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Abstract. This paper studies the case of possibly high-dimensional covariates in the

regression discontinuity design (RDD) analysis. In particular, we propose estimation and

inference methods for the RDD models with covariate selection which perform stably re-

gardless of the number of covariates. The proposed methods combine the local approach

using kernel weights with `1-penalization to handle high-dimensional covariates, and the

combination is new in the literature. We provide theoretical and numerical results which

illustrate the usefulness of the proposed methods. Theoretically, we present risk and

coverage properties for our point estimation and inference methods, respectively. Nu-

merically, our simulation experiments and empirical example show the robust behaviors

of the proposed methods to the number of covariates in terms of bias and variance for

point estimation and coverage probability and interval length for inference.

1. Introduction

In causal or treatment effect analysis, discontinuities in regression functions induced by

an assignment variable can provide useful information to identify certain causal effects.

The regression discontinuity design (RDD) has been widely applied in observational stud-

ies to identify the average treatment effect at the discontinuity point. For the RDD, the
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causal parameters of interest are identified by some contrasts of the left and right lim-

its of the conditional mean functions. See e.g. Imbens and Lemieux (2008), Cattaneo,

Titiunik and Vazquez-Bare (2020), an edited volume Cattaneo and Escanciano (2017),

and references therein.

In the growing literature on the RDD analysis, this paper focuses on the RDDs where

covariates are included in the estimation, which is extensively studied by Calonico, Catta-

neo, Farrell and Titiunik (2019) (hereafter, CCFT). See also Frölich and Huber (2019) for

an alternative estimation method based on kernel smoothing after localization around the

cutoff. In practice, researchers often augment the regression models for the RDD analysis

with various additional predetermined covariates such as demographic or socioeconomic

characteristics for data units. For several RDD estimators using covariates based on lo-

cal polynomial regression methods, CCFT investigated the MSE expansion, asymptotic

efficiency, and data-driven bandwidth selection methods. Furthermore, CCFT developed

asymptotic distributional approximations for those estimators and proposed valid infer-

ence procedures by constructing bias and variance estimators with covariate adjustment.

These results may be considered as extensions of the analyses in Calonico, Cattaneo

and Titiunik (2014) (hereafter, CCT) combined with robust bias correction methods in

Calonico, Cattaneo and Farrell (2018, 2020) to incorporate covariates in the RDD anal-

ysis. See also Calonico, Cattaneo, Farrell and Titiunik (2017) for the statistical package

on these methods.

This paper studies the case of possibly high-dimensional covariates in the RDD analysis.

In empirical research, it is common to include covariates and their interaction terms, and

the number of covariates can be pretty large. To accommodate many covariates, we

propose estimation and inference methods for the RDD models with covariate selection

by high-dimensional methods.
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For point estimation on the causal effect parameter identified by the RDD, we consider

the Lasso estimator and its post-selection estimator based on the local linear regression

(i.e., eq. (2) of CCFT). To the best of our knowledge, such a combination of the local-

ization using kernel weights and `1-penalization to deal with high-dimensional covariates

is novel in the literature. Indeed this combination is particularly relevant for the RDD

analysis, where the effective sample size would be typically small due to the localization

so that the effect of dimensionality of covariates becomes severer. Theoretically, we derive

the `1-risk properties of our “local Lasso” estimators and its post-selection version. Prac-

tically, based on our simulation study, we recommend the CCFT estimator after selecting

covariates by the `1-penalization even for a relatively small number of covariates, which

exhibits desirable MSE properties and stability across different setups.

For inference, we propose to select covariates with sufficiently large coefficient estimates.

We show that the inference based on the selected covariates can be implemented in the

same manner as in CCFT. Our simulation results demonstrate that the post-selection

confidence interval exhibits robust performances in terms of both coverages and lengths,

even for a relatively small number of covariates.

This paper also contributes to the large literature on high-dimensional methods in

econometrics and statistics (see, e.g., Bühlmann and van de Geer, 2011, and Belloni et

al., 2018, for an overview) by combining the kernel localization with `1-penalization to

handle high-dimensional covariates. Our inference problem can be formulated as the one

for low-dimensional parameters in high-dimensional models. In statistics literature, many

papers investigated this issue, such as Belloni, Chernozhukov and Hansen (2014), van

de Geer, et al. (2014), and Zhang and Zhang (2014). However, these approaches are

not directly applicable to the RDD context because the current problem concerns the

inference on a jump in a nonparametric regression model.

3



This paper is organized as follows. Section 2.1 introduces our basic setup and local

Lasso estimator, and presents the `1-risk properties. In Section 2.2, we discuss the valid-

ity of CCFT’s inference after selecting covariates by our Lasso procedure. To illustrate

the proposed method, Section 4 conducts a simulation study, and Section 5 presents an

empirical example based on the Head Start data.

2. Main result

2.1. Setup and local Lasso estimator for covariate selection. In this subsection,

we present our basic setup and introduce the local Lasso estimator for the RDD with

possibly high-dimensional covariates. For each unit i = 1, . . . , n, we observe an indicator

variable Ti for a treatment (Ti = 1 if treated and Ti = 0 otherwise), and outcome Yi =

Yi(0) · (1 − Ti) + Yi(1) · Ti, where Yi(0) and Yi(1) are potential outcomes for Ti = 0 and

Ti = 1, respectively. Note that we cannot observe Yi(0) and Yi(1) simultaneously. Our

purpose is to make inference on the causal effect of the treatment, or more specifically,

some distributional aspects of the difference of potential outcomes Yi(1)−Yi(0). The RDD

analysis focuses on the case where the treatment assignment Ti is completely or partly

determined by some observable covariate Xi, called the running variable. For example,

to study the effect of class size on pupils’ achievements, it is reasonable to consider the

following setup: the unit i is school, Yi is an average exam score, Ti is an indicator variable

for the class size (Ti = 0 for one class and Ti = 1 for two classes), and Xi is the number of

enrollments. For more examples, see e.g. Imbens and Lemieux (2008), Cattaneo, Titiunik

and Vazquez-Bare (2020), Cattaneo and Escanciano (2017), and references therein.

Depending on the assignment rule for Ti based on Xi, we have two cases, called the

sharp and fuzzy RDDs. In this section, we focus on the sharp RDD and discuss the

fuzzy RDD in Section 3. In the sharp RDD, the treatment is deterministically assigned
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as Ti = I{Xi ≥ x̄}, where I{·} is the indicator function and x̄ is a known cutoff point.

Throughout the paper, we normalize x̄ = 0 to simplify the presentation. A parameter of

interest, in this case, is the average causal effect at the discontinuity point,

τ = E[Yi(1)− Yi(0)|Xi = 0]. (1)

Since the difference of potential outcomes Yi(1)−Yi(0) is unobservable, we need a tractable

representation of τ in terms of quantities that can be estimated by data. If the conditional

mean functions E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x] are continuous at the cutoff point

x = 0, then the average causal effect τ can be identified as a contrast of the left and right

limits of the conditional mean E[Yi|Xi = x] at x = 0,

τ = lim
x↓0

E[Yi|Xi = x]− lim
x↑0

E[Yi|Xi = x]. (2)

As argued in CCFT, it is usually the case that practitioners have access to additional

covariates (denoted by Zi ∈ Rp) and augment their empirical models with Zi to estimate

the causal effect τ of interest. This practically relevant setup is extensively studied in

CCFT for the case where Zi is low-dimensional. In this paper, we consider the case of

possibly high-dimensional Zi, and propose a new point estimation method for τ and an

adjustment of CCFT’s inference method.

We examine the case where the additional covariates Zi are predetermined (in the sense

that Zi = Zi(0) · (1− Ti) +Zi(1) · Ti but Zi(0) =d Zi(1) for the potential covariates Zi(0)

and Zi(1) for Ti = 0 and Ti = 1, respectively). Motivated by CCFT’s recommended

model (in their eq. (2)), we propose the local Lasso estimator θ̂ = (α̂, τ̂ , β̂−, β̂+, γ̂
′)′ that

solves

min
θ

1

nh

n∑
i=1

Ki {Yi − α− Tiτ −Xiβ− − TiXiβ+ − Z ′iγ}
2

+ λn|θ|1, (3)
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where Ki = K(Xi/h) is the kernel weight to localize around the cutoff point x = 0

with a bandwidth denoted by h, θ = (α, τ, β−, β+, γ
′)′ is a (p + 4)-dimensional vector of

parameters, |θ|1 =
∑p+4

j=1 |θ(j)| is the `1-norm of the parameter vector (θ(j) means the j-th

element of θ), and λn is a penalty level. Popular choices for K(·) are the uniform and

triangular kernels supported on [−h, h]. Then our point estimator for τ is given by τ̂ .

It is often the case that researchers do not want to penalize some subset of parameters

(particularly τ and perhaps (β−, β+)), denoted by θ1. In this case, we consider the partially

penalized estimator θ̃ = (α̃, τ̃ , β̃−, β̃+, γ̃
′)′ that solves

min
θ

1

nh

n∑
i=1

Ki {Yi − α− Tiτ −Xiβ− − TiXiβ+ − Z ′iγ}
2

+ λn|θ2|1, (4)

where θ = (θ′1, θ
′
2)′.

Our preliminary simulation results suggest that the local Lasso estimators for τ are

somewhat biased in finite samples. Therefore, our recommendation for point estimation

is to employ a post-selection method. Let S̄ = {j : |θ̂(j)| > 0} or {j : |θ̃(j)| > 0}

be the indices for selected covariates based on the local Lasso estimation in (3) or (4),

respectively, ZS̄ be the vector of selected covariates, and GS̄ = (1, T,X, TX,Z ′
S̄
)′. Then

the local post-Lasso estimator θ̄S̄ is obtained by the local least square:

min
θS̄

1

nh

n∑
i=1

Ki

{
Yi −G′S̄,iθS̄

}2

, (5)

and the estimator τ̄ for τ is given by the estimated coefficient of T .

To the best of our knowledge, such a combination of the localization using kernel

weights Ki and `1-penalization to deal with high-dimensional covariates Zi is novel in the

literature (and also practically relevant in the RDD analysis). Several points are worthy

of remark for this estimator. First, without the `1-penalization, our estimator reduces to
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the local linear-type estimator recommended by CCFT’s eq. (2). Therefore, the proposed

estimator is a natural generalization of CCFT’s when the dimension of Zi is high. Second,

without the kernel weights Ki for localization, our estimator reduces to the conventional

Lasso estimator. However, since our parameter of interest τ is identified as a local object

in (2), it is crucial to introduce such localization to avoid misspecification bias of the

conditional mean functions. Third, it is often the case that the kernel function K(·) has

bounded support. In this case, the effective sample size would be typically of order nh.

Thus even if the dimension of Zi is relatively small compared to the original sample size

n, the `1-penalization would be useful especially for small h.

We now present a risk property of the local Lasso estimators θ̂, θ̃, and θ̄. Let Gi =

(1, Ti, Xi, TiXi, Z
′
i)
′ be the vector of regressors in (3), Gij be the j-th element of Gi,

Θn = arg minθ E[Ki(Yi −G′iθ)2] be an argmin set, and M̂ = 1
nh

∑n
i=1KiGiG

′
i. We impose

the following assumptions.

Assumption 1. (1) There exists θ∗ ∈ Θn such that |θ∗|0 ≤ s∗ for some sequence

s∗ = o(n).

(2) Let ei = K
1/2
i Yi −K1/2

i G′iθ
∗. There exists some C ∈ (0,∞) such that

E[|KiGijei|m] ≤ h
m!Cm−2

2
,

for all j = 1, . . . , p and m = 2, 3, . . ..

(3) Let δj be the j-th element of δ. There exists some φ∗ ∈ (0,∞) for S = S∗ = {j :

θ∗(j) 6= 0} such that

min
δ:|δSc |1≤3|δS |1

δ′M̂δ

|δS|21
|S| ≥ φ2

∗,
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with probability approaching one, where for a given index set A, δA denotes the

subvector of δ of indexes in A.

(4) K : R→ R is a bounded and symmetric second-order kernel function which is

continuous with compact support. The bandwidth h is a positive sequence satisfying

h→ 0 and nh→∞ as n→∞.

The first condition defines θ∗ as the best linear predictor with some sparsity feature.

The second is a set of moment conditions, which appear in the Bernstein inequality in the

high-dimensional literature except for the multiplicative factor “h”. This extra factor is due

to the presence of the kernel weight Ki. Similarly, the third condition is a localized version

of the compatibility condition. The fourth condition contains standard assumptions on

the kernel K and bandwidth h in the literature of nonparametric methods.

The `1-risk properties of the local Lasso estimators are obtained as follows.

Theorem 1. Suppose
√

log p/(nh) = o(λn).

(i): Under Assumption 1, it holds

|θ̂ − θ∗|1 ≤ 4λn
s∗

φ2
∗
, (6)

with probability approaching one.

(ii): Under Assumption 1 with S∗ containing all the indexes for θ1, it holds

|θ̃ − θ∗|1 ≤ Cλn
s∗

φ2
∗
, (7)

for some C ∈ (0,∞) with probability approaching one.
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(iii): Under Assumption 1 with S∗ containing all the indexes for θ1, it holds

|θ̄S̄ − θ̃S̄|2 ≤ λmin

(
1

nh
G′S̄GS̄

)−1

λn|S̄|. (8)

The proof of this theorem is presented in Appendix A.1. This theorem characterizes

the risk properties of the estimators θ̂, θ̃, and θ̄ around θ∗, and the bounds depend on

the tuning parameter λn, the number of non-zero coefficients s∗, and the compatibility

constant φ∗. Note that the decay rate of λn is bounded from below by
√

log p/(nh).

Thus, the risk bounds of θ̂ and θ̃ get worse as the number of covariates p increases or

the effective sample size nh for the kernel localization decreases. The result for the post-

selection estimator θ̄ shows that the deviation from the original Lasso estimator θ̃ is

small when tuning parameter λn or the number of selected covariates |S̄| is small, or the

minimum eigenvalue of 1
nh
G′
S̄
GS̄ is large.

The above theorem is on estimation of the coefficients of the best linear predictor

θ∗ = (α∗, τ ∗, β∗−, β
∗
+, γ

∗′)′. Additionally suppose that the assumptions of Lemma 1 of

CCFT hold true, and the covariates Zi are predetermined. Then we can guarantee that τ ∗

coincides with the average causal effect τ in (1) so that Theorem 1 provides the conditions

for the consistency and convergence rate of τ̂ to τ . If Zi are not predetermined (i.e.,

Zi(0) 6=d Zi(1)), then τ̂ typically converges to τ minus some bias component, which is

obtained as a limit of CCFT’s bias term in their Lemma 1.

Our estimators and above theorem can be extended to other regression models that

contain the covariates {TiZi, (1− Ti)Zi}, (Zi− Z̄), or {Ti(Zi− Z̄), (1− Ti)(Zi− Z̄)} as in

CCFT. However, as shown in Lemma 1 of CCFT, such estimators require more stringent

conditions to guarantee the consistency for τ . Furthermore, the local lasso regression (3)
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can be extended to incorporate the polynomials of Xi and TiXi even though this paper

focuses on the local linear model.

Finally, we discuss the choices of the localization bandwidth h and regularization pa-

rameter λn. We can use the MSE-optimal bandwidth based on the suggestion by CCFT

and the regularization parameter λn using cross-validation by Friedman, Hastie and Tib-

shirani (2010) and the data-driven choice by Belloni, Chernozhukov and Hansen (2014)

among others. Our recommendation is stated in Section 4.

2.2. Inference. We next consider interval estimation and hypothesis testing on the av-

erage causal effect τ . For finite or low-dimensional Zi, we recommend to use CCFT’s

inference methods. This subsection argues that we can still apply CCFT’s inference pro-

cedures for high-dimensional Zi, provided that CCFT’s conditions remain valid for S∗

and θ∗S∗ .

More precisely, based on the point estimator θ̂ in (3) or θ̃ in (4), define the subsets of

{1, . . . , p} as

Ŝ =

{
j : |γ̂(j)| > λn%n

p∑
j=1

I{|γ̂(j)| > 0}

}
, S̃ =

{
j : |γ̃(j)| > λn%n

p∑
j=1

I{|γ̃(j)| > 0}

}
,

where we set %n = log log log n. This choice of %n is based on the simulation experiments

in Section 4 and it is not optimal in any sense but works reasonably well. The consistency

of these selection procedures is presented as follows.

Theorem 2. Suppose
√

log p/(nh) = o(λn). Under Assumption 1 and additionally

|θ∗(j)| > λn%ns
∗(1 + ε) for each j ∈ S∗ for some ε > 0, it holds

P{Ŝ = S∗} → 1, P{S̃ = S∗} → 1. (9)
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(For the second statement, S∗ should contain θ1.)

This theorem says that under the additional β-min type condition |θ∗(j)| > λn%ns
∗(1+ε),

our selectors Ŝ and S̃ consistently estimate the true set of non-zero coefficients S∗.

Let Ẑi and Z̃i be subvectors of Zi selected by Ŝ and S̃, respectively. If we additionally

assume that Ẑi or Z̃i satisfies the assumptions of Theorem 2 in CCFT (which include

finite s∗), then the t-statistic in Theorem 2 of CCFT for the null hypothesis of H0 : τ = 0

using Ẑi or Z̃i (denoted by T̂ or T̃ ) satisfies

T̂ , T̃
d→ N(0, 1). (10)

Alternatively, we may conduct inference based on the double selection procedure (see,

Belloni, Chernozhukov and Hansen, 2014) when some elements of γ may take smallish

nonzero values. In particular, we run the additional local lasso regression from Ti on Zi,

i.e.,

γ̄ = arg min
γ

1

nh

n∑
i=1

Ki(Ti − Z ′iγ)2 + λn|γ|1.

Letting S̄ =
{
j : |γ̄(j)| > λn%n

∑p
j=1 I{|γ̄(j)| > 0}

}
, CCFT’s t-statistics can also be con-

structed by using the selected sets Ŝ ∪ S̄ or S̃ ∪ S̄.

3. Discussion

3.1. Fuzzy RDD. Although the discussion so far focuses on the sharp RDD analysis, it

is possible to extend our approach to the fuzzy RDD analysis, where the forcing variable

Xi is not informative enough to determine the treatment Wi but still affects the treat-

ment probability. In particular, the fuzzy RDD assumes that the conditional treatment

probability P{Wi = 1|Xi = x} jumps at the cutoff point x̄. As in the last section, we

normalize x̄ = 0. To define a reasonable parameter of interest for the fuzzy case, let

11



Wi(x) be a potential treatment for unit i when the cutoff level for the treatment was set

at x, and assume that Wi(x) is non-increasing in x at x = 0. Using the terminology of

Angrist, Imbens and Rubin (1996), unit i is called a complier if her cutoff level is Xi (i.e.,

limx↓Xi
Wi(x) = 0 and limx↑Xi

Wi(x) = 1). A parameter of interest in the fuzzy RDD,

suggested by Hahn, Todd and van der Klaauw (2001), is the average causal effect for

compliers at x = 0,

τf = E[Yi(1)− Yi(0)|i is complier, Xi = 0].

Hahn, Todd and van der Klaauw (2001) showed that under mild conditions the parameter

τf can be identified by the ratio of the jump in the conditional mean of Yi at x = 0 to the

jump in the conditional treatment probability at Xi = 0, i.e.,

τf =
limx↓0 E[Yi|Xi = x]− limx↑0 E[Yi|Xi = x]

limx↓0 P{Wi = 1|Xi = x} − limx↑0 P{Wi = 1|Xi = x}
. (11)

In this case, letting Ti = I{Xi ≥ 0}, the numerator and denominator of (11) can be

estimated by the local Lasso estimators θ̂Y and θ̂W , which solve

min
θY

1

nh

n∑
i=1

Ki {Yi − αY − TiτY −XiβY− − TiXiβY+ − Z ′iγY }
2

+ λn|θY |1,

min
θW

1

nh

n∑
i=1

Ki {Wi − αW − TiτW −XiβW− − TiXiβW+ − Z ′iγW}
2

+ λn|θW |1,

respectively. Then, based on the union of the selected covariates from the above local

Lasso regressions (i.e., S̄ = {j : |θ̂(j)
Y | > 0, or |θ̂(j)

W | > 0}), we implement the local least

squares as in CCFT:

min
θY,S̄

1

nh

n∑
i=1

Ki

{
Yi −G′S̄,iθY,S̄

}2

, min
θW,S̄

1

nh

n∑
i=1

Ki

{
Wi −G′S̄,iθW,S̄

}2

,
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where GS̄ = (1, T,X, TX,Z ′
S̄
)′. The numerator and denominator of (11) are given by

the estimated coefficients of τY and τW for the above minimizations, respectively. If the

treatment variable W satisfies analogous conditions for Theorems 1 and 2 (by replacing

W with Y ), we expect that analogous results to the sharp RDD case can be established.

3.2. Regression kink design. Our high-dimensional method can be extended for the

RKDs. For each unit i = 1, . . . , n, we observe continuous outcome and explanatory

variables denoted by Yi and Xi, respectively. The RKD analysis is concerned with the

following nonseparable model

Y = f(B,X,U),

where U is an error term (possibly multivariate) and B = b(X) is a continuous policy

variable of interest with known b(·). In general, even though we know the function b(·), we

are not able to identify the treatment effect by the policy variable B. However, it is often

the case that the policy function b(·) has some kinks (but is continuous). For instance,

suppose Y is duration of unemployment and X is earnings before losing the job. We

are interested in the effect of unemployment benefits B = b(X). In many unemployment

insurance systems (e.g., the one in Austria), b(·) is specified by a piecewise linear function.

In such a scenario, one may exploit changes of slopes in the conditional mean E[Y |X = x]

to identify a treatment effect of B. Suppose b(·) is kinked at 0. Otherwise, we redefine

X by subtracting the kink point c from X. In particular, Card, et al. (2015) have shown

that a treatment on treated parameter τk =
∫ ∂f(b,x,u)

∂b
dFU |B=b,X=x(u) is identified as

τk =
limx↓0

d
dx
E[Y |X = x]− limx↑0

d
dx
E[Y |X = x]

limx↓0
d
dx
b(x)− limx↑0

d
dx
b(x)

. (12)
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To estimate τk, we propose the following local lasso regression

min
θ

1

nh

n∑
i=1

Ki

{
Yi − α− TiXiδ −Xiβ − TiX2

i ζ −X2
i η − Z ′iγ

}2
+ λn|θ|1, (13)

where θ = (α, δ, β, ζ, η, γ′)′ is a vector of parameters. Let δ̂ be the lasso estimator of δ by

(13). Since the denominator b0 = limx↓c
d
dx
b(x) − limx↑c

d
dx
b(x) in (12) is assumed to be

known, the estimator of τk is given by τ̂k = δ̂/b0. Under analogous conditions to Theorems

1 and 2 (by setting β+ = 0 in Assumption 1), we expect that analogous results to the

sharp RDD case can be established.

4. Simulation

In this section, we conduct simulation experiments to investigate finite sample proper-

ties of our covariate selection approach for estimation and inference on the sharp RDD

analysis. We consider three simulation designs based on CCFT with introducing addi-

tional covariates. The additional covariates are generated based on the simulation designs

in Belloni, Chernozhukov and Hansen (2014). Let B(a, b) be a beta distribution with pa-

rameters a and b. The data generating process (DGP) is specified as follows

Y = µ1(X) + µ2(Z) + µ3(W ) + εy, X ∼ 2B(2, 4)− 1, Z = µz(X) + εz,

µz(x) =


0.49 + 1.06x+ 5.74x2 + 17.14x3 + 19.75x5 + 7.47x5 for x < 0,

0.49 + 0.61x+ 0.23x2 − 3.46x3 + 6.43x4 − 3.48x5 for x ≥ 0,

W = (W1,W2, . . . ,Wp)
′ ∼ N(0,ΣW ) with E(W 2

h ) = 1 and Cov(Wh,Wl) = 0.5|h−l|, and

 εy

εz

 ∼ N(0,Σ), Σ =

 σ2
y ρσyσz

ρσyσz σ2
z

 ,
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with σy = 0.1295 and σz = 0.1353.

For the functions µ1, µ2, and µ3, we consider three cases. For DGP1, we set ρ = 0.2692,

all the coefficients of µ2(z) and µ3(w) to be zero, and

µ1(x) =


0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 for x < 0,

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 for x ≥ 0,

For DGP2, we set ρ = 0.2692,

µ1(x) =


0.36 + 0.96x+ 5.47x2 + 15.28x3 + 15.87x4 + 5.14x5 for x < 0,

0.38 + 0.62x− 2.84x2 + 8.42x3 − 10.24x4 + 4.31x5 for x ≥ 0,

µ2(z) =


0.22z for x < 0,

0.28z for x ≥ 0,

and µ3(w) =
∑p

h=1 πhwh with πh = 0.2h. For DGP3, we set µ1(x) and µ2(z) as in DGP2,

and µ3(w) =
∑p

h=1 πhwh with πh = 0.5h. The sample size is set as n = 500 for all the

cases. The number of the covariates p varies from 5 to 500. The results are based on

1,000 Monte Carlo replications.

Table 1 shows the biases and RMSEs of the four point estimation methods. For the

bandwidth h, the first two methods use the MSE-optimal bandwidth without covariates

proposed by CCT. The third method uses the MSE-optimal bandwidth with covariates

proposed by CCFT. The fourth method, called “Adaptive”, is the bandwidth for our co-

variate selection approach which uses the MSE optimal bandwidth without covariates for

the covariate selection stage and uses that with covariates in the estimation stage. For

estimation methods, the first method uses the standard RD estimation method without
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covariates by CCT. The second and the third methods use the RD estimation with covari-

ates by CCFT. The fourth method uses the RD estimation with the selected covariates.

The Lasso procedure applied in the covariate selection stage employs the data-driven

penalty level by Belloni, Chernozhukov and Hansen (2014) and the MSE-optimal band-

width without covariates by CCT. For the RD estimation, we employ the MSE-optimal

bandwidth with covariates by CCFT.

Our findings are summarized as follows. First, the RMSEs of the covariate-adjusted

estimation get larger irrespective of the bandwidths as the number of covariates increases

across all DPGs. These increases in the RMSEs are due to inflated standard errors caused

by a large number of covariates. This result clearly indicates the need for covariate

selection. Second, the covariate selection approach shows excellent performances for all

cases. Both the biases and RMSEs are stable for different values of p for all designs.

Finally, all methods work equally well for DGP1, where all the additional covariates

are irrelevant. However, for DGP2 and DGP3, we find substantial efficiency loss of the

standard method. Overall, we recommend the covariate selection even for relatively small

p.

Table 2 reports the number of selected covariates for our covariate selection approach.

It is quite natural that the number of selected covariates increases when the number of

non-zero coefficients of covariates increases. It is interesting to note that the average

number of selected covariates decreases as the number of covariates increase.

Table 3 shows the coverage probabilities and interval lengths of the robust confidence

intervals for the causal effect. The nominal coverage level is 0.95. The following points

are notable. First, the performances of our covariate selection approach are stable for

all DGPs, although the coverage probabilities tend to be a little bit smaller than the

nominal level. Second, for the covariate-adjusted approaches, the coverage probabilities

16



decrease and the interval length gets shorter as p increases. Third, the coverage of CCT

is more stable and better than other methods, especially for DGP2 and DGP3. However,

the average lengths of CCT are substantially longer than the other methods. Overall,

the covariate selection approach is promising for inference as well since it exhibits robust

performances in both coverages and lengths for different number of covariates and DGPs.

Finally, Table 4 presents the properties of the MSE-optimal bandwidths. We can ob-

serve that the MSE-optimal bandwidth without covariates and the adaptive one are very

stable while the MSE optimal bandwidth with covariates shrinks as p increases. This is

possibly the main source of the increased RMSE and under-coverages.
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Table 1. Simulation: Point estimation

MSE-Optimal bandwidths: w/o Covariates w/ Covariates Adaptive
Estimation methods: Standard Covariate adjusted Covariate adjusted Covariate selection

p Bias RMSE Bias RMSE Bias RMSE Bias RMSE
DGP1 5 0.019 0.063 0.023 0.064 0.019 0.065 0.019 0.064

10 0.020 0.063 0.022 0.068 0.019 0.069 0.019 0.061
20 0.020 0.061 0.019 0.066 0.014 0.073 0.016 0.064
30 0.018 0.063 0.022 0.074 0.011 0.093 0.020 0.062
40 0.015 0.064 0.022 0.080 0.004 0.141 0.019 0.064
50 0.022 0.065 0.027 0.101 0.012 0.397 0.019 0.060
100 0.019 0.062 0.038 0.387 0.000 0.130 0.023 0.065
250 0.023 0.064 0.026 0.082 0.012 0.108 0.019 0.064
500 0.022 0.065 0.028 0.072 0.012 0.096 0.022 0.059

DGP2 5 0.004 0.526 0.000 0.058 0.030 0.082 0.029 0.095
10 -0.007 0.527 -0.001 0.061 0.027 0.087 0.028 0.100
20 0.032 0.507 -0.007 0.064 0.031 0.098 0.025 0.097
30 0.017 0.529 -0.006 0.070 0.026 0.194 0.026 0.101
40 0.008 0.532 -0.012 0.080 0.032 0.223 0.027 0.100
50 0.001 0.519 -0.009 0.087 0.011 0.420 0.026 0.101
100 0.021 0.516 -0.032 0.462 0.047 0.509 0.025 0.107
250 0.003 0.542 -0.042 0.310 -0.114 4.310 0.024 0.109
500 0.021 0.543 -0.044 0.402 0.021 0.806 0.020 0.114

DGP3 5 -0.005 0.673 -0.004 0.058 0.030 0.082 0.027 0.109
10 -0.012 0.689 -0.005 0.060 0.027 0.087 0.020 0.177
20 0.033 0.672 -0.011 0.064 0.031 0.098 0.024 0.178
30 0.015 0.701 -0.011 0.070 0.026 0.194 0.015 0.185
40 -0.005 0.674 -0.017 0.080 0.032 0.222 0.015 0.185
50 -0.004 0.695 -0.015 0.085 -0.005 0.460 0.027 0.195
100 -0.007 0.689 -0.036 0.301 0.009 0.621 0.019 0.190
250 -0.013 0.689 -0.055 0.347 0.009 0.861 0.012 0.201
500 0.031 0.663 -0.050 0.485 0.095 1.030 0.014 0.216

18



Table 2. Simulation: Number of selected covariates

p Average Min Max
DGP1 5 0.409 0 1

10 0.371 0 1
20 0.379 0 1
30 0.377 0 1
40 0.347 0 2
50 0.338 0 1
100 0.342 0 2
250 0.322 0 1
500 0.310 0 1

DGP2 5 2.869 2 3
10 2.789 2 3
20 2.717 1 3
30 2.647 1 3
40 2.573 1 3
50 2.564 1 3
100 2.461 1 3
250 2.392 1 3
500 2.325 1 3

DGP3 5 3.915 2 5
10 3.080 2 5
20 3.013 2 4
30 2.98 2 5
40 2.944 1 4
50 2.940 1 5
100 2.866 1 5
250 2.725 1 4
500 2.548 0 4
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Table 3. Simulation: Inference

MSE-Optimal bandwidths: w/o Covariates w/ Covariates Adaptive
Estimation methods: Standard Covariate adjusted Covariate adjusted Covariate selection

p CP Length CP Length CP Length CP Length
DGP1 5 0.923 0.205 0.898 0.246 0.892 0.241 0.915 0.231

10 0.910 0.226 0.855 0.211 0.851 0.219 0.930 0.188
20 0.930 0.172 0.815 0.259 0.804 0.173 0.911 0.190
30 0.915 0.215 0.734 0.148 0.644 0.165 0.911 0.226
40 0.911 0.214 0.649 0.182 0.458 0.168 0.923 0.335
50 0.898 0.309 0.54 0.152 0.258 0.074 0.919 0.223
100 0.918 0.218 0.194 0.342 0.193 0.176 0.896 0.161
250 0.908 0.344 0.108 0.040 0.172 0.068 0.906 0.225
500 0.912 0.195 0.138 0.020 0.188 0.097 0.931 0.262

DGP2 5 0.924 2.472 0.661 0.232 0.852 0.278 0.842 0.548
10 0.925 2.449 0.627 0.209 0.786 0.234 0.845 0.466
20 0.929 2.456 0.591 0.261 0.653 0.167 0.872 0.490
30 0.928 2.305 0.517 0.136 0.462 0.178 0.880 0.465
40 0.926 2.006 0.472 0.170 0.286 0.128 0.890 0.438
50 0.927 2.276 0.407 0.127 0.191 0.762 0.876 0.548
100 0.933 2.563 0.156 0.069 0.172 0.754 0.883 0.284
250 0.933 1.647 0.135 0.103 0.177 0.195 0.890 0.640
500 0.919 1.820 0.137 0.112 0.174 0.431 0.900 0.509

DGP3 5 0.934 3.350 0.615 0.219 0.852 0.278 0.861 0.329
10 0.911 2.965 0.601 0.202 0.786 0.234 0.891 0.704
20 0.925 3.395 0.564 0.236 0.653 0.167 0.905 0.721
30 0.920 2.951 0.495 0.151 0.462 0.178 0.899 0.713
40 0.940 2.848 0.456 0.174 0.288 0.128 0.903 0.740
50 0.928 2.654 0.397 0.132 0.188 0.071 0.885 0.697
100 0.933 2.954 0.182 0.073 0.169 0.407 0.918 0.910
250 0.927 3.446 0.119 0.139 0.176 0.529 0.895 0.765
500 0.939 2.820 0.130 0.158 0.173 0.389 0.908 0.751

20



Table 4. Simulation: MSE-Optimal Bandwidths

MSE-Optimal bandwidths: w/o Covariates w/ Covariates Adaptive
p Mean SD Mean SD Mean SD

DGP1 5 0.194 0.044 0.187 0.042 0.194 0.046
10 0.195 0.043 0.181 0.041 0.195 0.045
20 0.195 0.045 0.162 0.037 0.196 0.045
30 0.196 0.045 0.146 0.031 0.196 0.045
40 0.195 0.045 0.127 0.026 0.196 0.046
50 0.195 0.045 0.108 0.024 0.196 0.045
100 0.198 0.044 0.073 0.023 0.197 0.047
250 0.199 0.045 0.070 0.020 0.195 0.046
500 0.197 0.045 0.070 0.020 0.198 0.044

DGP2 5 0.176 0.025 0.108 0.011 0.111 0.014
10 0.176 0.025 0.107 0.011 0.112 0.014
20 0.176 0.025 0.104 0.011 0.114 0.015
30 0.176 0.024 0.102 0.012 0.116 0.015
40 0.176 0.026 0.098 0.012 0.117 0.015
50 0.176 0.024 0.092 0.013 0.117 0.015
100 0.177 0.025 0.079 0.020 0.119 0.015
250 0.176 0.025 0.077 0.022 0.12 0.015
500 0.175 0.024 0.076 0.021 0.121 0.015

DGP3 5 0.182 0.028 0.108 0.011 0.117 0.014
10 0.182 0.028 0.107 0.011 0.138 0.017
20 0.182 0.028 0.104 0.011 0.139 0.016
30 0.181 0.028 0.102 0.012 0.139 0.015
40 0.182 0.029 0.098 0.012 0.140 0.016
50 0.183 0.028 0.093 0.014 0.140 0.016
100 0.183 0.029 0.078 0.020 0.141 0.016
250 0.182 0.029 0.076 0.022 0.142 0.017
500 0.182 0.028 0.074 0.021 0.144 0.019
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5. Empirical illustration: Head Start data

To illustrate our variable selection approach, we revisit the problem of the Head Start

program first studied by Ludwig and Miller (2007) where they investigate the effect of

the Head Start program on various outcomes related to health and schooling. The federal

government provided grant-writing assistance to the 300 poorest counties based on the

poverty index to apply for the Head Start program. This leads to the RD design with the

poverty index as a running variable where the cut-off value is set as x̄ = 59.1984. Ludwig

and Miller (2007) conducted their RDD analysis using no covariate, and CCFT examined

the impact of the covariance-adjustment. CCFT employed nine pre-intervention covari-

ates from the U.S. Census, which include total population, percentages of population,

percentages of black and urban population, and levels and percentages of population in

three age groups (children aged 3 to 5, children aged 14 to 17, and adults older than 25).

The main finding by CCFT is that the covariate-adjusted RD inference yields shorter

confidence intervals while the RD point estimates remain stable.

We conduct the empirical exercises of CCFT by applying our variable selection ap-

proach with two extensions. First, we introduce 36 interaction terms in addition to the

nine original covariates. Second, we also implement those estimation and inference for

subsamples to see the effect of changes in the ratio of the number of covariates (p) to

that of observations (n). Hereafter, as in CCFT, we focus on child mortality among many

outcome variables.

Table 5 shows the results of our empirical illustration. Four columns correspond to four

estimation procedures which are the same as those used in the simulation experiments.

The first panel shows the full sample results (n = 2799 and p/n = 0.016). The RD causal

effect estimates are presented in the first row. The next three rows show 95% confidence

22



intervals, their percentage length changes relative to the one in the first column, and their

associated p-values where these are obtained without restriction on the MSE optimal

bandwidth for the local linear regression (h) and the pilot bandwidth (b). See CCT and

CCFT for more details on the robust inference methods. These results are also obtained

under the restriction h/b = 1, which are reported in the following three rows. The last two

rows in the same panel present the bandwidths (h, b), and effective sample sizes (n−, n+)

used for the RD estimates. The effective sample sizes are the number of observations

with the running variable in the intervals [x̄ − h, x̄] and [x̄, x̄ + h]. We also report the

selected covariates for our covariate selection approach. We use subsamples of the first

1000 and 500 observations for the second and third panels, leading to p/n = 0.045 and

.0.090, respectively.

For the full sample case, the covariate-adjusted estimates mildly deviate from the stan-

dard one while our estimate based on the variable selection is identical to the standard

one. Although the confidence intervals of the covariate-adjusted approaches are shorter

than the standard one, this might induce under-coverages for the case of many covariates

as illustrated in the simulation experiment. As the sample size gets smaller, the obser-

vations made here are amplified. In contrast, we can see the stable performance of the

variable selection approach and its mild contribution to shorten the confidence intervals.
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Table 5. Empirical illustration: Head Start data

MSE-Optimal bandwidths: w/o Covariates w/ Covariates Adaptive
Estimation methods: Standard Cov-adjusted Cov-adjusted Variable selection

n = 2779 Point estimate −2.41 −2.19 −3.14 −2.41
p/n = 0.016 h/b unrestricted

Robust 95% CI [−5.46,−0.1] [−4.7,−0.27] [−5.59,−0.56] [−5.46,−0.1]
CI length change (%) −17.42 −6.18 0

Robust p-value 0.042 0.028 0.017 0.042

h/b = 1

Robust 95% CI [−6.41,−1.09] [−5.75,−1.07] [−6.37,−0.31] [−6.41,−1.09]
CI length change (%) −12.05 −13.82 0

Robust p-value 0.006 0.004 0.031 0.006
h, b 6.81, 10.73 6.81, 10.73 3.26, 6.05 6.81, 10.73
n−, n+ 234, 180 234, 180 99, 94 234, 180
Selected covariates None

n = 1000 Point estimate −1.68 −3.1 −4.1 −1.48
p/n = 0.045 h/b unrestricted

Robust 95% CI [−5.45, 1.75] [−6.35,−1.1] [−7.7,−2.28] [−5.08, 1.79]
CI length change (%) −26.92 −24.6 −4.49
Robust p-value 0.314 0.005 0.000 0.347

h/b = 1

Robust 95% CI [−8.26, 0.22] [−8.27,−1.87] [−8.74,−1.85] [−7.94, 0.27]
CI length change (%) −24.52 −18.78 −3.28
Robust p-value 0.063 0.002 0.003 0.070

h, b 6.52, 10.23 6.52, 10.23 5.26, 8.07 5.26, 8.07
n−, n+ 74, 77 79, 79 64, 69 79, 79
Selected covariates % of adult population

n = 500 Point estimate −2.35 −4.51 −7.1 −2.22
p/n = 0.090 h/b unrestricted

Robust 95% CI [−7.25, 2.48] [−8.59,−2.38] [−11.57,−5.28] [−6.93, 2.25]
CI length change (%) −36.26 −35.47 −5.74
Robust p-value 0.337 0.001 0.000 0.317

h/b = 1

Robust 95% CI [−10.22, 1.42] [−10.67,−3.35] [−12.33,−4.45] [−10, 1.07]
CI length change (%) −37.1 −32.34 −4.94
Robust p-value 0.139 0.000 0.000 0.110

h, b 6.37, 9.16 6.37, 9.16 4.31, 6.82 4.31, 6.82
n−, n+ 60, 56 61, 56 42, 42 61, 56
Selected covariates % of adult population
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 1. We use the following modification of Bernstein’s inequality.

Lemma A.1. Under Assumption 1, it holds

E

[
max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
i=1

KiGijei

∣∣∣∣∣
m]
≤ 2hm/2 logm/2 p,

for m ≤ 1 + log p.

Proof of Lemma A.1. Note that E[KiGiei] = 0 by construction. From Bernstein’s

inequality (e.g., Lemma 14.12 in BG)

E

[
max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
i=1

KiGijei

∣∣∣∣∣
m]
≤ 2hm/2 logm/2 p,

for m ≤ 1 + log p. �

A.1.1. Proof of (i). Under Assumption 1-2, Lemma A.1 implies

E

[
max
1≤j≤p

∣∣∣∣∣ 1√
n

n∑
i=1

KiGijei

∣∣∣∣∣
]
≤ 2h1/2 log1/2 p.

Thus, we have

P{An} := P

{
4

nh

∣∣∣∣∣
n∑
i=1

KiGiei

∣∣∣∣∣
∞

≤ λn

}
→ 1, (14)

as n→∞, provided that
√

log p/(nh) = o(λn).

Let Y , e, and G denote the vector collections of YiK
1/2
i , eiK

1/2
i , and G′iK

1/2
i , respec-

tively. Since θ̂ is a minimizer, we have

1

nh
|Y −Gθ̂|22 + λn|θ̂|1 ≤

1

nh
|Y −Gθ∗|22 + λn|θ∗|1.
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By plugging Y = Gθ∗ + e into the above, we obtain

2

nh
|G(θ̂ − θ∗)|22 ≤

4

nh
e′G(θ̂ − θ∗) + 2λn|θ∗|1 − 2λn|θ̂|1

≤ 4

nh
|e′G|∞|θ̂ − θ∗|1 + 2λn(|θ∗|1 − |θ̂|1),

≤ 3λn|θ̂S∗ − θ∗S∗ |1 − λn|θ̂S∗
c
|1, (15)

conditionally on An, where S∗c is the complement of S∗, the second inequality follows from

the Hölder inequality, and the third inequality follows from the definition of An and the

following facts

|θ̂ − θ∗|1 = |θ̂S∗ − θ∗S∗|1 + |θ̂S∗
c
|1, (16)

|θ∗|1 − |θ̂|1 = |θ∗S∗|1 − |θ̂S∗|1 − |θ̂S∗
c
|1 ≤ |θ̂S∗ − θ∗S∗ |1 − |θ̂S∗

c
|1,

due to the triangle inequality. Thus, (15) implies 3|θ̂S∗ − θ∗S∗ |1 ≥ |θ̂S∗
c
|1 and

2

nh
|G(θ̂ − θ∗)|22 + λn|θ̂ − θ∗|1 ≤ 4λn|θ̂S∗ − θ∗S∗|1, (17)

by using (16).

Now, Assumption 1-3 implies

4λn|θ̂S∗ − θ∗S∗|1 ≤ 4λn

√
s∗

nhφ2
∗
|G(θ̂ − θ∗)|2 ≤

1

nh
|G(θ̂ − θ∗)|22 + 4λ2

n

s∗

φ2
∗
,

with probability approaching one, where we note that 2ab ≤ a2 + b2 for the second

inequality. Combining this with (17), we have

1

nh
|G(θ̂ − θ∗)|22 + λn|θ̂ − θ∗|1 ≤ 4λ2

n

s∗

φ2
∗
,
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and the conclusion in (6) follows.

A.1.2. Proof of (ii). The compatibility condition for G1 is implied by the usual full column

rank condition in the classical linear regression since |θ1|21 ≤ dim(θ1)|θ1|22.

Note that the result in (14) still holds. Since θ̃ is a minimizer, we have

1

nh
|Y −Gθ̃|22 + λn|θ̃2|1 ≤

1

nh
|Y −Gθ∗|22 + λn|θ∗2|1.

By plugging Y = Gθ∗ + e into the above,

2

nh
|G(θ̃ − θ∗)|22 ≤

4

nh
e′G(θ̃ − θ∗) + 2λn|θ∗2|1 − 2λn|θ̃2|1

≤ 4

nh
|e′G|∞|θ̃ − θ∗|1 + 2λn(|θ∗2|1 − |θ̃2|1)

≤ λn|θ̃1 − θ∗1|1 + 3λn|θ̃2,S∗ − θ∗2,S∗|1 − λn|θ̃2,S∗
c
|1, (18)

conditionally on An, where the second inequality follows from the Hölder inequality, and

the third inequality follows from the definition of An and the following facts

|θ̃ − θ∗|1 = |θ̃S∗ − θ∗S∗|1 + |θ̃S∗
c
|1, (19)

|θ∗|1 − |θ̃|1 = |θ∗S∗|1 − |θ̃S∗|1 − |θ̃S∗
c
|1 ≤ |θ̃S∗ − θ∗S∗ |1 − |θ̃S∗

c
|1,

due to the triangle inequality. Thus, (18) implies 3|θ̃S∗ − θ∗S∗|1 ≥ |θ̃Sc
∗|1 and

2

nh
|G(θ̃ − θ∗)|22 + λn|θ̃2 − θ∗2|1 ≤ λn|θ̃1 − θ∗1|1 + 4λn|θ̃2,S∗ − θ∗2,S∗|1, (20)

by using (19).
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Now Assumption 1-3 implies

4λn|θ̃2,S∗ − θ∗2,S∗|1 ≤ 4λn

√
s∗

nhφ2
∗
|G2(θ̃2 − θ∗2)|2 ≤

1

nh
|G2(θ̃2 − θ∗2)|22 + 4λ2

n

s∗

φ2
∗
,

λn|θ̃1 − θ∗1|1 ≤ λn

√
s∗

nhφ2
∗
|G1(θ̃1 − θ∗1)|2 ≤

1

nh
|G1(θ̃1 − θ∗1)|22 + λ2

n

s∗

φ2
∗
,

with probability approaching one. Combining these inequalities with (20), we have

1

nh
|G(θ̃ − θ∗)|22 + λn|θ̃2 − θ∗2|1 ≤ 5λ2

n

s∗

φ2
∗
,

which implies

|θ̃2 − θ∗2|1 ≤ 5λn
s∗

φ2
∗
. (21)

Turning to the finite dimensional component θ̃1, note that

θ̃1 − θ∗1 =

(
1

nh
G′1G1

)−1(
1

nh
G′1e−

1

nh
G′1G2(θ̃2 − θ∗2)

)
= Op((nh)−1/2) +Op(|θ̃2 − θ∗2|1).

Combining this with (21) yields the conclusion in (7).

A.1.3. Proof of (iii). Since θ̄S̄ is the weighted OLS estimate that minimizes the sum of

the squared residuals in the regression of Y on GS̄ and θ̄S̄c = θ̃S̄c = 0, it holds

|Y −GS̄ θ̄S̄|22 ≤ |Y −GS̄ θ̃S̄|22,

and thus,

1

nh
|GS̄(θ̄S̄ − θ̃S̄)|22 ≤

2

nh
|ê′GS̄(θ̄S̄ − θ̃S̄)| ≤ λn|θ̄S̄ − θ̃S̄|1, (22)
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due to the Hölder inequality and KKT condition. On the other hand,

λmin

(
1

nh
G′S̄GS̄

)
|θ̄S̄ − θ̃S̄|22 ≤

1

nh
|GS̄(θ̄S̄ − θ̃S̄)|22.

Since|a|1 ≤
√
s|a|2 for an s-dimensional vector a, we conclude that

|θ̄S̄ − θ̃S̄|2 ≤ λmin

(
1

nh
G′S̄GS̄

)−1

λn|S̄|.

A.2. Proof of Theorem 2. Let an = λn%n
∑p

j=1 I{|γ̂(j)| > 0}. To prove that P{Ŝ =

S∗} → 1, we note that the deviation bound in Theorem 1 is asymptotically negligible to

the threshold an. This implies that if |γ∗(j)| = 0, then |γ̂(j)| ≤ 4s∗λn/φ
2
∗ = o(an) with

probability approaching one, and otherwise |γ̂(j)| must exceed the threshold an. The proof

of P{S̃ = S∗} → 1 is similar.
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