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ρ̇-equicontinuity of Ẑn (τ) is equivalent to the stochastic ρ̈-equicontinuity of Ẑn (τ (y, q))

not to mention the finite-dimensional convergence of Ẑn (τ) being identical to that of

Ẑn (τ (y, q)). Thus, the uniform weak convergence of Ẑn (τ (y, q)) over R∞ follows.

Furthermore, note that τ̂ (z) is uniformly ρ̇-consistent since

sup
z
|ρ̇ (τ̂ (z) , τ (z))|2

= sup
z
|F (τ̂ (z))− F (τ (z))|

≤ sup
(y,q)

∣∣∣∣F (y − ĝ (q)

σ̂ (q)

)
− F

(
y − g (q)

σ̂ (q)

)∣∣∣∣+ sup
(y,q)

∣∣∣∣F (y − g (q)

σ (q)

)
− F

(
y − g (q)

σ̂ (q)

)∣∣∣∣
= Op (‖ĝ − g‖∞) +Op (‖σ̂ − σ‖∞) = op (1) ,

where the last equality is due to the uniform convergence result in Chen and Christensen

(2015) and Assumption 1-1. This and the uniform stochastic ρ̇-equicontinuity of Ẑn (τ)

imply that

sup
(y,q)

∣∣∣Ẑn (τ̂ (y, q))− Ẑn (τ (y, q))
∣∣∣ = op (1) .

This establishes the lemma. �

References

[1] Akritas, M.G., Van Keilegom, I., 2001. Non-parametric estimation of the residual

distribution. Scandinavian Journal of Statistics 28, 549-567

[2] Bai, J., 1994. Weak convergence of the sequential empirical processes of residuals

in ARMA models. The Annals of Statistics, 2051-2061

[3] Basu, S., Michailidis, G., 2015. Regularized estimation in sparse high-dimensional

time series models. The Annals of Statistics 43, 1535-1567

[4] Belloni, A., Chen, D., Chernozhukov, V., & Hansen, C, 2012. Sparse models and

methods for optimal instruments with an application to eminent domain. Econo-

metrica, 80(6), 2369-2429.

[5] Belloni, A., Chernozhukov, V., 2013. Least squares after model selection in high-

dimensional sparse models. Bernoulli 19, 521-547

[6] Belloni, A., Chernozhukov, V., & Hansen, C. 2014. Inference on treatment effects

after selection among high-dimensional controls. The Review of Economic Studies,

81(2), 608-650.

[7] Bickel, P.J., Ritov, Y.a., Tsybakov, A.B., 2009. Simultaneous analysis of Lasso and

Dantzig selector. The Annals of Statistics 37, 1705-1732

33



[8] Boldin, M.V., 1983. Estimation of the distribution of noise in an autoregression

scheme. Theory of Probability & Its Applications 27, 866-871
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Online Appendix

The first two sections of this online appendix to “Testing Stochastic Dominance with

Many Conditioning Variables” by Linton, Seo, and Whang present some further tech-

nical results and deviation bounds for the weighted lasso estimates when the regression

under consideration involves time series data and/or it is the feasible skedastic regres-

sion. These results can be of independent interests. Then, we turn to the proof of the

bootstrap consistency in Section 4.

Auxiliary Lemmas

We require certain maximal inequalities to show Theorem 4. Specifically, we employ

the maximal inequality developed by Doukhan, Massart and Rio (1995). It builds on

some high-level assumptions and indeterminate quantities that need to be verified and

computed carefully. To state the theorem, it is useful to have some definitions. Let Fba
denote the sigma field generated by a sequence of given random variables {ζa, . . . , ζb}.
Define the mixing coefficient βm = 2−1 sup

∑
(i,j)∈I×J |P {Ai ∩Bj} − P {Ai}P {Bj}|,

where the supremum is taken over all finite partitions {Ai, i ∈ I} that is F0
−∞ measurable

and {Bj , j ∈ J} that is F∞m measurable. Introduce a norm of a random function g (ζt)

‖g‖2,β =

√∫ 1

0
β−1(u)Qg(u)2du,

where β−1 (u) is the cadlag inverse of the β-mixing coefficients and Qg(u) is the inverse

of the tail probability function z 7→ P{|g| > z}. The function Qg(u), called the quantile

function in Doukhan, Massart and Rio (1995), is different from the familiar quantile

function u 7→ inf{x : u ≤ P{|g(ζt)| ≤ x}}. Also let

Gβn,δ =
{
g : ‖g‖2,β < δ

}
,

and Gn,δ denote an envelope of Gβn,δ. In comparison, we use ‖·‖p to denote the standard

Lp-norm for random variables. Now, we reiterate their Theorem 3 in the following.

Theorem 5 Let {ζt} be a strictly stationary and absolutely regular process with β-

mixing coefficient βm = O (ρm) for some 0 < ρ < 1. Then, there exists a positive

constant C, which depends only on
∫ 1

0 β
−1 (u) du, such that

E sup
g∈Gβn,δ

| 1√
n

n∑
t=1

(g (ζt)− Eg (ζt)) | ≤ C[1 + δ−1qGn,δ(min{1, vn(δ)})]ϕn(δ), (32)

1



where

qGn,δ(v) = sup
u≤v

QGn,δ(u)

√∫ u

0
β−1(ũ)dũ

with the envelope function Gn,δ of Gβn,δ, and vn(δ) is the unique solution of

vn(δ)2∫ vn(δ)
0 β−1(ũ)dũ

=
ϕn(δ)2

nδ2
, (33)

and where

ϕn(δ) =

∫ δ

0

√
logN[](ν,G

β
n,δ, ‖·‖2,β)dν.

Note that u−1
∫ u

0 β
−1(ũ)dũ is bounded away from zero and bounded above by the

condition that βm = O (ρm) and ε < ρ < 1− ε.
Next, we derive a lemma that verifies the high-level conditions in the above theorem

and compute the explicit formula for the bound on the right of the inequality in (32).

Lemma 2 Consider functions gb (·, ·) : R× Rs → R, indexed by b =
(
b1, b

ᵀ

2

)ᵀ
, such that

gb (ε, ζ) = 1
{
ε− b1 − b

ᵀ

2ζ ≤ 0
}
− 1 {ε ≤ b1} and a collection of such functions

Gn,δ = {gb (·, ·) : b1 ∈ R, |b2| ≤ δ}

for some finite C and e−
√
s < δ < s−1ε. Let {εt, ζt} satisfy the mixing condition of

being a strictly stationary and absolutely regular process with β-mixing coefficient

βm = O (ρm) for some ε ≤ ρ ≤ 1− ε and the moment conditions of infθ:|θ|=1E
∣∣ζᵀ

t θ
∣∣ > 0

and supj Eζ
2
jt <∞. Then,

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (εt, ζt)− Eg (εt, ζt))

∣∣∣∣∣ ≤ C
(

1 +

√
s log s− log δ

s1/4
√
δn

)
s1/4
√
δ
(√

s log s− log δ
)
.

Proof. We apply Theorem 5. Since the supremum in the theorem is over Gβn,δ while it is

over Gn,δ in this lemma, we first need to establish the relation between different norms.

To this end, it was shown by Doukhan et al. (1995) and Seo and Otsu (2018) that for

bounded random variables obeying the mixing condition of the lemma,

‖·‖2 ≤ ‖·‖2,β ≤ C ‖·‖2 sup
u∈[0,1]

u−1

∫ u

0
β−1(ũ)dũ (34)

where C = supu∈[0,1] u
−1
∫ u

0 β
−1(ũ)dũ, which is bounded for all ρ ∈ [ε, 1− ε]. Hereafter,

C, C1, c, etc denote generic positive finite constants. Note that for any g ∈ Gn,

‖g‖22,β ≤ C ‖g‖
2
2 = CE

∣∣1{εt ≤ b1 + ζ
ᵀ

t b2
}
− 1 {εt ≤ b1}

∣∣2
= CE

∣∣F (b1 + ζ
ᵀ

t b2
)
− F (b1)

∣∣ ≤ C1E
∣∣ζᵀ

t b2
∣∣ ≤ C2E |ζt| |b2| ≤ c

√
s |b2| ,

2



where the constants depend only on the distribution of the sample and the inequalities

follow from the boundedness of f , Cauchy Schwarz inequality, and the fact that E |ζt| ≤√
E |ζt|2 ≤

√
smaxj Eζ2

jt, respectively. This implies that

Gn,δ ⊂ Gβn,Cs1/4δ1/2 (35)

because ‖g‖2,β ≤ cs1/4δ1/2 for any b such that |b| ≤ δ.
Now the bound in (32) involves the bracketing numbers in terms of ‖·‖2,β-norm but

the norm ‖·‖2,β is not convenient to compute the bracketing numbers. However, based

on the norm relation we have just derived in (34), we may proceed it with ‖·‖2 .It is

useful to note that for any b̄, and η > 0, ζ̃t =
(
1, ζ

ᵀ

t

)ᵀ
,

E sup
b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣1{εt ≤ ζ̃ᵀ

t b
}
− 1

{
εt ≤ ζ̃

ᵀ

t b̄
}∣∣∣2

≤ E sup
|b2−b̄2|<η

1
{
F−1

(
−η + F

(
b̄1
))
< εt − ζ

ᵀ

t b2 ≤ F−1
(
η + F

(
b̄1
))}

+ E1
{
ζ̃
ᵀ

t b̄− |ζt| η < εt ≤ ζ̃
ᵀ

t b̄+ |ζt| η
}

≤ 2E
(
F
(
ζ
ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1
)))
− F

(
ζ
ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1
))))

≤ 2C
(
E
∣∣∣ζ̃t∣∣∣+ 1

)
η, (36)

where the last inequality is due to the boundedness of the derivative of F and an

expansion that

F−1
(
η + F

(
b̄1
))
− F−1

(
−η + F

(
b̄1
))
≤ 2ηf

(
b̄1 + η

)−1

and that(
F
(
ζ
ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1
)))
− F

(
ζ
ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1
))))

≤ f
(
ζ
ᵀ

t b̄2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1
)))(

2
∣∣∣ζ̃t∣∣∣ η + 2ηf

(
b̄1 + η

)−1
)

when
(
ζ
ᵀ

t b2 +
∣∣∣ζ̃t∣∣∣ η + F−1

(
η + F

(
b̄1
)))

>
(
ζ
ᵀ

t b̄2 −
∣∣∣ζ̃t∣∣∣ η + F−1

(
−η + F

(
b̄1
)))

, while

the other case is handled similarly. Recall that E |ζt| = O (
√
s). Then, let d (b, bj) =

|F (b1)− F (b1j)| + |b2 − b2j | and consider the brackets with upper and lower bounds

1
{
εt ≤ ζ̃

ᵀ

t bj

}
±Bj

(
εt, ζ̃t

)
, where

Bj

(
εt, ζ̃t

)
= sup

b:d(b,bj)<ν2/C
√
s

∣∣∣1{εt ≤ ζ̃ᵀ

t b
}
− 1

{
εt ≤ ζ̃

ᵀ

t bj

}∣∣∣
for a sequence of bjs and some finite C2. Then, L2-norms of these brackets are bounded

by ν due to (36). In particular, we choose bjs to be the centers of the set of hyper-

3



cubes of equal side length η1 = 2ν2/C2s with circumradius ν2/C2
√
s that partition

[0, 1]× [−C1δ, C1δ]
s. Here recall that the circumradius of the hypercube of side lengths

(a1, . . . , as+1)
ᵀ

is
√∑s+1

j=1 a
2
j/2. The number of such hypercubes is (2/η1)s+1C (C1δ)

s =(
C2s/ν

2
)s+1

C (C1δ)
s. Thus, a direct algebra using the indefinite integral formula∫

log xdx = const. + x(log x− 1) yields that

ϕn(δ) ≤
∫ δ

0

√
log
(

(C2s/ν2)s+1C (C1δ)
s
)
dν

≤ δ
(√

(s+ 1) (C3 + log s)− 2 log δ
)
,

for some C3 <∞.

Given the mixing condition, vn that solves (33) satisfies

vn (δ) ≤ Cϕn(δ)2

nδ2
≤ C

(
C +

√
(s+ 1) log s− 2 log δ

)2

n
≤ 1.

Then, noting that Gn,δ is bounded and
√∫ u

0 β
−1(ũ)dũ ≤ Cu uniformly, we conclude

that

qGn,δ(vn (δ)) ≤ C
√
vn (δ) ≤

√
s log s− 2 log δ√

n
.

Putting all these together yields the bound in (32) as

C

(
1 +

√
s log s− 2 log δ

δ
√
n

)
δ
(√

s log s− 2 log δ
)
. (37)

Finally, revoking the relation in (35), we replace δ in (37) with cs1/4δ1/2.

Next, we give a maximal inequality for the SSD statistic. The bound here are not

equivalent to the preceding lemma due to the unboundedness of the class of functions

and a different entropy number.

Lemma 3 Consider a collection of functions

Gn,δ =
{
gb (ε, ζ) =

(
ε− b1 − b

ᵀ

2ζ ≤ 0
)

+
− (ε ≤ b1)+ : b1 ∈ R, |b2| ≤ δ

}
,

for some e−
√
s < δ < s−1ε. Let {εt, ζt} satisfy the mixing condition of being a strictly

stationary and absolutely regular process with β-mixing coefficient βm = O (ρm) for

some ε ≤ ρ ≤ 1− ε and the moment conditions of infθ:|θ|=1E
∣∣ζᵀ

t θ
∣∣ > 0 and supj Eζ

2
jt <

∞. Then,

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (εt, ζt)− Eg (εt, ζt))

∣∣∣∣∣ ≤ C
(

1 +

√
s log s− 2 log s1/2δ

s1/2δ
√
n

)
s1/2δ

(√
s log s− 2 log s1/2δ

)
.

Proof. This proof highlights the difference from that of the preceding Lemma 2. First,

4



in this case, our class of functions are unbounded and thus (34) and (35) need to be

modified. Due to Lemmas 1 and 2 of Doukhan et al (1995) ,

‖g‖2 ≤ ‖g‖2,β ≤ ‖g‖φ,2

√
1 +

∫ 1

0
φ∗ (β−1 (u)) du, (38)

where φ∗ (y) = supx>0 [xy − φ (x)] for a given function φ, ‖g‖φ,2 = inf
{
c > 0 : Eφ

(
|g/c|2

)
≤ 1
}
.

This is the Orlicz norm and is equivalent to ‖g‖2p when φ (x) = xp and p > 1. Further-

more, when φ (x) = xp, we have
∫ 1

0 φ
∗ (β−1 (u)

)
du = Cp

∑∞
n=1 n

1
p−1βn, where Cp is a

constant dependent only on p, see Doukhan et al (1995 p. 404) . Also

E

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+

∣∣∣∣2p ≤ E ∣∣∣ζ>t b2∣∣∣2p = O (sp) |b2|2p ,

where E
∣∣∣ζ̃t∣∣∣2p = O (sp) by Jensen’s inequality. This yields that

Gn,δ ⊂ GβCδs1/2 . (39)

Next, to compute the entropy with L2p-norm due to (38), note that for any b̄, and η > 0,

ζ̃t =
(
1, ζ

ᵀ

t

)ᵀ
,

21−2pE sup
b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+ −

((
εt − ζ̃

ᵀ

t b̄
)

+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
≤ E sup

b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣(εt − ζ̃ᵀ

t b
)

+
− (εt − b1)+ −

((
εt − ζ

ᵀ

t b2 − b̄1
)

+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
+ E sup

b:|b2−b̄2|<η,|F (b1)−F(b̄1)|<η

∣∣∣∣((εt − ζᵀ

t b2 − b̄1
)

+
−
(
εt − b̄1

)
+

)
−
((

εt − ζ̃
ᵀ

t b̄
)

+
−
(
εt − b̄1

)
+

)∣∣∣∣2p
≤ E |ζt|2p

(∣∣b̄2∣∣+ η
)2p

1
{
F−1

(
−η + F

(
b̄1
))
< εt ≤ F−1

(
η + F

(
b̄1
))}

+ E (|ζt| η)2p

≤ E
∣∣∣ζ̃t∣∣∣2p (η2p + η

∣∣b̄2∣∣2p) .
Recall that E

∣∣∣ζ̃t∣∣∣2p = O (sp) . Then, η1 in the proof of Lemma 2 can be set as either η1 =

(2ν/ (C2δ
√
s))

2p
or η1 = ν/

√
s. And proceed along the proof with η1 = (2ν/ (C2δ

√
s))

2p

to note that

ϕn(δ) ≤
∫ δ

0

√
log
(

(ν2/s)−s/p δ2s
)
dν ≤ δ

(√
(s/p) (C3 + log s)− 2 log δ

)
,

which is equivalent to the bound for ϕn(δ) in the proof of Lemma 2, meaning that we
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get the bound corresponding to (37), which is

C

(
1 +

√
s log s− 2 log δ

δ
√
n

)
δ
(√

s log s− 2 log δ
)
.

Finally, revoking the relation in (39), we replace δ in (38) with cs1/2δ to achieve the

following bound

C

(
1 +

√
s log s− 2 log s1/2δ

s1/2δ
√
n

)
s1/2δ

(√
s log s− 2 log s1/2δ

)
.

The case with η1 = ν/
√
s is analogous and the details are omitted.

Next, we state some standard results for the sake of later reference.

Lemma 4

∣∣∣β̂ − β0

∣∣∣
1

= Op

(
s

√
log s

n

) ∣∣∣β̂ − β0

∣∣∣
2

= Op

(√
s log s

n

)
.

Proof. Note that the Hölder inequality yields that

∣∣∣β̂ − β0

∣∣∣
1
≤

∣∣∣∣∣∣
(

1

n

n∑
t=1

xtx
>
t

)−1
∣∣∣∣∣∣
∞

∣∣∣∣∣ 1n
n∑
t=1

xtet

∣∣∣∣∣
1

and
∣∣∣( 1
n

∑n
t=1 xtx

>
t

)−1
∣∣∣
∞

= Op (1) as the minimum eigenvalue of 1
n

∑n
t=1 xtx

>
t is bounded

away from zero with probability approaching to one due to Lemma 9, while
∣∣ 1
n

∑n
t=1 xtet

∣∣
∞ ≤∣∣ 1

n

∑n
t=1 xtrgt

∣∣
∞ +

∣∣ 1
n

∑n
t=1 xtσtεt

∣∣
∞ = Op (log s/

√
n) due to Assumption 1 and Lemma

7. Then,
∣∣ 1
n

∑n
t=1 xtet

∣∣
1
≤ s

∣∣ 1
n

∑n
t=1 xtet

∣∣
∞ . We may proceed similarly for

∣∣∣β̂ − β0

∣∣∣
2

us-

ing the Cauchy Schwarz inequality and bounding
∣∣ 1
n

∑n
t=1 xtet

∣∣
2
≤
√
s
∣∣ 1
n

∑n
t=1 xtet

∣∣2
∞ =

Op

(√
s log s/n

)
as above.

Lemma 5 For τ ∈ R,

√
n
(
Zn(τ), µ

(
β̂ − β0

)
, µ

ᵀ

x (γ̂ − γ0)
)>

=⇒
(
Z(τ), Z>

)>
,

which is a centered normal variate with

EZ(τ1)Z(τ2) = cov (1 {εt ≤ τ1} , 1 {εt ≤ τ2})

EZ(τ)Z
ᵀ

= lim
n→∞

E [(x̃1ε1, w̃1 (|ε1| − 1)) 1 {ε1 ≤ τ}] .

and

EZZ
ᵀ

= lim
n→∞

E

[
x̃2
t ε

2
t , x̃tεtw̃t (|εt| − 1)

· w̃2
t (|εt| − 1)2

]
,
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where x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

Proof. This is straightforward by the central limit theorem and law of large numbers

for stationary arrays, see e.g. Davidson (1994) while the uniform tightness of
√
nZn(τ)

is standard, see e.g. Theorem 2.8.3 in van der Vaart and Wellner (1996) as the class of

indicator functions of half intervals is a V-C subgraph class of functions.

Now, we turn to the proof of the main theorem in this section.

Weighted LASSO Regressions in Time Series

We derive oracle inequalities that show the variable selection property and deviation

bounds for the parameter estimates and prediction. Despite the huge literature on the

lasso, the results for the time series model are limited. Recently, Medeiros and Mendes

(2016) studies the lasso estimate for the dependent data but the bounds in there are

not as sharp as those in this section. And Basu and Michailidis (2015) focuses on

the Gaussian vector autoregression. Furthermore, no result is available for the lasso

estimator of the skedastic regression.

Let S (β) denote the support of a given vector β while |S| denote the cardinality of

an index set S. Recall that βS = (βj : j ∈ S) denotes the |S|-dimensional subvector of

a p-dimensional vector β. Also, recall that xt = Xt,S and x̂t = X
t,Ŝ

Let β̃ := β̂lasso and γ̃ := γ̂lasso throughout this section to ease notation. Also let

X,Y and e denote the matrices stacking X
ᵀ

t , yt, and εt, respectively. The results in

this section holds under more general strong mixing (α-mixing) conditions than the

absolutely regular conditions. See the conditions in Proposition 1 below for specifics.

.1 Weighted LASSO with Dependent Data

Theorem 6 Let Assumption 1, and 2 hold. Then, the followings hold with probability

approaching one when λ satisfies the constraint (14):

Part (i).

2

n

n∑
t=1

(
X

ᵀ

t β̂lasso − g (qt)
)2

+ λ
∣∣∣β̂lasso − β0

∣∣∣
1
≤ 6

1

n

n∑
t=1

r2
gt +

48λ2 |S|
φ2
β

,

and if λs = o (min {|β0j | : β0j 6= 0}) in addition, then Pr
(
β̂lasso,j 6= 0 : j ∈ S

)
→ 1.

Part (ii). Furthermore, assume that λthr = o (min {|β0j | : β0j 6= 0}). Then Pr
(
Ŝ = S

)
→

1 and ∣∣∣β̂Tasso − β0

∣∣∣
2

= Op

(√
sx log sx

n

)
.
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Also, for any a 6= 0

√
na

ᵀ
(
β̂Tasso − β0

)
=⇒ N

(
0, aSM

−1ΩM−1aS
)
,

where M = E
(
xtx

ᵀ

t

)
and Ω = Extx

ᵀ

t e
2
t .

Proof of Theorem 6. The proof of Part (i) consists of three lemmas, Lemma 6, 8, and

9. More specifically, Lemma 6 gives the deviation bound in the theorem conditional on

the other two lemmas’ conclusion. Here, we assume x′ts elements are scale normalized,

i.e. D = I. The claim that Pr
{
Ŝ ⊃ S

}
then follows from the triangle inequality that∣∣∣β̂i∣∣∣ =

∣∣∣β̂i − β0i + β0i

∣∣∣ ≥ ∣∣∣|β0i| −
∣∣∣β̂i − β0i

∣∣∣∣∣∣ > 0 under the uniform beta-min condition

λs = o (min {|β0j | : β0j 6= 0}). Similarly in Part (ii) we can derive the perfect variable

selection property of the thresholded lasso and under the perfect variable selection the

asymptotic normality is standard. In fact, given the result in Part (i), Pr
{
Ŝ ⊃ S

}
, it

remains to argue that β̂i is smaller than λthr if β0i = 0 with probability approaching one.

But this is obvious due to the deviation bound in Part (i) as
∣∣∣β̂ − β0

∣∣∣
1

= Op (λs) and

λs = o (λthr) .

Now, we present the promised lemmas.

Lemma 6 Consider a sequence of events

An =
{

8n−1 |eᵀX|∞ ≤ λ
}
. (40)

Conditional on An, we have

4n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ 3λ

∣∣∣β̃Sc∣∣∣
1
≤ 4n−1 |ry|22 + 5λ

∣∣∣β̃S − β0

∣∣∣
1
.

Furthermore, if n−1X
ᵀ
X is compatible for S with compatibility constant φ = φβ/

√
2,

then

2n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ λ

∣∣∣β̃ − β0

∣∣∣
1
≤ 6n−1 |ry|22 + 24λ2 |S|φ−2.

Proof. Since β̃ is the minimizer,

1

n

∣∣∣Y −Xβ̃∣∣∣2
2

+ λ
∣∣∣β̃∣∣∣

1
≤ 1

n
|Y −Xβ0|22 + λ |β0|1 .

Then, as Y = Xβ0 + ry + e,

n−1
∣∣∣Xβ̃ − g∣∣∣2

2
+ λ

∣∣∣β̃∣∣∣
1
≤ n−1 |ry|22 + 2n−1eᵀX

(
β̃ − β0

)
+ λ |β0|1 . (41)

By the Hölder inequality, n−1
∣∣∣eᵀX (β̃ − β0

)∣∣∣ ≤ n−1 |eᵀX|∞
∣∣∣β̃ − β0

∣∣∣
1
. Then, recall the

condition (40) of the lemma and proceed as in Bühlmann and van der Geer’s (2011)

Lemma 6.3 to obtain the first part of the lemma.
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The second part of the lemma is Bühlmann and van der Geer’s (2011) Theorem 6.2.

Next, we derive a maximal inequality for the strong (α-) mixing array to control

the probability of the event An in Lemma 6 (40). Let αm denote the strong mixing

coefficient, which is the supremum of |P {G ∩H} − P {G}P {H}| over every element

G ∈ F0
−∞ and H ∈ F∞m . The sequence αm is bounded by the β-mixing coefficient βm

by construction.

The following simplified version of Merlevede et al’s (2011) Proposition 2 serves as

a building block to Lemma 7.

Proposition 1 Let an array {ξt} be a strictly stationary α-mixing array satisfying that

for some positive h1, h2, b, and c,

α (m) ≤ exp
(
−cmh1

)
Pr {|ξt| > t} ≤ H (t) := exp

(
1− (t/b)h2

)
h−1

1 + h−1
2 > 1. (42)

Also let h =
(
h−1

1 + h−1
2

)−1
, M = b

(
1 + nh1

)1/h2 and ξMt = ξt1 {|ξt| ≤M}+M1 {|ξt| > M}.
Then, for any positive ` < cnh1(h−1)/h, there exists a K <∞, which does not depend on

`, such that

logE

(
exp

(
`

n∑
t=1

(
ξMt − EξMt

)))
≤ K n`2

1− `nh1(1−h)/h
.

Here, K is universal for a class of distributions with uniformly bounded h1, b, and c,

and h ≤ 1− ε for some positive ε.

In applying this bound, it is worth noting that the permissible ` should not be too

small and it is linked to the mixing decay rate and the tail probability through h1 and

h2. Then,

Lemma 7 Let {ξti}, i = 1, . . . , p, be α-mixing arrays satisfing the conditions in Propo-

sition 1. Also assume that

log p = O
(
nh1∧(1−2h1(1−h)/h)

)
. (43)

Then,

max
i≤p

∣∣∣∣∣
n∑
t=1

ξti

∣∣∣∣∣ = Op

(√
n log p

)
.

There are two upper bounds for p, in (43). Both are increasing functions of h1 but

the value of h2 determines which is lower.
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Proof. We begin with a maximal inequality for the sums of truncated variables. For

any L, Jensen’s inequality yields

Emax
i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣ ≤ L log

[
E exp

(
L−1 max

i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

.

Since e|x| ≤ ex + e−x and the moment bound is uniform in i in Proposition 1 with

` = L−1,

L log

[
E exp

(
L−1 max

i≤p

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

= L log

[
Emax

i≤p
exp

(
L−1

∣∣∣∣∣
n∑
t=1

(
ξMti − EξMti

)∣∣∣∣∣
)]

≤ L log

[
2pE exp

(
L−1

n∑
t=1

(
ξMti − EξMti

))]

≤ L log (2p) +
Kn

L− nh1(1−h)/h

≤ (3 +K)
√
n log p,

where the last inequality follows by setting L = nh1(1−h)/h + (n/ log 2p)1/2 due to (43).

For the remainder term, we show by the union bound for the maximum and Markov

inequality that

Pr

{
max
i≤p

n∑
t=1

∣∣ξti − ξMti + EξMti
∣∣ > C

}
≤ pPr

{
n∑
t=1

∣∣ξti − ξMti + EξMti
∣∣ > C

}
≤ C−1npE

∣∣ξt − ξMt + EξMt
∣∣

≤ 2C−1np

∫ ∞
M

H (x) dx

= O
(
np exp

(
−nh1

))
,

where the last equality follows from the standard algebra, that is, the integral is bounded

by MH(M) = exp
(
−nh1

)
in general and M−1H (M) if h2 > 1 since H (x) decays at an

exponential rate.

Finally, note that

max
i≤p

∣∣∣∣∣
n∑
t=1

ξti

∣∣∣∣∣ ≤ max
i≤p

∣∣∣∣∣
n∑
t=1

ξMti − EξMti

∣∣∣∣∣+ max
i≤p

∣∣∣∣∣
n∑
t=1

ξti −
(
ξMti − EξMti

)∣∣∣∣∣
= Op

(√
n log p

)
+Op

(
np exp

(
−nh1

))
and recall that log p = O

(
nh1
)

from (43), which implies that Op
(
np exp

(
−nh1

))
=

Op
(√
n log p

)
.

The preceding maximal inequality leads to the following bounds on the probability

of conditioning event An.
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Lemma 8 Suppose log(n∨p)
λ
√
n

= o (1). Then,

Pr
(
4n−1 |eᵀX|∞ > λ

)
= o (1) .

Proof. This is a direct consequence of Lemma 7 under Assumption 1.

Lemma 9 Under Assumption 2, n−1XᵀX is compatible for S with compatibility con-

stant φβ/
√

2 with probability approaching one.

Proof. Due to Assumption 2 and Bühlmann and van der Geer’s (2011) Corollary

6.8 it is sufficient to show that
∣∣n−1XᵀX − EXtX

ᵀ

t

∣∣
∞ is bounded by (32s)−1 φ2 with

probability approaching one. However, in view of Lemma 7,
∣∣n−1XᵀX − EXtX

ᵀ

t

∣∣
∞ =

Op
(
n−1/2

√
log np

)
= o

(
φ2/s

)
.

.2 Skedastic LASSO Regression

Theorem 7 Let Assumption 1, and 3 hold. And suppose that

µ = o (1) and λ
√
s = o (µ) .

Then, the following holds with probability approaching one :

Part (i)

2

n

n∑
t=1

(
w

ᵀ

t γ̂lasso − σ (qt)
)2

+ µ |γ̂lasso − γ0|1 ≤
6

n

n∑
t=1

r2
σt +

48µ2 |Sγ |
φ2
γ

Part (ii) if µthr = o (min {|γ0j | : γ0j 6= 0}) in addition, then

Pr
(
Ŝγ = Sγ

)
→ 1

and

|γ̂Tasso − γ0|2 = Op

(√
|Sγ | log |Sγ |

n

)
.

Also, for any a 6= 0

√
na

ᵀ
(γ̂Tasso − γ0) =⇒ N

(
0, a0M

−1
w ΩwM

−1
w a0

)
,

where Mw = E
(
w0tw

ᵀ

0t

)
and Ω = Ew0tw

ᵀ

0tη
2
t with w0t = (wtj : γ0j 6= 0) and a0 =

(aj : γ0j 6= 0).

Proof of Theorem 7 Recall the definition of êt and write that

|êt| − w
ᵀ

t γ = ηt +
(
σt − w

ᵀ

t γ
)

+ (|êt| − |et|)

11



and by the triangle inequality

||êt| − |et|| ≤ |êt − et| =
∣∣∣g (qt)− x̂

ᵀ

t β̂
∣∣∣ .

Then,

(
êt − w

ᵀ

t γ
)2 − (êt − wᵀ

t γ0

)2
=
(
σt − w

ᵀ

t γ
)2 − r2

σt

− 2ηtw
ᵀ

t (γ − γ0)− 2w
ᵀ

t (γ − γ0) (|êt| − |et|) .

By an iterated applications of the Hölder inequality,∣∣∣∣∣ 1n
n∑
t=1

(
gt − x̂

ᵀ

t β̂
)
w

ᵀ

t (γ̂ − γ0)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
t=1

wt

(
gt − x̂

ᵀ

t β̂
)∣∣∣∣∣
∞

|γ̂ − γ0|1

≤ sup
1≤i≤p

(
1

n

n∑
t=1

w2
ti

)1/2(
1

n

n∑
t=1

(
gt − x̂

ᵀ

t β̂
)2
)1/2

|γ̂ − γ0|1

and ∣∣∣∣∣ 1n
n∑
t=1

ηtw
ᵀ

t (γ − γ0)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
t=1

ηtwt

∣∣∣∣∣
∞

|γ − γ0|1 .

Conditional on

En =

 sup
1≤i≤p

(
1

n

n∑
t=1

w2
ti

)1/2(
1

n

n∑
t=1

(
gt − x̂

ᵀ

t β̂
)2
)1/2

+

∣∣∣∣∣ 1n
n∑
t=1

ηtwt

∣∣∣∣∣
∞

≤ µ

8

 ,

the remaining steps of the proof are identical to that of Theorem 6. That is, we have

arrived at the equation (41) and the conditional event En corresponds to the event An,

which bounds
∣∣n−1eᵀX

∣∣
∞.

Finally, note that the probability of En converges to 1 due to Theorem 6 and Lemma

7. �

Proof of Bootstrap Consistency

Proof of Theorem 3 in Section 4 is given in this section. In the following, we

maintain the convention that the quantities defined with superscript “∗” denote the

bootstrap counterparts of the original terms in the preceding proofs and thus we do not

redefine them. And let “⇒ in P” denote the weak convergence of bootstrap statistics

conditional on the original data, and define the stochastic order notation Op∗ (1) and

op∗ (1) in terms of the conditional distribution given the original data. Specifically, for

any ε > 0 , τ∗n = o∗p (1) if P ∗ {|τ∗n| > ε} p−→ 0, and τ∗n = O∗p (1) if there exists C = Op(1)

such that P ∗ {|τ∗n| > C} < ε for all sufficiently large n.

We imitate the derivation of the asymptotic null distributions in Theorem 2. Some
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intermediate steps are given in separate lemmas later in this section.

First, Theorem 8 below shows that the process Ẑj∗
n (τ) is a uniform P -Donsker and

establishes the weak convergence of Ẑj∗
n (τ) =⇒∗ Zj (τ)+Bj

(
y−g(q)
σ(q)

)
in P , for j = 1,2.

Next, suppressing the supscript j, we consider the composite process Ẑ∗n (τ̂∗ (y, q)) and

show that Ẑ∗n (τ (y, q)) is a uniform P -Donsker and that

Ẑ∗n (τ̂∗ (y, q))− Ẑ∗n (τ (y, q)) = o∗p (1) .

This follows for the same reasoning as Lemma 1. That is, since the process Ẑ∗n (τ (y, q))

on R∞ is a uniform P -Donsker as shown in the first part of the proof of Lemma 1,

it remains to show that τ̂∗ (y, q) is uniformly ρ̇-consistent to τ (y, q). Note that with

z = (y, q)

sup
z
|ρ̇ (τ̂∗ (z) , τ (z))|2

= sup
z
|F (τ̂∗ (z))− F (τ (z))|

≤ sup
(y,q)

∣∣∣∣F (y − ĝ∗ (q)

σ̂∗ (q)

)
− F

(
y − g (q)

σ̂∗ (q)

)∣∣∣∣+ sup
(y,q)

∣∣∣∣F (y − g (q)

σ (q)

)
− F

(
y − g (q)

σ̂∗ (q)

)∣∣∣∣
= O∗p (‖ĝ∗ − g‖∞) +O∗p (‖σ̂∗ − σ‖∞) = o∗p (1) ,

by the uniform consistency result in Chen and Christensen (2015).

The preceding steps establish the weak convergence of Ẑj∗n (τ̂∗ (y, q)) for each j = 1, 2

and our statistic is the sup of the difference. In view of the continuous mapping theorem

for the sup operator and the permanence property of P -Donsker for the sum of two

classes of functions, we only have to verify the covariance kernels converges properly.

This step proceeds as in the derivation of (46) in the proof of Theorem 8 and thus details

are omitted.

The verification of convergence of U∗n follows the same reasoning for that of T ∗n

imitating the derivation of the convergence of the original sample statistic.

Finally, the consistency of the test is straightforward since the bootstrap statistic

T ∗n = Op (1) under both the null and alternative hypotheses while Tn, Un → +∞ under

a fixed alternative that F 1 (y|q) > F 2 (y|q) for some (y, q). That is, at such a (y, q) we

have

√
n
(
F̂ 1 (y|q)− F̂ 2 (y|q)

)
=
√
n
(
F 1 (y|q)− F 2 (y|q) +Op (1)

)
→ +∞

and thus the supremum and the supremum of their integrals also diverge. �

The following lemma, which is a modification of the maximal inequality in Lemma

2 to allow for unbounded functions, is first verified to establish Theorem 8 afterward.

Lemma 10 Consider functions g (·, ·) : R× Rs → R indexed by τ and b such that

13



g (et, xt) = 1
an
G(1)

(
τ−et
an

)
x

ᵀ

t b and its collection

Gn,δ = {g (·, ·) : |τ | ≤ C, |b| ≤ δ}

for some finite C and δ > 0. Let {et, xt} be a strictly stationary and absolutely regular

process with β-mixing coefficient βm = O (ρm) for some ε < ρ < 1− ε and the moment

conditions infθ:|θ|=1E
∣∣xᵀ

t θ
∣∣ > 0 and supj Ex

2p
jt <∞ for some p > 1. Then, for δ2 < a3

ns

and some finite C ′

E sup
g∈Gn,δ

∣∣∣∣∣ 1√
n

n∑
t=1

(g (et, xt)− Eg (et, xt))

∣∣∣∣∣ ≤ C ′ sa3/2
n

δ log sδ−1.

Proof of Lemma 10 We modify the proof of Lemma 2. We begin with establishing

‖g‖2,β ≤ C ‖g‖2p with p > 1 and some bounded C, which only depends on the distribu-

tion of the sample. For a given function φ, let φ∗ (y) = supx>0 [xy − φ (x)] . Then, due

to Lemma 1 and 2 of Doukhan et al (1995) ,

‖g‖2 ≤ ‖g‖2,β ≤ ‖g‖φ,2

√
1 +

∫ 1

0
φ∗ (β−1 (u)) du,

where ‖g‖φ,2 = inf
{
c > 0 : Eφ

(
|g/c|2

)
≤ 1
}
, which is the Orlicz norm and is equivalent

to ‖g‖2p when φ (x) = xp. Furthermore, when φ (x) = xp, we have
∫ 1

0 φ
∗ (β−1 (u)

)
du =

Cp
∑∞

n=1 n
1
p−1βn, where Cp is a constant dependent only on p, see Doukhan et al (1995 p.

404). Note that given the mixing condition the sum
∑∞

n=1 n
1
p−1βn is bounded for any

p > 1. Then,

‖g‖2p2,β ≤ C ‖g‖
2p
2p = CE

∣∣∣∣ 1

an
G(1)

(
τ − et
an

)
x

ᵀ

t b

∣∣∣∣2p
≤ C ′a−2p

n E |xt|2p |b|2p

≤ C ′sp |b|2p a−2p
n ,

due to the boundedness of G(1), Cauchy-Schwarz inequality, and the fact that

E |xt|2p = spE

s−1
s∑
j=1

x2
tj

p

≤ spE

s−1
s∑
j=1

x2p
tj

 ≤ sp max
j
E |xtj |2p . (44)

This yields that

Gn,δ ⊂ Gβn,Cs1/2δa−1
n
.

This replaces (35). On the other hand, it follows from the rank condition on xt and the

14



fact that G(1) is a density that

E

∣∣∣∣ 1

an
G(1)

(
τ − et
an

)
x

ᵀ

t b

∣∣∣∣2 ≥ C |b|2 ,
which implies that

Gβn,δ ⊂ Gn,C1δ. (45)

The next step to compute the bracketing number depends on the bound in (36), which

in the current lemma becomes for any θ̄, where θ =
(
b
ᵀ
, τ
)ᵀ

,

E sup
θ:|θ−θ̄|≤v

1

a2
n

∣∣∣∣(G(1)

(
τ − et
an

)
x

ᵀ

t b−G(1)

(
τ̄ − et
an

)
x

ᵀ

t b̄

)∣∣∣∣2
≤ 3

a2
n

E sup
θ:|θ−θ̄|≤v

∣∣∣∣(G(1)

(
τ − et
an

)
x

ᵀ

t

(
b− b̄

))∣∣∣∣2
+

3

a2
n

E sup
θ:|θ−θ̄|≤v

∣∣∣∣(G(1)

(
τ − et
an

)
−G(1)

(
τ̄ − et
an

))
x

ᵀ

t b̄

∣∣∣∣2
≤ 1

an
E |xt|2 v2 +

v2

a3
n

E |xt|2
∣∣b̄∣∣2 ≤ sv2

(
1

an
+
δ2

a3
n

)
≤ 2sv2

an
.

The remaining steps proceeds similarly given these updated bounds and thus details are

omitted. �

In the following, we employ the common notation of the superscript “∗” to indi-

cate the bootstrap quantities, “⇒ in P” to denote the weak convergence of bootstrap

statistics conditional on the original data, and the stochastic order notation Op∗ (1) and

op∗ (1) in terms of the conditional distribution given the original data. Specifically, for

any ε > 0 , τ∗n = o∗p (1) if P ∗ {|τ∗n| > ε} p−→ 0, and τ∗n = O∗p (1) if there exists C = Op(1)

such that P ∗ {|τ∗n| > C} < ε for all sufficiently large n.

Theorem 8 Let Assumption 1 hold and x∗t and ε∗t satisfy the mixing condition in As-

sumption 1.1. Furthermore, if an = o
(
s−1/ log s

)
and s

√
log sn−1/4 = o (an), then

Ẑ∗n (τ) =⇒ Z (τ) + f (τ)Z1 − τf (τ)Z2 in P

where Z, Z1 and Z2 are the same as in Theorem 4.

Proof of Theorem 8 First, as for Ẑn (τ) , we begin with verifying the conditional weak

convergence of the bootstrap empirical process

Ẑ∗n (τ) ≡
√
n
(
F̂ ∗ (τ)− F ∗ (τ)

)
=

1√
n

n∑
t=1

(
1
{
y∗t − x∗

ᵀ

t β̂
∗ ≤ τ

}
−G

(
τ − ε̂t
an

))
,

where the last equality follows from 1√
n

∑n
t=1

1
n

∑n
j=1G

(
τ−ε̂j
an

)
= 1√

n

∑n
t=1G

(
τ−ε̂t
an

)
.
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Note that we begin with the case where σt is fixed at 1.

Since y∗t = x∗
ᵀ

t β̂ + ε∗t ,{
y∗t − x∗

ᵀ

t β̂
∗ ≤ τ

}
=
{
ε∗t − x∗

ᵀ

t

(
β̂∗ − β̂

)
≤ τ

}
.

Then, by the same reasoning as in Lemma 4, rn

∣∣∣β̂∗ − β̂∣∣∣
2

= O∗p (1), with rn =
√
n/
√
s log s.

Next, recall that

ε∗t = ε̂i∗t−1
+ anηt = yi∗t−1

− xᵀ

i∗t−1
β̂ + anηt

and define

Z∗n (b, τ) =
1√
n

n∑
t=1

(
1
{
ε∗t − x∗

ᵀ

t b ≤ τ
}
−G

(
τ − ε̂t
an

))
,

so that Ẑ∗n (τ) = Z∗n
(
β̂∗ − β̂, τ

)
. Then, we can imitate the convergence of Z∗n conditional

on Xn since the conditional distribution of {ε∗t } and {x∗t } conditional on Xn satisfies the

stationarity and mixing conditions. In particular,

M∗n (b, τ) = Z∗n (b, τ)− E∗Z∗n (b, τ)

=
1√
n

n∑
t=1

[
1
{
ε∗t − x∗

ᵀ

t b ≤ τ
}
−G

(
τ −

(
ε̂t − x

ᵀ

t b
)

an

)]
.

And by Lemma 2

sup
τ

sup
|b|≤r−1

n C

|M∗n (b, τ)−M∗n (0, τ)| = o∗p (1) ,

for any C <∞. Then, since E∗Z∗n(0, τ) = 0,

Z∗n(b, τ) = M∗n(b, τ)−M∗n(0, τ) + E∗Z∗n(b, τ) + Z∗n(0, τ)

= E∗Z∗n(b, τ) + Z∗n(τ) + o∗p (1) ,

where Z∗n (τ) := Z∗n (0, τ).

We begin with the conditional weak convergence of Z∗n (τ) = 1√
n

∑n
t=1

(
1 {ε∗t ≤ τ} −G

(
τ−ε̂t
an

))
.

The uniform tightness of the process follows from the same argument as that of Zn (τ).

For the finite dimensional convergence, first note that the variable 1 {ε∗t ≤ τ}− 1
n

∑n
t=1G

(
τ−ε̂t
an

)
is centered, stationary, and mixing (conditional on the original sample) with covariance

(conditional on the original sample)

cov∗ (1 {ε∗t ≤ τ1} , 1 {ε∗s ≤ τ2})

= E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2} −
1

n

n∑
t=1

G

(
τ1 − ε̂t
an

)
1

n

n∑
t=1

G

(
τ2 − ε̂t
an

)
p−→ E1 {εt ≤ τ1} 1 {εs ≤ τ2} − F (τ1)F (τ2) . (46)

To see this, first suppose s = t and τ1 = τ2 and note that E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2} =

16



E∗1 {ε∗t ≤ τ1} = 1
n

∑n
t=1G

(
τ1−ε̂t
an

)
. The convergence of 1

n

∑n
t=1G

(
τ1−ε̂t
an

)
to F (τ1) in

P is straightforward from the uniform law of large numbers for triangular arrays and

the mean value expansion of

EG

τ1 − εt + x
ᵀ

t

(
β̂ − β0

)
an


= EG

(
τ1 − εt
an

)
− 1

an
EG(1)

(
τ1 − ε̂t
an

)
x

ᵀ

t

(
β̂ − β0

)
,

for which we note that

EG

(
τ1 − εt
an

)
=

1

an

∫
G(1)

(
τ1 − s
an

)
F (s) ds→ F (τ1) ,

by the integration by parts and then by the change-of-variables and the dominated

convergence theorem and that 1
an
EG(1)

(
τ1−ε̂t
an

)
x

ᵀ

t

(
β̂ − β0

)
= o (1) due to the deviation

bound that E
(
x

ᵀ

t

(
β̂ − β0

))2
= o (an) and the fact that EG

(
τ1−ε̂t
an

)
= O (an).

Now, if s = t and τ1 6= τ2, by the same argument as above, E∗1 {ε∗t ≤ τ1} 1 {ε∗s ≤ τ2}
p−→

F (τ1
∧
τ2). And for t = s+ k and k > 0, by construction

cov∗ (1 {ε∗t ≤ τ1} , 1 {ε∗s ≤ τ2}) = (1− πn)k cov∗
(
1
{
εj∗s+k ≤ τ1

}
, 1
{
εj∗s ≤ τ2

})
.

And

E∗1
{
εj∗s+k ≤ τ1

}
1
{
εj∗s ≤ τ2

}
=

1

n

n∑
t=1

G

(
τ1 − ε̂t+k

an

)
G

(
τ2 − ε̂t
an

)
with the convention that ε̂t+k = ε̂t+k−n if t + k > n. Following very similar algebra as

above, we can show that it converges in probability to E1 {εt ≤ τ1} 1 {εs ≤ τ2}. Finally,

by Theorem 1 of Politis and Romano (1994), the sum over k also converges.

Turn to the limit of E∗Z∗n(b, τ). For some mean value b̃, we can expand

E∗Z∗n (b, τ) =
1√
n

n∑
t=1

[
G

((
τ −

(
ε̂t − x

ᵀ

t b
))

an

)
−G

(
τ − ε̂t
an

)]

=
1

nan

n∑
t=1

G(1)

τ −
(
ε̂t − x

ᵀ

t b̃
)

an

x
ᵀ

t

√
nb

and show that

sup
τ

sup
|b|≤Cr−1

n

∣∣∣∣∣∣ 1

nan

n∑
t=1

G(1)

τ −
(
ε̂t − x

ᵀ

t b̃
)

an

x
ᵀ

t

√
nb− f (τ)Ex

ᵀ

t

√
nb

∣∣∣∣∣∣ = op (1) .

Let k̂t := x
ᵀ

t

(
β̂ − β0 + b̃

)
. By the Cauchy-Schwarz inequality and the triangle inequal-
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ity, the LHS of the proceeding equation is bounded by

sup
τ

sup
|b|≤Cr−1

n

∣∣∣∣∣ 1√
nan

n∑
t=1

(
G(1)

(
τ − εt − k̂t

an

)
x

ᵀ

t b− E

[
G(1)

(
τ − εt − k̂t

an

)
x

ᵀ

t b

])∣∣∣∣∣
+ sup

τ
sup

|b|≤Cr−1
n

∣∣∣∣∣ 1

an
E

[(
G(1)

(
τ − εt − k̂t

an

)
−G(1)

(
τ − εt
an

))
x

ᵀ

t b
√
n

]∣∣∣∣∣
+ sup

τ
sup

|b|≤Cr−1
n

∣∣∣∣[ 1

an
EG(1)

(
τ − εt
an

)
− f (τ)

]
Ex

ᵀ

t b
√
n

∣∣∣∣ .
For the first term, we can apply the maximal inequality in Lemma 10. For the second,

we note that since G(1) has a bounded derivative, we can bound it by

a−2
n E

∣∣∣k̂txᵀ

t b
√
n
∣∣∣ ≤ a−2

n

∣∣Extxᵀ

t

∣∣
∞

(
|b|1 +

∣∣∣β̂ − β0

∣∣∣
1

)2√
n = o (1) ,

due to the Hölder inequality and the triangle inequality. Finally, the standard argument

in the kernel density estimation using change-of-variables formula and dominated con-

vergence theorem yields that a−1
n E

[
G(1)

(
τ−εt
an

)]
− f (τ) = O (an) uniformly in τ and

E
∣∣xᵀ

t b
√
n
∣∣ = O

(√
s log s

)
uniformly in b. Thus, the last term is O

(
an
√
s log s

)
= o (1)

as well.

The proof for the general case proceeds similarly for the known σt case but with

much heavier notation. As in the proofs of Theorem 4, we can replace ε̂∗t with ε∗t −
σ∗−1
t x∗

ᵀ

t

(
β̂∗ − β̂

)
− σ∗−1

t w∗
ᵀ

t (γ̂∗ − γ̂) τ when we consider the set {ε̂∗t ≤ τ}, where ε∗t =

ε̂i∗t−1
+anηt. Compared to the case of known σt, we have an additional term σ∗−1

t w∗
ᵀ

t (γ̂∗ − γ̂) τ .

It demands us to derive the limit of (γ̂∗ − γ̂) and introduce Z∗n (b, g, τ) analogously to

Zn (b, g, τ) in the proof of Theorem 4. The convergence of (γ̂∗ − γ̂) is standard as γ̂∗ is

an OLS estimator. Then, the same maximal inequality in Lemma 2 yields that

sup
τ

sup
|g|,|b|≤r−1

n C

|M∗n (b, g, τ)−M∗n (0, 0, τ)| = o∗p (1) ,

where M∗n (b, g, τ) = Z∗n (b, g, τ)− E∗Z∗n (b, g, τ) .

Turning to E∗Z∗n (b, g, τ) , note that

E∗Z∗n (b, g, τ) =
1√
n

n∑
t=1

[
G

(
a−1
n

(
τ −

(
ε̂t −

x
ᵀ

t b

w
ᵀ

t γ̂
− τ w

ᵀ

t g

w
ᵀ

t γ̂

)))
−G

(
a−1
n (τ − ε̂t)

)]
,

and its expansion is similar to that of E∗Z∗n (b, τ) and the details are omitted for the

sake of space. �
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