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Abstract

We study an infinite-horizon multilateral bargaining game in which the status quo policy,

players’ recognition probabilities, and their voting weights are endogenously determined by

the previous bargaining outcome. With players not discounting future payoffs, we show that

the long-run equilibrium outcome features the concentration of power by one or two players,

depending on the initial bargaining state. If the players’ initial shares are relatively equal, they

successfully prevent tyranny, but a two-player oligarchy nevertheless emerges and persists.

The same results are obtained with payoff discounting, provided that the players’ shares are

not too small. Our results highlight the importance of the initial power distribution and dis-

counting of future payoffs in the long-run development of power configuration.
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1 Introduction

In this paper, we present an infinite-horizon, multiplayer divide-the-dollar game in which the sta-

tus quo and procedural bargaining power are endogenously determined. In each period, one of the

players is selected as a proposer and proposes a division of a dollar. The proposal is implemented

if the players possessing more than half of the total voting weights support it; otherwise, the status

quo is sustained. Importantly, we assume that the bargaining outcome in a given period determines

the status quo policy, the proposer-selection probabilities, and the voting weights in the next pe-

riod. Simply put, the players who gain more resources in today’s bargaining are more likely to

be tomorrow’s proposer, and their votes would count more heavily than those who gain relatively

fewer resources.

This model captures situations in which economic elites have better access to political pro-

cesses, and thus, the resource distribution is reconsidered under stronger influence by the wealthy.

Our model not only applies to the endogenous evolution of institutions (Acemoglu and Robin-

son, 2000, 2006) but also portrays common phenomena in a democratic society. From Montana’s

William A. Clark, who bought a seat in the U.S. Senate in the early twentieth century to ever-

increasing campaign donations by large firms and billionaires in the present, we have numerous

examples of economic elites influencing the political process. Incorporating the idea that “wealth

begets power, which begets wealth,” (Stiglitz, 2011) this paper thus provides a theoretical frame-

work to examine the long-run consequences of the increasing inequality we now witness.

We characterize the set of symmetric Markov perfect equilibria in stage-undominated voting

strategies, with the restriction that the proposer proposes the status quo whenever doing so is

optimal. Assuming that players do not discount future payoffs, we show that in any equilibrium,

all wealth (and hence power) is concentrated in the hands of a single player (tyrant) or two players

(oligarchs) in the long run. Once players become a tyrant or oligarch, they deter others’ entry into

the political arena and perpetuate their rule in all subsequent periods. Moreover, we show that

the equilibrium behavior is uniquely characterized in all states except those with relatively equal

power.

The long-run equilibrium outcome depends on the initial distribution of wealth and power.

If there initially exists an overwhelmingly strong player, he becomes a tyrant once selected as

a proposer. If the initial distribution of wealth is relatively equal, however, the players block any

other player’s attempts to be a tyrant. The players expect that opening the way to tyranny eventually
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leads to zero future payoffs, and thus, any lucrative short-run benefit is dominated by the long-run

cost. Nevertheless, the equilibrium bargaining power is ultimately concentrated in the hands of

two players, who form a permanent oligarchy.

While institutional detail is scarce, this paper’s results suggest the prevalence of unequal power

distribution in political and social institutions. The history of human societies encountered numer-

ous all-powerful rulers for a vast amount of time. Furthermore, our results connect with structural

realism in international relations, which argues that the unipolar and bipolar structures are among

the world’s most stable systems (Waltz, 1964; Wohlforth, 1999).

Next, we discuss the role of two main assumptions in our model. First, we consider the role of

discounting by setting up and analyzing a game with discounted payoffs. We show that our model’s

results extend to this case as long as each player’s status quo share is not too small, in which case

the players can resist a short-term gain from allowing long-run tyranny. Moreover, we show that

the additional constraint vanishes as the discounting factor approaches to one. Second, we discuss

a general supermajority voting threshold by analyzing a three-player game. As the voting threshold

increases, it becomes more difficult for the proposer to induce a state transition. We show that this

effect makes a larger set of states become long-run equilibrium outcomes. This result suggests that

more equitable power distribution can be sustained under supermajority rules.

Our paper contributes to the literature on dynamic bargaining with an endogenous status quo

(see Eraslan et al. (2020) for a comprehensive survey on this topic). The literature builds on the

legislative bargaining framework of Baron and Ferejohn (1989) and analyzes bargaining behavior

when the previous bargaining outcome remains in effect until the next agreement.1 Specifically,

our paper belongs to a literature that considers purely distributive policies in a multidimensional

space. The literature finds that there exists a Markov perfect equilibrium with a “rotating dictator”

feature (Kalandrakis, 2004, 2010) and that almost any outcome is supported as an equilibrium

absorbing state (Bowen and Zahran, 2012; Richter, 2014; Anesi and Seidmann, 2015). These

papers assume that the bargaining rule (the recognition probabilities and voting weights) remains

fixed. In contrast, in our model with an endogenous bargaining rule, every equilibrium features at

most two players capturing all resources in the long run.

Several bargaining papers have analyzed the effect of an endogenous procedure. Diermeier et

1A nonexhaustive list includes Baron (1996), Fearon (1996), Kalandrakis (2004, 2010), Penn (2009), Diermeier
and Fong (2011), Duggan and Kalandrakis (2012), Bowen and Zahran (2012), Bowen et al. (2014), Richter (2014),
Anesi and Seidmann (2014, 2015), Baron and Bowen (2015), Dziuda and Loeper (2016), Anesi and Duggan (2018),
Baron (2019), Nunnari (2021), and Zapal (2020).
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al. (2015, 2016, 2020) consider models in which legislators engage in “procedural voting” in each

period. Eguia and Shepsle (2015) find a mechanism whereby the endogenously chosen bargaining

rule disproportionately favors more senior legislators. Choate et al. (2020) show that a partisan

legislator may be willing to delegate proposal-making authority to a party leader. While these pa-

pers endogenize proposer selection rule by either separate voting or a delegation, the present paper

assumes that both the proposer-selection probability and voting weights are endogenously deter-

mined. Finally, Duggan and Kalandrakis (2012) consider a general model of dynamic legislative

bargaining that allows endogenous proposer selection and voting rules. They show that a stationary

equilibrium exists in pure strategies and provide a number of regularity properties of equilibria.

Our paper also contributes to the literature on the theory of endogenous institutions (Roberts,

2015; Acemoglu and Robinson, 2000, 2006, 2017; Lagunoff, 2009; Acemoglu et al., 2012, 2015,

2018). Acemoglu et al. (2012) set up a general model of dynamic institutional change and char-

acterize the set of dynamically stable states. Importantly, the intuition underlying our equilib-

rium shares their “slippery slope” argument (p.1449). While Acemoglu et al. (2012) consider

games with deterministic proposer sequences, our model assumes proposers are randomly se-

lected. Stochastic proposer selection, combined with endogenous power, provides the current

proposer with more options to enable state transitions, leading to a smaller set of dynamically

stable states.2 One of our main implications—that an initial power distribution crucially affects

long-run outcome—is related to Acemoglu and Robinson (2017), who consider a dynamic contest

model between the state and civil society.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section 3

characterizes the equilibrium behavior and proves the existence of equilibrium. Section 4 discusses

the role of the two main assumptions of our model. Section 5 concludes the paper. All proofs are

relegated to the Appendix.

2 Model

Setup A set of players, I = {1, . . . , n} with n ≥ 3, divide a dollar by time t = 1, . . . ,∞. The

bargaining outcome at time t is denoted by xt ∈ X, where X = {x ∈ Rn|
∑

i∈I xi = 1 and xi ≥ 0} is

the set of all feasible divisions of the dollar. The bargaining environment in period t is summarized

2Moreover, stochastic proposer selection in our paper results in multiple state transitions in equilibrium, which is
not observed in Acemoglu et al. (2012). For detailed argument, see Example 1 and footnote 12.
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by Et = (xt−1, pt, wt), where the status quo xt−1 is the bargaining outcome carried over from period

t − 1, pt is the probability vector of proposer selection, which we refer to recognition probability,

and wt is the players’ voting weights. We assume that pt and wt endogenously change over time

and are equal to the bargaining outcome in the previous period, i.e., pt = wt = xt−1. That is,

the proposal and voting power of the players are proportional to their resources received in the

previous period. Since pt and wt are redundant, we denote the environment under the status quo

xt−1 as Et(xt−1). The status quo in the initial period x0 is exogenously given.

The timing of the game is as follows. At the beginning of period t, one of the players is selected

as a proposer according to the probability vector pt and makes a proposal y ∈ X. Observing the

proposal y, all players simultaneously vote on whether to accept or reject it by a weighted voting

rule. If the total voting weights in favor of the proposal are strictly greater than 1/2, the proposal

y is adopted as the period-t policy xt; otherwise, the status quo xt−1 becomes xt. At the end of the

period, each player receives a share of the dollar as prescribed by xt. The bargaining at time t + 1

begins in the new environment Et+1(xt), and the same process continues repeatedly.

Strategies Throughout the analysis, we focus on stationary Markov strategies. In stationary

Markov strategies, the players ignore the complicated history of the past plays, to the extent that

the payoff-relevant parameters are identical at the end of different histories (Maskin and Tirole,

2001). In the current model, the only payoff-relevant parameter is the policy in the previous period,

xt−1. Dropping the time index, we denote the state s as the policy in the previous period. Note that

the set of states is equivalent to the set of feasible bargaining outcomes X; henceforth, we refer to

X as either ‘the set of states’ or ‘the set of (bargaining) outcomes’ depending on the context.

Let B(X) be the set of Borel probability measures on X with finite support. player i’s proposal

strategy is a map µi : X → B(X).3 We denote by µi(y|s) the probability that player i proposes y in

state s. If µi(y|s) = 1 for some y, we write µi(s) = ywith a slight abuse of notation. The acceptance

set Ai : X ⇒ X represents player i’s voting strategy, where Ai(s) is the set of proposals he accepts

in state s. Let σi = (µi, Ai) denote player i’s Markov strategy.

Since players are ex ante identical except for the initial share, symmetry is a natural assumption

for strategies. For any permutation φ : I → I and any x ∈ X, let φ̂ : X → X be a map such that

φ̂(x) = (xφ(1), . . . , xφ(n)). A Markov strategy profile σ is symmetric if for any φ and x, σi(φ̂(x)) =

3The requirement that µi has a finite support is for notational simplicity; dropping the requirement does not affect
the results of the paper.
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σφ(i)(x) for each i ∈ I. In symmetric Markov strategies, players are not identified by their names.

Two players having identical status quo shares in a given state will propose and vote in the same

way, and all other players will treat these two players identically.

Preferences Each player’s period-t utility from the outcome xt equals that player’s share of the

dollar: ui(xt) = xt
i. For a sequence of bargaining outcomes {xt}Tt=1, player i’s T -period utility is the

average sum of the period utilities:

∑T
t=1 ui(xt)

T
.

Note that the players do not discount payoffs, and thus they do not differentiate between current

and future payoffs as long as their sum remains the same. This assumption highlights the role

of players’ intertemporal incentives in the equilibria of our dynamic bargaining environment. In

Section 4.1, we analyze the model with discounted payoffs and compare its results to those of the

main model.

A Markov strategy profile σ prescribes how all players behave in every state and thus assigns

a probability distribution over the set of all possible sequences of outcomes for t = 1, . . . ,∞ from

any state s. LetLs be the set of all decisive coalitions in state s: Ls = {L ∈ 2I |
∑

i∈L si >
1
2 }; note that

decisive coalitions must have strictly greater than 1/2 of the power. Define the social acceptance

set in state s by A(s) =
⋃

L∈Ls
⋂

i∈L Ai(s). The social acceptance set contains all divisions that will

be approved by at least one decisive coalition in state s.

Let vσ,Ti (s) be player i’s T -period continuation value in state s, in which the bargaining is played

for T more periods according to a Markov profile σ. Then, vσ,Ti (s) is recursively written as

vσ,Ti (s) =
∑
j∈I

s j

∑
y

µ j(y|s)
ui(y) + (T − 1)vσ,T−1

i (y)
T

1A(s)(y) +
ui(s) + (T − 1)vσ,T−1

i (s)
T

1X\A(s)(y)
 ,
(1)

where 1 is an indicator function. Intuitively, player i’s T -period continuation value is the average

expected utility from period 1 to T before the identity of the proposer in the first period is known.

Then, each player j ∈ I is selected with probability s j and proposes y ∈ X with probability µ j(y|s).

If y is in the social acceptance set, player i receives instantaneous utility ui(y) and expects to receive

the continuation value from the new state y for the remaining T − 1 periods. The sum of ui(y) and

(T − 1)vσ,T−1
i (y) is averaged over T periods. If player j’s proposal is socially unacceptable, the
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status quo s is implemented and gives player i an instantaneous utility of ui(s) and a continuation

value of vσ,T−1
i (s).

Let Uσ,T
i (x) be player i’s T -period expected utility given a Markov profile σ if a policy x is

implemented in the current period. Then, Uσ,T
i (x) is given by

Uσ,T
i (x) ≡

ui(x) + (T − 1)vσ,T−1
i (x)

T
. (2)

Using (2), player i’s continuation value vσ,Ti (s) can be written as

vσ,Ti (s) =
∑
j∈I

s j

∑
y

µ j(y|s)
(
Uσ,T

i (y)1A(s)(y) + Uσ,T
i (s)1X\A(s)(y)

)
. (3)

Hereafter, we omit σ and use the simplified notations of UT
i (x) and vT

i (s) whenever doing so does

not create confusion.

For the preferences of our infinitely repeated bargaining game without discounting, we apply

the overtaking criterion of Rubinstein (1979). Formally, for x, y ∈ X, player i prefers x to y given

a Markov profile σ (x �i,σ y) if and only if

lim inf
T→∞

T (Uσ,T
i (x) − Uσ,T

i (y)) ≥ 0.

Given any Markov strategy profileσ, a player prefers x to y if x yields a higher expected utility than

y when T approaches ∞. Under the overtaking criterion, player i strictly prefers x to y whenever

limT→∞Uσ,T
i (x) > limT→∞Uσ,T

i (y). If limT→∞Uσ,T
i (x) = limT→∞Uσ,T

i (y), the overtaking criterion

takes into account the payoff differences in the finite number of initial periods.

To obtain an intuition, consider the following streams of player i’s payoffs from sequences of

outcomes x, y, z:

x : (
1
3
,

1
3
, 0, 0, . . .) y : (

1
3
, 0, 0, 0 . . .) z : (0, 0,

1
3
,

1
3
, . . .).

Since UT
i (x) = 2

3T ,U
T
i (y) = 1

3T and UT
i (z) = T−2

3T for any T ≥ 2, we have z �i x �i y under the

overtaking criterion. Comparing x and z, the average payoff over an infinite number of periods from

x is zero, but the average payoff from z is 1
3 . Between x and y, these two streams of payoffs both

yield zero average payoff when T → ∞, but limT→∞ T [UT
i (x) − UT

i (y)] = limT→∞ T · 1
3T = 1

3 > 0.4

4The limit of the means criterion is also frequently employed in infinite-horizon games without discounting. In

6



Equilibrium Concept Our equilibrium concept is Markov perfection with a few refinement con-

ditions.

Definition 1. A stationary Markov strategy profile σ∗ = {(µ∗i , A
∗
i )}ni=1 is a symmetric Markov perfect

equilibrium in stage-undominated voting strategies with status quo bias if, for all i ∈ I, s ∈ X and

a permutation φ : I → I, the following are satisfied:

(a) symmetry: σ∗i (φ̂(s)) = σ∗φ(i)(s),

(b) stage-undominated voting: y ∈ A∗i (s)⇐⇒ y �i,σ∗ s,

(c) optimality: µ∗i (y|s) > 0 =⇒ y ∈ {x ∈ A∗(s) : x �i,σ∗ x′,∀x′ ∈ A∗(s)},

(d) status quo bias: s %i,σ∗ y,∀y ∈ A∗(s) =⇒ µ∗i (s) = s.

Henceforth, we refer to the equilibrium defined here simply as an equilibrium.

Conditions (a)-(c) are identical to those in Kalandrakis (2004). Condition (a) (symmetry) states

that the profile is robust to any permutation. Condition (b) (stage-undominated voting) requires

that the players do not vote for the proposals that would yield lower expected utility than the status

quo in equilibrium. Condition (b) eliminates a number of uninteresting equilibria.5 Additionally,

Condition (b) implies that the status quo policy is always accepted unanimously.6 Condition (c)

(optimality) requires that players make the optimal proposals in the social acceptance set.7

Condition (d) (status quo bias) requires that if the proposer’s set of optimal proposals includes

the status quo, then he proposes the status quo instead of randomly selecting other divisions. This

tie-breaking rule can be interpreted as assuming a small cost of forming a new coalition on behalf

of the proposer. If a proposer expects no additional benefit from altering the status quo, he has

no reason to exert the effort necessary to form a new coalition. While Condition (d) simplifies

the limit of the means criterion, x �LM
i y ⇔ limT→∞[UT

i (x) − UT
i (y)]. In the above example, x ∼LM

i y because
limT→∞

1
3T = 0. The overtaking criterion is more discriminative among alternatives. With respect to the equilibrium

analysis, a player becomes indifferent among all allocations in which his share is more than half under the limit of the
means, whereas the overtaking criterion differentiates most of those alternatives.

5For example, without Condition (b), we can easily construct an equilibrium in which every player votes for any
proposal and the proposer in the first period immediately takes the entire share in most states.

6Note that Condition (b) requires that the voters accept the proposal when they are indifferent between the proposal
and the status quo. Since the proposal space is continuous, any other tie-breaking rule may lead to an open set of
socially acceptable policies, which may result in nonexistence of the optimal proposal.

7The assumption that the players make only the proposals in the social acceptance set is introduced to simplify
the analysis, but dropping the assumption does not affect the results since the status quo policy is always in the social
acceptance set.
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the equilibrium analysis, relaxing this Condition does not qualitatively change our equilibrium

characterization result.8

Partitions of States To present the results more concisely, we partition the state space X into

several subspaces according to the level of concentration of voting power.

Definition 2. State s is in the set of

(i) tyrannical states XT if ∃i ∈ I such that si = 1;

(ii) dictatorial states XD if ∃i ∈ I such that {i} ∈ Ls and s < XT ;

(iii) oligarchic states XO if ∃L ∈ Ls such that ∀i ∈ L, i has a veto9 and s < (XT ∪ XD);

(iv) collegial states XC if
⋂

L∈Ls L , ∅ and s < (XT ∪ XD ∪ XO); and

(v) noncollegial states XNC if
⋂

L∈Ls L = ∅.10,11

Figure 1 illustrates the partitions of states in a three-player game. The points in the triangle

correspond to particular status quo divisions, where the bottom-left corner is (1, 0, 0), the bottom-

right corner is (0, 1, 0) and the center-top corner is (0, 0, 1). These three corners constitute XT , in

which one of the players—whom we call a tyrant—has all wealth and power. In dictatorial states,

one of the players (the dictator) has more than half of the dollar. These are depicted as the shaded

areas and solid lines in panel (b). The set of oligarchic states consists of the points at which two

of the players (oligarchs) divide the dollar equally (panel (c)). Panel (d) illustrates collegial states:

There is a single player (collegium player) whose status quo share is one half, and there are at least

two players (noncollegium players) possessing positive status quo shares regardless of the number

of players. In noncollegial states (panel (e)), every player’s share is less than half, and thus, there

is no player who belongs to every decisive coalition.

Finally, we denote by XDi (XCi) the set of dictatorial (collegial) divisions in which player i is

the dictator (collegium player). Similarly, XD−i (XC−i) is the set of states in which player i is a

nondictatorial player (noncollegium player).

8As we shall see, the only part that the status quo bias has a nontrivial effect is Lemma 2. Without the status quo
bias, there exist multiple equilibria with different behavior in the states discussed in Lemma 2, but our result regarding
the long-run equilibrium outcome remains the same.

9player i has a veto if x < Ai(s) implies x < A(s).
10The term “tyranny” is borrowed from Jordan (2006). The definitions of dictatorial, oligarchic, collegial and

noncollegial states are consistent with the definitions of voting rules in the social choice literature except for the slight
modification introduced to make them mutually exclusive (Austen-Smith and Banks, 2000).

11Note that Definition 2 naturally extends to the case with a general voting threshold q , 1/2. In Section 4.2, we
discuss the equilibrium behavior under a supermajority rule.
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(a) Tyrannical states

1

3

2

(b) Dictatorial states

1

3

2

(c) Oligarchic states

1

3

2

(d) Collegial states

1

3

2

(e) Non−collegial states

1

3

2

Figure 1: Partitions of states in a three-player game

3 Equilibrium

In this model of endogenous power, the main analytical challenge is that players’ preferences

over different allocations are affected by future bargaining outcomes. Therefore, the equilibrium

behavior of a player in a given state potentially depends on the equilibrium profile in all other

states. Our solution is to first analyze states with the most concentrated power structure and then

proceed in descending order. As we shall see, in our model, the equilibrium power concentration

never decreases over time, and thus our approach significantly simplifies the analysis.

We begin by presenting preliminary results (Lemmas 1-3) that describe the players’ equilibrium

behavior in each state partition. Theorem 1 then establishes equilibrium existence and summarizes

the long-run outcomes and the dynamics in our equilibria.

The first lemma characterizes the unique equilibrium behavior in s ∈ XT ∪ XD ∪ XO.

Lemma 1 (Tyrannical, dictatorial, and oligarchic states). In any equilibrium, the following holds:

(i) For any s ∈ XT , the tyrant proposes the status quo.

(ii) For any s ∈ XD, the dictator proposes his tyrannical division, and the other players offer the

status quo share to the dictator and take the remainder.
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(iii) For any s ∈ XO, the oligarchs propose the status quo.

Furthermore, all proposals in (i), (ii) and (iii) are accepted by a decisive coalition.

Clearly, a tyrant—whose status quo share is the whole dollar—continues to hold all wealth and

power for all future periods. In dictatorial states, the dictator constitutes a decisive coalition by

himself. Therefore, he proposes to take the entire dollar and single-handedly passes the tyrannical

division. Other players reject the proposal but cannot block the transition to tyranny. If selected

to propose, non-dictators make proposals that guarantee the status quo share to the dictator and

assign the remainder to themselves. Therefore, there remain at most two players with a positive

share after a single round of bargaining in a dictatorial state. The dictator does not accept any

shares smaller than the status quo: Protecting his share is important not only for today’s wealth but

also for determining how rapidly he becomes a tyrant in the future.

For oligarchic states, there are two players who equally share the dollar. These oligarchs to-

gether have all proposal power, and each of them has a veto. Neither of the oligarchs can pass a

dictatorial division because the other oligarch opposes the plan. Additionally, they do not distribute

any share to the third member: Doing so would decrease either of the oligarchs’ expected utility.

Therefore, both oligarchs propose the status quo, and the oligarchy remains for all future periods.

Given that the equilibrium behavior is uniquely determined, we can derive the equilibrium

payoff in each state. It is straightforward that for any T , UT
i (s) = 1 for a tyrant in any s ∈ XT and

UT
i (s) = 1/2 for an oligarch in any s ∈ XO. For a dictatorial state, fix a state s ∈ XD in which

player d’s share is greater than 1/2. Given the equilibrium proposals in item (ii) of Lemma 1, any

nondictatorial player i , d receives a nonzero payoff only when he is selected as a proposer, in

which case he offers (1 − sd). Furthermore, once another player is selected to propose, player i

never becomes a proposer in future periods. Therefore, player i’s T -period expected utility in state

s is

UT
i (s) =

s1 + s1
∑T−1

t=1 (1 − sd)t

T
. (4)

Since
∑

k UT
j (s) = 1, the dictatorial player’s T -period expected utility in state s is

UT
d (s) = 1 −

∑
i,d

UT
i (s) = 1 −

1
T

T∑
t=1

(1 − sd)t. (5)
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Letting T → ∞ yields

lim
T→∞

UT
d (s) = 1, and lim

T→∞
UT

i (s) = 0, (6)

for any i , d. Note that the dictator’s expected utility in the limit converges to 1 even when his

status quo share is only slightly larger than 1/2. The dictator becomes a tyrant as soon as he

becomes a proposer and receives 1 for all subsequent periods. Similarly, a non-dictator’s expected

utility is zero in the limit even if his status quo share is only slightly smaller than 1/2.

The next lemma characterizes the players’ unique equilibrium behavior in collegial states. Re-

call that in collegial states, the player with a share of 1/2 is called a collegium player and all other

players are called noncollegium players.

Lemma 2 (Collegial States). In any equilibrium, proposal strategies in collegial states are as

follows: The collegium player proposes the status quo, and all noncollegium players propose an

oligarchic division with the collegium player and the proposer. All proposals are accepted by a

decisive coalition.

Lemma 2 implies that if the current state is collegial, then the environment always becomes

oligarchic in the long run. The crucial intuition is that the collegium player is never able to pass

a proposal that would make him a dictator. This is because the other players expect that any

dictatorial states would eventually lead to the tyrannical state, leading to zero long-run payoffs for

any nondictatorial player.

To obtain a brief intuition, let us analyze a noncollegium player’s incentive to accept a dictato-

rial proposal. According to the strategies described in Lemma 2, the T -period expected utility of a

noncollegium player i is recursively written as

UT
i (s) =

ui(s) + (T − 1)vT−1
i (s)

T
=

1
T

(
si + (T − 1)

UT−1
i (s) + si

2

)
.

With the initial condition U1
i (s) = si, it follows that UT

i (s) = si for any T. Then, combining this

with (6), we have

lim
T→∞

T (UT
i (s) − UT

i (y)) > 0 for all s ∈ XC−i and y ∈ XD−i .

In other words, noncollegium players strictly prefer the status quo s to all other player’s dictatorial
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divisions. In equilibrium, noncollegium players envision the possibility, however small it is, of

becoming an oligarch and receiving 1/2 for an infinite number of periods. In contrast, a dictatorial

state eventually becomes tyrannical with probability one. Thus, any possible short-term gain from

a dictatorial division is outweighed by its long-term cost. Given that any dictatorial division is

rejected, the status quo provides the collegium player the maximum payoff among all socially

acceptable divisions. Then the status quo bias assumption implies that he proposes to maintain the

status quo wealth and power distribution. As a result, players never invite a dictator or tyrant in

equilibrium, and the long-run outcome of a collegial state is a permanent oligarchy of two players.

It remains to characterize the equilibrium behavior in noncollegial states. The next lemma

describes the long-run equilibrium outcome when the initial state is noncollegial.

Lemma 3 (Noncollegial States). In any equilibrium, if the initial state is noncollegial, the long-run

outcome is a permanent oligarchy of two players.

Lemmas 1 (item (iii)), 2 and 3 imply that unless the majority of the initial bargaining power

is concentrated in a single player, bargaining with endogenous power never reaches a dictatorship

and always ends in an oligarchy of two players.

The first part of the proof of Lemma 3 shows that there cannot be a direct transition from XNC

to either XD or XT . The key intuition is that in a noncollegial state, a player can exchange his

bargaining position with any other player through his own proposal. To see this, consider a state

s ∈ XNC and two players i, j ∈ I with si, s j > 0. Recall that the status quo s is unanimously

accepted. Now, consider a proposal z such that z j = si, zi = s j, and zk = sk for all k , i, j. By

symmetry, z is accepted by all players k , i, j. Then, since at least one player i or j prefers z to the

status quo, z is socially accepted. Thus, player j can always propose z and successfully exchange

his bargaining position with player i.

Now, suppose to the contrary that there exists player i ∈ I who successfully passes his dicta-

torial proposal. Then, all other players also envision such a possibility of becoming a dictator by

exchanging bargaining position with player i. Therefore, they strictly prefer the status quo to the

dictatorial proposal made by player i, leading to a contradiction.

The first part implies that the best proposal a player can make is either oligarchic or collegial,

in which the proposer takes 1/2, and that any noncollegial outcome is strictly suboptimal. In the

second part of the proof, we show that there exists at least one player who is able to successfully

pass either an oligarchic or a collegial offer by consolidating the shares among a certain decisive

12



coalition. Therefore, any noncollegial state eventually becomes oligarchic, and the bargaining

power becomes concentrated in two players.

We are now prepared to present the main result of the paper.

Theorem 1. There exists an equilibrium of the game. In any equilibrium, the following holds:

(i) If the initial state is dictatorial or tyrannical, the long-run outcome is a permanent tyranny

of a single player. The dictator or tyrant in the initial state becomes a permanent tyrant.

(ii) If the initial state is not dictatorial or tyrannical, the long-run outcome is a permanent

oligarchy of two players who equally share all wealth and power. If the initial state is oligarchic,

the oligarchy perpetuates. If the initial state is collegial, the collegium player and the first noncol-

legium proposer constitute the permanent oligarchy.

Given Lemmas 1-3, it suffices to demonstrate the existence of the equilibrium to prove Theo-

rem 1. Moreover, Lemmas 1-3 characterize the unique equilibrium profile in any s ∈ X\XNC. In

Appendix B, we show its existence by constructing a candidate profile in XNC and verifying its

optimality.

Theorem 1 implies that if the players do not discount the future, the outcome of repeated bar-

gaining with endogenous status quo and bargaining power eventually stabilizes into either tyranny

or oligarchy. The long-run outcome depends on the initial distribution of power. If there is a single

player who is overwhelmingly stronger than the other players at the beginning (x0 ∈ XD ∪ XT ), the

powerful player eventually becomes a tyrant. In contrast, if the players are initially at a relatively

equal position to each other (x0 ∈ XO ∪ XC ∪ XNC), there is no tyranny in the long run: Instead, an

oligarchy with two players emerges and perpetuates. Theorem 1 also identifies who constitutes the

permanent oligarchy if the initial state is oligarchic or collegial.

For noncollegial states, Theorem 1 does not specify which players become permanent oli-

garchs. It is straightforward that if there are three players with positive shares, the first proposer

always induces the permanent oligarchy with himself and one of the other players. However, the

following example demonstrates that if there are more than three players, the first proposer may

fail to become an oligarch.

Example 1. Consider a noncollegial state s = ( 4
13 ,

4
13 ,

4
13 ,

1
13 ). Consider a proposal strategy µ̂(s)

such that for i, j = 1, 2, 3,
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µ̂i(y j|s) =


1
2 if j , i,

0 if j = i,

where y1 = ( 1
2 ,

1
2 , 0, 0), y2 = (0, 1

2 ,
1
2 , 0), y3 = ( 1

2 , 0,
1
2 , 0). Note that we have not specified µ̂4(s).

Recall that by Lemma 3, the highest payoff a player can achieve in any noncollegial state is 1/2.

Since yi (i = 1, 2, 3) gives each coalition member a payoff of 1/2, it is accepted by a decisive

coalition, and thus it is the proposer’s optimal proposal. Furthermore, under µ̂(s), the next period’s

state is oligarchic, which is an absorbing state. Therefore, there must exist an equilibrium in which

the proposal strategy for players 1-3 are given as µ̂(s).

Note that under µ̂(s), any player i = 1, 2, 3 becomes an oligarch with probability of at least

8/13. This provides a lower bound on player i’s T -period expected utility at state s:

UT
i (s) ≥

1
T

(
4

13
+ (T − 1)

4
13

)
=

4
13
.

Now we claim that at state s, player 4 cannot guarantee himself a place in the permanent

oligarchy, even if he is selected as a proposer. To see this, note that player 4 needs at least two

other players to form a decisive coalition, and thus player 4 offers at least 2UT
i (s) ≥ 8/13 to the

other players. However, the remainder is strictly less than half, which implies that player 4 cannot

be an oligarch nor a collegium player in the next period by his proposal.�

In the constructed equilibrium in Appendix B, it takes at most two state transitions for any

noncollegial state to become either oligarchic or collegial.12 Thus, either the first or the second

proposer secures a place in the permanent oligarchy. It remains to be seen whether the same

property holds for any equilibrium of the game.

Considering the connection between the canonical Baron-Ferejohn model and the model ana-

lyzed in this article, the uniqueness of equilibrium and expected utility is of particular interest. As

the following example demonstrates, however, there generally exist multiple equilibria associated

12Note that in our equilibrium, a noncollegium state may experience multiple state transitions before it becomes
dynamically stable (oligarchic). This property contrasts with Acemoglu et al. (2012), who predict that any state
becomes dynamically stable by a single state transition. This difference is due to stochastic proposer selection assumed
in our model, in contrast to the deterministic proposer in Acemoglu et al. (2012). For example, consider a state
s′ = (1/4, 1/4, 1/4, 1/4). Note that a direct transition from s′ to an oligarchic state is not possible. Moreover, if the
proposer sequence is deterministic in any state, then s′ would be dynamically stable as there always exist some voters
who lose the chance to propose in the new state. However, stochastic proposer selection can distribute the benefits of
state transition to multiple voters, enabling a state transition from s′ to a noncollegium state with three players.
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with different expected utilities.

Example 2. Recall that in any equilibrium, if the current state is noncollegial with three positive-

share players, then the next period’s state must be in XO in which the proposer becomes an oligarch.

Moreover, since any s ∈ XO is an absorbing state, any oligarchic division by the proposer could

constitute an equilibrium, potentially implying equilibrium multiplicity.

For example, consider I = {1, 2, 3} and a noncollegial state s = ( 4
9 ,

3
9 ,

2
9 ). Let µ(s) and µ̂(s) be

two proposal strategies defined in s such that

µi(s) = yi,

µ̂1(s) = µ̂2(s) = y1, µ̂3(s) = y3,

where y1 = ( 1
2 ,

1
2 , 0), y2 = (0, 1

2 ,
1
2 ), y3 = (1

2 , 0,
1
2 ). Let σ and σ̂ be the proposal strategies where σ

assigns µ(s) and σ̂ assigns µ̂(s). Then since any of yi leads to permanent oligarchy, both σ and σ̂

are the equilibrium proposal strategies. Furthermore, player 1’s expected utilities in state s under

σ and σ̂, respectively, yields

UT,σ
1 (s) =

1
T

(
4
9

+ (T − 1)
1
2

(
4
9

+
2
9

))
=

1
3

+
1

9T

UT,σ̂
1 (s) =

1
T

(
4
9

+ (T − 1)
1
2

)
=

1
2
−

1
18T

,

implying that UT,σ
1 (s) , UT,σ̂

1 (s) when T → ∞.�

The multiplicity of equilibria stems from the endogenous limit on socially acceptable proposals

in noncollegial states. Specifically, a proposer in noncollegial states cannot take more than half of

the total share because the other players never approve dictatorial proposals. However, there may

exist multiple proposals (and infinite mixtures of those) in which the proposer’s share is 1/2. In

Example 2, player 1 can choose either player 2 or 3 as a coalition partner with any probability in

his optimal proposal. Nevertheless, it should be emphasized that if a bargaining environment is

initially noncollegial, the subsequent bargaining process always consolidates the wealth and power

into a permanent oligarchy of two players.
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4 Discussion

In this section, we discuss the role of the two main assumptions of our model.

4.1 Discounted Payoffs

One of the most significant assumptions of our main model is the no discounting of the future

payoffs. To see the role of discounting, consider the other extreme case in which the players are

completely myopic. Then, each player’s expected utility is simply his status quo share, Ui(s) = si,

and thus player i approves any proposal y with yi ≥ si. This myopic behavior invites a dictator

even when the initial state is not dictatorial. For instance, if the initial state is ( 1
3 ,

1
3 ,

1
3 ), the first

proposer immediately becomes a dictator. An interesting question concerns the case between the

two extreme ones: Can players with discounted payoffs prevent the transition to dictatorship when

the initial power distribution is relatively equal?

To answer this question, let us first define the game with discounted payoffs. The bargaining

procedure is analogous to the main model in Section 2. A group I = {1, . . . , n} of players divides a

dollar in each period t = 1, . . . ,∞. A state s ∈ X̄ ⊆ X in each period represents the reversion point,

recognition probability and voting weights (later, we formally define the set of states X̄). At the

beginning of each period, a randomly selected player makes a proposal x ∈ X̄, and then each player

votes for or against the proposal. The proposal x is passed and becomes the next period’s state if it

obtains more than half of the total voting weights; the status quo s remains in effect otherwise. In

contrast to the main model, the players discount the future by a common factor δ < 1.

Let σ = {(µi, Ai)}i∈I be a Markov strategy profile defined in Section 2. Then, player i’s expected

utility Uσ
i (s) in state s is recursively defined as

Uσ
i (s) = (1 − δ)si + δ

n∑
j=1

s j

∑
y

µ j(y|s)
(
Uσ

i (y)1A(s)(y) + Uσ
i (s)1X\A(s)(y)

)
,

where A(s) is the social acceptance set in state s and 1 is the indicator function. The equilibrium

notion is the same as defined in Definition 1, with x �i,σ y if and only if Uσ
i (x) ≥ Uσ

i (y).

Recall that in the main model, noncollegium players never accept a dictatorial offer in equi-

librium. In the model with discounting, however, Proposition 1 below states that the equilibrium

exhibits the same behavior only if a noncollegium player’s status quo share is not too small relative

to the discounting factor. If a player’s current share is too small, the short-term gain from accepting
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a dictatorial offer may outweigh the long-term cost.

To see this, let us first calculate the players’ payoffs in a dictatorial state y ∈ XD1 with y1 > 1/2

and yi = 1 − y1 for some i , 1. Then, the expected payoff of the dictator (player 1) satisfies

U1(y) = (1 − δ)y1 + δ(y1 + (1 − y1)U1(y)).

Using this, we calculate the payoffs of player 1 and i, which are

U1(y) =
y1

1 − δ(1 − y1)
, Ui(y) = 1 − U1(y) =

(1 − δ)(1 − y1)
1 − δ(1 − y1)

. (7)

Now, let us verify the condition in which the profile in Lemma 2 holds as an equilibrium. Fix any

s ∈ XC1 . Then, given the profile in Lemma 2, the expected payoff of a noncollegium player i , 1

in state s is recursively written as

Ui(s) = (1 − δ)si + δ

(
si

2
+

Ui(s)
2

)
,

which simply leads to Ui(s) = si. Combining this with (7) implies that player i rejects player 1’s

dictatorial offer y, with yi = 1 − y1, if

s1 ≥
(1 − δ)(1 − y1)
1 − δ(1 − y1)

.

Since y1 > 1/2, player i rejects any dictatorial offer if

si >
1 − δ
2 − δ

. (8)

The above condition shows the tradeoff associated with rejecting the dictatorial offer. The left-

hand side of (8) captures player i’s payoff from the status quo. Under the profile in Lemma 2,

player i could become a permanent oligarch with a probability proportional to the current share. In

contrast, the right-hand side of (8) is his maximum payoff from accepting a dictatorial offer. Note

that the right-hand side converges to 0 as δ → 1: Even when player i receives a share just below

1/2 today, he will eventually lose the entire share to the dictator in the subsequent bargaining. For

any δ < 1, however, (8) is violated for sufficiently small si: A player with a small status quo share

may find it difficult to resist a dictatorial offer, and thus a collegium state may become dictatorial.
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With this intuition, let us provide a condition under which the results in Section 3 extend to the

model with discounted payoffs. Let I+
s = {i ∈ I : si > 0} be the set of players who have a nonzero

share in state s. Then, for κ ≥ 0, define Xκ ⊆ X as

Xκ = {s ∈ X : si > κ for all i ∈ I+
s }.

Let Γκ(δ) be our bargaining game with endogenous power and discounted payoffs in which the set

of states X̄ = Xκ and the discounting factor is δ.

Proposition 1. For any δ < 1, then there exists κ̄ > 0 such that for any κ > κ̄, any equilibrium in

Γκ(δ) satisfies the following properties:

1. For any tyrannical, dictatorial, oligarchic, and collegial states, the equilibrium behavior is

uniquely determined as one described in Lemmas 1 and 2.

2. For any noncollegial states, the equilibrium long-run outcome is a permanent oligarchy.

Moreover, κ̄ → 0 as δ goes to one.

If the status quo share of any player—if they have a nonzero share—is higher than a certain

threshold, then they have a sufficiently large long-term incentive to reject any dictatorial offer. This

‘minimum-share’ assumption can be explained as a threshold on the player’s wealth to have any

decision-making power in the bargaining process.

Our minimum-share restriction on X is closely related to the ‘finite policy space’ assumption of

Diermeier and Fong (2011). They consider a repeated bargaining game with a persistent agenda-

setter and show that the agenda-setter’s power is limited under the endogenous status quo. In their

result, the discrete policy space assumption is crucial, as it prevents voters from choosing a policy

with a slightly worse long-run outcome when it provides a large short-run benefit. In our model, a

similar issue arises for a sufficiently small si.13

If we do not impose the minimum-share restriction on X, then the equilibrium outcome with

discounted payoffs would be more likely to feature a long-run tyranny than the model with no

discounting. For example, if the initial state is in XC∩XC
κ , the collegium player eventually becomes

a tyranny with probability one. However, when the initial state is in Xκ, other players would have

13Indeed, the results in Proposition 1 can also be obtained in a model with a properly discretized state space. For a
detailed analysis, please see the previous version of this paper (Jeon, 2015).
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stronger incentives to reject any offer x ∈ XC
κ , knowing that accepting the offer may lead to a long-

run tyranny. This intuition implies that Theorem 1 may be robust under discounted payoff as long

as the initial state is in Xκ. It remains to be seen whether this intuition holds for any equilibrium.

4.2 General Voting Thresholds

Thus far, we have maintained the majority voting rule assumption, raising questions regarding

its relationship with the equilibrium outcome of a perpetual oligarchy. This section analyzes the

equilibrium under general supermajority voting thresholds in a three-player bargaining game. We

show that as the voting thresholds increase, the long-run equilibrium outcome is more likely to

be equitable, and the non-tyranny long-run outcomes become more robust to a perturbation in the

environment.

Consider the main model in Section 2 with three players (|I| = 3) who do not discount future.

Assume that every proposal needs strictly more than q ∈ [1/2, 1) of the total voting weights. Note

that the partitions of states given in Definition 2 naturally extend to the model with a general voting

threshold. Let Xq
T , X

q
D, X

q
O, X

q
C and Xq

NC be the corresponding set of states in a model with a voting

threshold q. Importantly, the set of oligarchic states Xq
O may consist of two types: (a) one in which

two players form an oligarchy and (b) one in which each of the three players has veto power.

Define Xq
2 and Xq

3 (Xq
3 ⊂ Xq

2 ⊂ X) as

Xq
2 = {x ∈ X|xi ≤ q for all i}, and Xq

3 = {x ∈ X|xi ≥ 1 − q for all i}.

It is easy to check that Xq
2 = X\(Xq

T ∪ Xq
D) and that Xq

3 is a strict subset of Xq
O in which each of three

players has veto power.

The next proposition identifies the equilibrium long-run outcome depending on the initial state.

Proposition 2. In any equilibrium with a voting threshold q, the following holds:

(i) For any x0 ∈ X\Xq
2 , the long-run outcome is tyranny.

(ii) For any x0 ∈ Xq
2\X

q
3 , the long-run outcome is an oligarchy in which two players divide the

entire share.

(iii) For any x0 ∈ Xq
3 , the initial state becomes the long-run outcome, an oligarchy in which

each of three players has veto power.

Figure 2 illustrates how Xq
2 and Xq

3 change depending on the value of q. First, Xq
2 expands as
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(a) q = 0.6 (b) q = 0.75

Figure 2: A graphical illustration of Proposition 2 for different values of q. If x0 ∈ X\Xq
2 (white

region), then the long-run outcome is a tyranny (a vertex). For any x0 ∈ Xq
2\X

q
3 (striped region), the

state eventually becomes an oligarchic state in which two players share all the wealth (thick red
lines on the edges of X). Any initial state in Xq

3 (dark region) becomes a long-run outcome.

q increases, and thus, the set of initial states that become a tyranny shrinks. Intuitively, under a

higher voting threshold, it becomes more difficult for any player to solely control the decision-

making process. Second, the set Xq
3 appears when q becomes greater than 2/3. For any s ∈ Xq

3 ,

a proposal is passed only under unanimous support. Thus, any new proposal is rejected because

it would harm at least one player, and the status quo remains as the long-run outcome. Note that

almost every status quo becomes the long-run outcome (i.e., X\Xq
3 shrinks) as q converges to one.

Our analysis in this section adds to the discussion regarding the robustness of the long-run

outcome. In the main model, a small perturbation from oligarchy could result in a party’s share

strictly greater than 1/2, eventually leading to tyranny. However, the long-run oligarchy outcomes

in Proposition 2 (thick red lines on the edges of X in Figure 2) generically do not have such

property, making them more robust to perturbation.14

5 Concluding Remarks

The results of this paper suggest the prevalence of social inequality when it translates to ability to

affect rules on resource distribution in the future. In our model, players who do not discount future

successfully resist dictatorship. However, the alternative is a perpetuating oligarchy, which still

exhibits a severe concentration of power. Most players lose the opportunity to advance their in-

terests because they have no proposal power; having zero voting weights means adverse outcomes

14More precisely, for any oligarchic state in which no oligarch has a share exactly equal to q, there is a sufficiently
small ε > 0 such that after any state perturbation of size less than ε, each oligarch still has veto power.
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can never be changed. In other words, all but two players end up being politically irrelevant.

Democratization can be perceived as an unexpected shock to a society that disturbs and redis-

tributes existing economic and political power configurations. Our model predicts that even after a

field-leveling institutional shock, society eventually transitions back into a state with concentrated

power. This result is consonant with the earlier cautions that democratic projects may serve to

legitimately protect the privileged or end up merely replacing one elite group with another:

Note that partners to such pacts extract private benefits from democracy and that they

protect their rents by excluding outsiders from competition. Democracy turns out to be

a private project of leaders of some political parties and corporatist associations, and

oligopoly in which leaders of some organizations collude to prevent outsiders from

entering. (Przeworski, 1992, p.124)

Our results in Section 4.2 suggest that societies that commit to a supermajority voting rule could

maintain redistributed political power. However, whether this intuition is robust when the voting

rule itself is endogenously determined remains to be seen.

We conclude by suggesting potential future research directions. First, it would be interesting

to analyze the role of two innovations of the paper—endogenous voting weights and recognition

probabilities—separately. For example, it is easy to see that Lemmas 1 and 2 hold in a model with

endogenize voting weights but fixed recognition probabilities. In the equilibrium, the players with

nonzero voting weights would always reject offers from zero-share players. However, it is not clear

if we could obtain the same equilibrium characterization result for noncollegial states. Also, we

conjecture that only the endogenous recognition probability may lead to an unequal outcome in

the long run, given that the zero-share players accept a proposal when they are indifferent.

Second, one might consider a model in which the inequality of wealth and power negatively

affects economic productivity (the amount of total available resources). In this case, players need

to consider not only the long-term stability of their political power but also future productivity

change. An oligarchy would still enable the oligarchs to retain their power but may not maximize

their long-term payoffs. Third, existing bargaining models show that risk aversion is one of the

primary sources that induce players to compromise. In our model, investigating the effect of risk

aversion on the possibilities of stable coalitions larger than oligarchies represents be an interesting

future research agenda.
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Appendix
The Appendix consists of two parts. Appendix A presents all omitted proofs except that of Theo-

rem 1. Appendix B proves Theorem 1 by constructing an equilibrium profile for s ∈ XNC.

A Omitted Proofs

Proof of Lemma 1. Part (i): Shown in the main text.

Part (ii): Assume without loss of generality that player 1 is the dictator. Note that given part (i),

player 1 strictly prefers his tyrannical share over any other bargaining outcome. Moreover, for any

state s ∈ XD1 , the social acceptance set coincides with player 1’s acceptance set, i.e., A(s) = A1(s).

Therefore, in any equilibrium, in any state s ∈ XD1 , player 1 offers his tyrannical share and accepts

the proposal himself.

Given this, we claim that in any equilibrium σ∗, for any i ∈ I, y ∈ X and s ∈ XD1 ,

lim inf
T→∞

T (Uσ∗,T
i (y) − Uσ∗,T

i (s)) = lim sup
T→∞

T (Uσ∗,T
i (y) − Uσ∗,T

i (s)), (9)

whenever the limits exist. Observe that in any equilibrium, from any s ∈ XD1 , the equilibrium

outcome has an absorbing state in which player 1 is tyranny. This is because player 1 would reject

any offer that would result in a non-tyrannical long-run state, which is player 1’s most preferred

outcome. Therefore, the limits in (9) exist if and only if the state y induces player 1’s tyrannical

long-run outcome, and in this case the inferior and superior limits coincide.

It remains to characterize the equilibrium offers of non-dictatorial players. We partition XD1

into two disjoint sets X1
D1

and X2
D1

, where X1
D1

(X2
D1

) is the set of states in which one player (two or

more players) other than player 1 has a nonzero share.

First, consider a state in X1
D1

. Without loss of generality, assume that player 2 has a positive

share, and fix a state s′ = (s′1, 1 − s′1, 0, . . . , 0) with s′1 > 1/2. We need to show that player 2

offers the status quo at state s′ in any equilibrium. Suppose to the contrary that there exists an

equilibrium σ∗ in which player 2 offers some y , s′ at state s′, and that player 1 accepts y. Since it

must be that y also induces the player 1’s tyrannical long-run outcome, (9) holds. Our status-quo

26



bias assumption implies that player 2 must strictly prefer y to s′, that is,

lim
T→∞

T (Uσ∗,T
2 (y) − Uσ∗,T

2 (s′)) > 0, (10)

by overtaking criterion (by (9), we replace the lim inf with lim).

Recall from (5) that if player 2 always offers the status quo s′, then he obtains the payoff of

UT
2 (s′) ≡ 1

T

∑T
t=1(a− s′1)t. Similarly, player 1 can guarantee himself a payoff of UT

1 (s′) ≡ 1−UT
2 (s′)

by always rejecting any offer x , s′. Then it must be that limT→∞ T (Uσ∗,T
1 (s′) − UT

1 (s′)) ≥ 0 and

limT→∞ T (Uσ∗,T
2 (s′) − UT

2 (s′)) ≥ 0. Combining with (10), we have

lim
T→∞

T (Uσ∗,T
1 (s′) − Uσ∗,T

1 (y)) ≥ lim
T→∞

T (UT
1 (s′) − Uσ∗,T

1 (y))

≥ lim
T→∞

T (Uσ∗,T
2 (y) − UT

2 (s′))

≥ lim
T→∞

T (Uσ∗,T
2 (y) − Uσ∗,T

2 (s′)) > 0,

where the second inequality is from the fact that Uσ∗,T
1 (y)+Uσ∗,T

2 (y) ≤ 1 and UT
1 (s′)+UT

2 (s′) = 1 for

all y ∈ X and T . However, the above inequality implies that player 1 would reject y, a contradiction.

The above discussion implies that for any s ∈ X1
D1

, player 1’s T -period equilibrium payoff is

given by (5): with a simplified notation (omitting σ∗), we have

UT
1 (s) = 1 −

1
T

T∑
t=1

(1 − s1)t. (11)

Note that UT
1 (s) is continuous and monotonically increasing in s1.

Next, consider a state in X2
D1

. Fix a state s′′ ∈ X2
D1

with s′′1 > 1/2. Define Ξ(s1) as a subset of

X1
D1

in which player 1’s share is s1.

We claim that player 1 is indifferent between s′′ and any s ∈ Ξ(s′′1 ). It is clear that player 1

weakly prefers s′′ to s, because he can guarantee the payoff of UT
1 (s) (equation 11) in state s′′ by

always rejecting other players’ offers. Now suppose to the contrary that player 1 strictly prefers s′′

to s. Then it must be that in state s′′, some player i , 1 makes an offer y such that player 1 strictly

prefers y to s′′. Let s†1 ∈ (s′′1 , 1] be such that for any z ∈ Ξ(s†1), we have limT→∞ T (UT
1 (z)−UT

1 (y)) =

0. Note that the claim associated with equation (9) enables us to use lim instead of lim inf, and that

the continuity of (11) in s1 guarantees the existence of s†1.

By construction, player 1 weakly prefers z to y. Moreover, we can show that player i also
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weakly prefers z to y: Since UT
1 (z) + UT

i (z) = 1 and UT
1 (y) + UT

i (y) ≤ 1 for all T ,

lim
T→∞

T (UT
i (z) − UT

i (y)) ≥ lim
T→∞

T (UT
1 (y) − UT

1 (z)) = 0,

where the last equality comes from the definition of s†1 and z. However, for sufficiently small ε > 0,

the continuity of (11) implies that player 1 strictly prefers any offer in Ξ(s†1 − ε) to s′′. Therefore,

player i has a profitable deviation (from offering y) to offering s†1 − ε to player 1 and remainder to

himself, leading to a contradiction.

The above analysis implies that player 1 accepts any offer x with x1 ≥ z1. Given this, any player

j , 1 finds it strictly optimal to offer x with x1 = z1 and x j = 1 − z1, showing the desired result.

Part (iii): Consider a state s ∈ XO where players i and j form the oligarchy. Note that either player

can guarantee himself a payoff of 1/2 by always offering the status quo and rejecting the other’s

offer. Now suppose to the contrary that there exists an equilibrium σ∗ in which player j—without

loss of generality—offers some w , s. Since player j must strictly prefer w to s, we have

lim inf
T→∞

T
(
Uσ∗,T

j (w) −
1
2

)
> 0. (12)

However, since Uσ∗,T
i (w) + Uσ∗,T

j (w) ≤ 1 for all T ,

lim inf
T→∞

T
(
Uσ∗,T

i (w) −
1
2

)
≤ lim inf

T→∞
T

(
1
2
− Uσ∗,T

j (w)
)

= − lim sup
T→∞

T
(
Uσ∗,T

j (w) −
1
2

)
< 0,

where the last inequality is from (12). Therefore, player i has strict incentive to reject w, leading to

a contradiction. �

The following claim is useful in the proofs of Lemmas 2 and 3.

Claim 1. In any equilibrium, there is no direct transition from a noncollegial state to either a

dictatorial or tyrannical state.

Proof of Claim 1. Suppose on the contrary that there exists an equilibrium and a state s ∈ XNC

in which at least one player proposes and passes a dictatorial division y with the support of a

decisive coalition. Without loss of generality, let player 1 be the proposer and player 2 belong to
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the decisive coalition that accepts y. Also, we assume that y gives a dictatorial share to player 1;

slightly modifying the below proof shows the desired result if y ∈ XDi for any i.

First, consider the case in which player 1 uses a pure strategy at s1. Observe that player 1 is

selected as a proposer with probability s1, in which case he proposes y with probability one. By

the definition of the continuation value (equation 3), this implies that

vT
1 (s) ≥ s1UT

1 (y) (13)

for all T . Next, as described in the main body, a permutation of s in which only s1 and s2 are

switched must be in the social acceptance set. This provides a lower bound on player 2’s continu-

ation payoff: It must be that vT
2 (s) ≥ s2UT

1 (s) for all T .

From (4), player 2’s payoff from accepting y is

UT
2 (y) =

y2 + y2
∑T−1

t=1 (1 − y1)t

T
.

However, his payoff from the status quo is

UT
2 (s) =

s2 + (T − 1)vT−1
2 (s)

T

≥
s2 + (T − 1)s2UT−1

1 (s)
T

=
s2 + s2(s1 + (T − 2)vT−2

1 (s))
T

≥
s2 + s2(s1 + (T − 2)s1UT−2

1 (y))
T

=
s2 + s2

(
s1 + (T − 2)s1

(
1 − 1

T−2

∑T−2
t=1 (1 − y1)t

))
T

,

where the last equality is from (5). Since limT→∞UT
2 (s) = s1s2 > 0 and limT→∞UT

2 (y) = 0, player 2

strictly prefers s to y, a contradiction to the supposition that player 2 accepts y.

Now, suppose that player 1 uses a mixed strategy at s1, i.e., player 1 proposes some z , y

with positive probability. Then (13) becomes vT
1 (s) ≥ infS upport(µ1(s)) s1UT

1 (y). Since player 1 is

indifferent between any z ∈ µ1(s) and y, we have limT→∞(UT
1 (y)−UT

1 (z)) = 0, and thus an argument

similar to above shows that player 2 strictly prefers s to y, leading to a contradiction. �

Proof of Lemma 2. Without loss of generality, assume that player 1 is the collegium player (i.e.,
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s1 = 1/2). The following claim is the main element of the proof:

Claim 2. In any equilibrium, at any state in XC1 , player 1 never proposes x ∈ XD1 ∪ XT1 .

Proof of Claim 2. It is straightforward that player 1’s tyrannical share is never accepted. Now,

suppose to the contrary that there exists an equilibrium and a collegial state s ∈ XC1 such that

player 1 proposes y ∈ XD1 that is accepted by at least one player other than player 1. From (5),

player 1’s payoff from outcome y is

UT
1 (y) = 1 −

1
T

T∑
t=1

(1 − y1)t.

Let UT
−1(y) = 1−UT

1 (y) be the sum of payoffs of all players i , 1 under y. Then, limT→∞ TUT
−1(y) =

(1 − y1)/y1.

It is clear that player i , 1 never proposes player 1’s tyrannical share. Also, Claim 1 implies

that player 1 must reject any noncollegial offer. Finally, player 1 rejects any oligarchic offer, as

accepting it would lead to permanent oligarchy (Lemma 1), while in state s, player 1 will be a

tyrant with probability one. Therefore, it suffices to analyze the following two cases:

Case 1: Some player j , 1 proposes a dictatorial share in state s. Let z be player 1’s most

preferred share among the equilibrium offers made by i , 1. Then, player 1’s continuation payoff

is bounded by

vT
1 (s) ≤

UT
1 (y)
2

+
UT

1 (z)
2

.

Since z must be a dictatorial share, we have limT→∞ TUT
−1(z) = (1 − z1)/z1.

We derive a contradiction by showing that player j has an incentive to deviate from offering z.

To see this, consider player 1’s incentive to accept z. Comparing UT
1 (z) and UT

1 (s), we have

lim
T→∞

T (UT
1 (z) − UT

1 (s)) ≥ lim
T→∞

TUT
1 (z) −

(
1
2

+ (T − 1)
(
UT−1

1 (y)
2

+
UT−1

1 (z)
2

))
≥ lim

T→∞
T (1 − UT

−1(z)) −
(
1
2

+ (T − 1)
(
1 − UT−1

−1 (y)
2

+
1 − UT−1

−1 (z)
2

))
= lim

T→∞
−TUT

−1(z) +
1
2

(
1 + (T − 1)

(
UT−1
−1 (y) + UT−1

−1 (z)
))

=
1
2

(
1 +

1 − y1

y1
−

1 − z1

z1

)
,

which is strictly positive for any y1, z1 > 1/2. Therefore, player 1 strictly prefers to accept z.
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However, then player j has a profitable deviation to slightly lower player 1’s share and increase

his share (recall from (11) that players’ payoffs in dictatorial states are continuous), leading to a

contradiction.

Case 2: All player i , 1 proposes a collegial share in state s. In this case, first we show that for

any x ∈ XC1 and y ∈ XD1 , player 1 strictly prefers y to x. Let ŪT
1 (XC1) = supx∈XC1

UT
1 (x). Note

that our result in Case 1 implies that all player i , 1 proposes a collegial share at any x ∈ XC1 .

Therefore,

ŪT
1 (XC1) ≤

1
2 + 1

2 (T − 1)(ŪT
1 (XC1) + UT−1

1 (z))
T

,

for some z ∈ XD1 . Simplifying, using the fact that UT
−1(x) = 1 − UT

1 (x), and taking the limit yield

lim
T→∞

TUT
−1(x) ≥ 1 + lim

T→∞
TUT

−1(z) > 1,

for any x ∈ XC1 . However, limT→∞ TUT
−1(y) < 1 for any y ∈ XD1 , player 1 strictly prefers y to x.

Suppose that player k accepts player 1’s dictatorial offer y at state s. Also, assume that player k

offers w ∈ XC1 . Then it must be that limT→∞ TUT
k (s) = limT→∞ TUT

k (y) = (1 − y1)/y1. Moreover,

the above argument implies that for a sufficiently small ε > 0, player 1 would accept an offer

z ∈ XD1 in which z1 = 1/2 + ε and zk = 1 − z1. Recall that limT→∞ TUT
k (z) = (1 − z1)/z1. Since

player k must find it optimal to make a collegial offer, it follows that limT→∞ TUT
k (w) ≥ 1.

It is clear that player 1 offers a dictatorial offer at state w; otherwise, player 1 would reject the

transition to w. Moreover, player 1 never offers a nonzero share to player k at state w, since player k

strictly prefer w to any dictatorial offer. Therefore,

UT
k (w) ≤

wk + (T − 1)( 1
2 · 0 + 1

2 · U
T−1
k (w))

T

Simplifying and taking the limit yield

lim
T→∞

TUT
k (w) ≤ 2wk < 1.

However, this contradicts to the above argument that limT→∞ TUT
k (w) ≥ 1. �

Claim 2 implies that player 1’s expected payoff is no more than 1/2. Since his reservation

value is 1/2, player 1 will always offer the status quo. For player i , 1, the optimal outcome is an

oligarchy of player 1 and i, which player 1 will accept. �

31



Proof of Lemma 3. Claim 1 implies that the optimal outcome for any player in a noncollegial

state is to be a collegial or oligarchic player. In the remainder of the proof, we show that for any

noncollegial state, there exists a player whose collegial or oligarchic proposal is accepted by a

decisive coalition. Therefore, for any noncollegial state, there is a positive probability that the next

period’s state becomes either collegial or oligarchic. Combining this with Lemma 2, we have our

desired result.

Fix any s ∈ XNC, and let m ≤ n players have positive status quo shares. Align the indices of

players such that s1 ≥ . . . ≥ sm > 0 and si = 0 for i = m + 1, . . . , n. If si = s j for all i, j ≤ m, it

is clear that every i ≤ m can take 1/2 in a player’s proposal by symmetry and the number of other

players’ votes necessary to pass a proposal.

Now suppose that si , s j for some i, j ≤ m, which implies that s1 > sm. Let

h = min{k :
∑
i≤k

si ≥
1
2
}

be the smallest index such that players 1 to h form a decisive coalition. If
∑

i≤h si > 1/2, player 1

has at least two disjoint sets of coalition partners to form decisive coalitions: C1 = {2, . . . , h} and

C2 = {h + 1, . . . ,m}. In other words,

s1 +
∑
i∈C1

si >
1
2
, and s1 +

∑
i∈C2

si >
1
2
.

Since
∑

i∈I UT
i (s) = 1, either

∑
i∈C1

UT
i (s) ≤ 1/2 or

∑
i∈C2

UT
i (s) ≤ 1/2 or both for any T . Thus,

player 1 needs to pay less than or equal to 1/2 of the total expected utility to the other players to

pass his proposal (recall from Section 3 that UT
i (s) = si for any T and any oligarchic or collegial

states, and thus player 1 can continuously distribute the utility). Therefore, there exists a proposal

that makes player 1 either a collegium player or an oligarch in the next period, which player 1 finds

strictly optimal.

If
∑

i≤h si = 1/2, player 1 can again form decisive coalitions with the following two disjoint

sets of players: C1 = {2, . . . , h,m} and C2 = {h + 1, . . . ,m− 1} (C2 ∪ {i} is a decisive coalition since

s1 > sm), and the same argument above applies. Accordingly, any noncollegial state becomes a

collegial or oligarchic state with a positive probability. By Lemma 2, such a process results in an

oligarchy in the long run. �

Proof of Proposition 1. Let Xa,κ = Xa∩Xκ (a = T,D,O,C,NC) be the partitions of the state space
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in Xκ. Below, we show the desired results in each state partition.

Tyrannical, dictatorial, and oligarchic states: Demonstrating the statement for XT,κ, XD,κ and

XO,κ is straightforward. Indeed, a stronger result can be obtained for these states: for any δ < 1

and κ ≥ 0, the equilibrium behavior of Γκ(δ) in XT,κ, XD,κ and XO,κ is identical to that described in

Lemma 1.

Collegial states: To prove the statement for collegial states, we replicate our argument in the

proof of Lemma 2. Assume without loss of generality that player 1 is the collegium player. First,

we claim that a collegium player never offers a dictatorial share in any equilibrium. Suppose to

the contrary that there exists an equilibrium in which for some state s′ ∈ XC1,κ, player 1 makes

y ∈ XD1,κ that is accepted by a decisive coalition. Similar to the proof of Lemma 2, it is easy to

show that player 1 would always reject other players’ oligarchic offer at s′. Moreover, our proof for

noncollegial states below (which does not need our results for collegial states) shows that player 1

must reject any noncollegial offer, as doing so would prevent him from becoming a dictator. Then,

it suffices to consider the following two cases:

• Case 1: there exists some player j , 1 who offers some w ∈ XD1,κ in state s′. First note

that player 1 must be indifferent between w and s′, i.e., U1(w) = U1(s′). If U1(w) > U1(s′),

player j has an incentive to slightly lower the offer; if U1(w) < U1(s′), player 1 rejects w.

Then it follows that any dictatorial offer made by player i , 1 must give w1 to player 1.

Now we claim that all player i , 1 must offer a dictatorial offer with w1 as player 1’s share.

To see this, note that the above argument implies that player i has two options: either offer

some x ∈ XC1,κ or w. If player i offers x, then his payoff is strictly less than 1 − U1(s′).

However, his payoff from offering w is 1 − U1(w) = 1 − U1(s′), which is strictly better.

Given this, player 1’s indifference condition between accepting and rejecting w is

U1(w) = (1 − δ)
1
2

+ δ

(
1
2

U1(y) +
1
2

U1(w)
)
,

From (7), U1(y) = y1/(1 − δ(1 − y1)). Therefore,

U1(w) =
1

2 − δ
− δ(1 − y) <

1
2 − δ

.
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However, from U1(w) = w1/(1 − δ(1 − w1)) since w ∈ XD1,κ, which yields

w1 =
(1 − δ)U1(w)
1 − δU1(w)

<
1
2
,

which contradicts the presumption that w ∈ XD1,κ.

• Case 2: all j , 1 offer some x ∈ XC1,κ in state s′. First, we claim that for any x ∈ XC1,κ and

z ∈ XD1,κ, player 1 strictly prefers z to x. Let Ū1(XC1,κ) = supx∈XC1 ,κ
U1(x). Then

Ū1(XC1,κ) ≤ (1 − δ)
1
2

+ δ

(
1
2

Ū1(XC1,κ) +
1
2

)
=⇒ Ū1(XC1,κ) ≤

1
2 − δ

.

However, for any z ∈ XD1,κ, U1(z) = z1/(1 − δ(1 − z1)) > 1/(2 − δ), and thus z �1 x.

Now, suppose that player k accepts y at state s′. Also, assume that player k offers w ∈ XC1,κ.

The above argument implies that player 1 would accept any offer in XD1,κ. Since player k

must find it optimal to offer w, it follows that for any z1 > 1/2,

Uk(w) ≥
(1 − δ)(1 − z1)
1 − δ(1 − z1)

,

and thus Uk(w) > (1 − δ)/(2 − δ).

It must be that player 1 offers a dictatorial offer at state w; otherwise, player 1 would reject

w when it is offered by player k. Moreover, player 1 never offers a nonzero share to player

k at state w, since player k strictly prefer w to any dictatorial offer. Finally, w provides the

highest payoff to player k among any collegial offers that is accepted by player 1. Therefore,

Uk(w) ≤ (1 − δ)w1 + δ

(
1
2
· 0 +

1
2
· Uk(w)

)
.

However, since w1 < 1/2, it follows that Uk(w) < (1− δ)/(2− δ), which leads to a contradic-

tion.

Noncollegial states: First, we replicate the proof of Claim 1 to show that if s ∈ XNC,κ, any offer

in either XT,κ or XD,κ is never accepted in equilibrium. Suppose to the contrary that player 1 offers

y ∈ XD1,κ and player 2 accepts the offer. Then, the symmetry requirement implies that player 2

can exchange his bargaining position with player 1 by successfully proposing and offering s′ with
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s′1 = s2, s′2 = s1 and s′k = sk for k , 1, 2. Therefore, player 2’s payoff U2(s) bounded below by

U2(s) ≥ (1 − δ)s2 + δs2U1(s)

≥ (1 − δ)s2 + δs2((1 − δ)s1 + δs1U1(y)),

where the second inequality comes from the fact that player 1 can propose and pass y if he is

selected as a proposer. From (7), it follows that

U2(s) − U2(y) ≥ Z ≡ (1 − δ)s2 + δs2

(
(1 − δ)s1 +

δs1y1

1 − δ(1 − y1)

)
−

(1 − δ)(1 − y1)
1 − δ(1 − y1)

.

Therefore, if Z > 0, then player 2 strictly prefers to reject y, reaching a contradiction. Note that Z

is increasing in s1, s2 and y1. Therefore, Z > 0 for any s1, s2 > κ and y1 > 1/2 if

κ((2 − δ)(1 − δ)(1 + δκ) + δ2κ) − (1 − δ) > 0.

Solving this equation shows that this inequality is satisfied for all κ > κ̂, where

κ̂ =
−(2 − δ)(1 − δ) +

√
(2 − δ)2(1 − δ)2 + 4δ(2 − 2δ + δ2)(1 − δ)

2δ(2 − 2δ + δ2)

It is straightforward that κ̂ → 0 as δ→ 1.

For any δ < 1, define κ̄ = max{(1 − δ)/(2 − δ), κ̂}. Then, the combination of (8) and the

above argument implies that for any κ > κ̄, in any equilibrium of Γκ(δ), if the initial state x0 is in

XC,κ ∪ XNC,κ, the long-run outcome is never tyrannical or dictatorial.

Finally, the exact replication of the second part of the proof of Lemma 3 shows that the equi-

librium long-run outcome of any noncollegial state is a permanent oligarchy. �

Proof of Proposition 2 . Part (i): It is straightforward that for s ∈ X\Xq
2 = Xq

T ∪ Xq
D, the equilib-

rium behavior is identical to one in Lemma 1.

Part (ii): First, a replication of the proof of Lemma 2 shows that the behavior in Xq
C is identical to

that in the benchmark model. Next, consider the case with x ∈ Xq
2\(X

q
C ∪ Xq

3). Again, a replication

of the first part of Lemma 3 implies that there cannot be a direct transition from x to Xq
T or Xq

D. We

claim that for any s ∈ Xq
2\(X

q
C ∪ Xq

3), the next period’s state is in Xq
O with two players. Assume

without loss of generality that player 1 becomes the proposer and that player 2’s payoff from the
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status quo is lower than that of player 3. Then, since his proposal is accepted by only one of the

other players, his best strategy is to form a coalition of him and player 2 and offer player 2 a payoff

exactly equal to his payoff from the status quo and take the rest (if it is strictly greater than q, then

player 1 proposes (q, 1 − q, 0)).

Part (iii): Suppose that s ∈ Xq
3 . Then, since every player has veto power, no proposal is accepted

unless it provides each player with a payoff exactly equal to the payoff from the status quo. Then,

since the proposer is indifferent between any proposals in the social acceptance set, by the status

quo bias requirement, he offers the status quo division. �
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B Proof of Theorem 1: Equilibrium Existence

In this part, we prove the existence of an equilibrium of our main model by the constructive method.

From Lemmas 1 and 2, equilibrium strategies in tyrannical, dictatorial, oligarchic and collegial

states are uniquely determined. Therefore, it remains to construct a strategy profile in noncollegial

states and demonstrate its optimality.

Recall that I s
+ ⊆ I is the set of players with nonzero shares in state s. Partition XNC into two

disjoint sets Xe
NC and Xne

NC, where Xe
NC is the set of noncollegial states in which every player having

a positive share can form a decisive coalition composed of two players. Formally,

Xe
NC = {s ∈ XNC | for any i ∈ I s

+, there exists j , i such that si + s j > 1/2},

and Xne
NC = XNC\Xe

NC. In the remainder of this section, we divide our analysis into Xe
NC (Section

B.1) and Xne
NC (Section B.2) and construct an equilibrium profile in each set.

We introduce new notations that we utilize for our proof. Recall thatLs is the set of all decisive

coalitions in state s. Let Ls
i be the set of decisive coalitions that include player i ∈ I s

+. Similarly,

let Ls and Ls
i

be the set of all minimal decisive coalitions in state s and the set of its elements that

include player i, respectively.

B.1 Equilibrium Profile for s ∈ Xe
NC

We begin our equilibrium construction with Xe
NC. The following claim identifies the set of all

minimal decisive coalitions under state s ∈ Xe
NC.

Claim 3. For s ∈ Xe
NC. Then, there exists i ∈ I s

+ such that the set of all minimal decisive coalitions

L
s under state s consists of the following:

• Li j ≡ {i, j} for all j ∈ I s
+\{i}, and

• J ≡ I s
+\{i}.

Proof of Claim 3. The case with |I s
+| = 3 is straightforward since the coalitions {1, 2}, {1, 3}, {2, 3}

are all minimally decisive. Now, consider the case in which |I s
+| ≥ 4. Without loss of generality,

suppose that s1 + s2 > 1/2. Then, s j + sk < 1/2 for any two players j, k ∈ I s
+\{1, 2}. Thus, there

must exist i ∈ {1, 2} such that si + s j > 1/2. Again, without loss of generality, assume that i = 1.

Then, s2 + sk < 1/2 for all k , I s
+\{1, j}, which implies that L1k = {1, k} ∈ Ls for all k ∈ I s

+\{1}.
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Let player i be the player who can form a decisive coalition of size two with every other player.

Then, J ≡ I s
+\{i} is the unique minimal decisive coalition that does not include player i. Suppose

to the contrary that J\{k} is decisive for some k ∈ J. However, it must then be that s1 + sk < 1/2,

which contradicts the assumption that Li j ∈ L
s for all j ∈ I s

+\{i}. �

Given Claim 3, we construct a candidate profile as follows. We divide a player’s proposal

strategy into two parts: a player’s coalition choice strategy that describes the probability of choos-

ing a certain coalition and a proposal rule that determines the share distribution within a chosen

coalition.

For the remainder of this subsection, we designate i as the player who can form a decisive

coalition with every other player. For each k ∈ I s
+, construct a coalition formation strategy ξs

k ∈ ∆Ls
k

as follows: For all j ∈ J,

ξs
i (Li j) =

s j

si

1 − 1 − 2si

1 − si

∑
h∈J\{ j}

sh

1 − si − sh

 ,
ξs

j(L) =


si

1−si
if L = Li j,

1−2si
1−si

. if L = J.

In words, ξs
i (Li j) is the probability that player i chooses player j ∈ J as a coalition partner. One

can easily verify that
∑

j∈J ξ
s
i (Li j) = 1 since

∑
j∈J s j = 1 − si. Similarly, ξs

j(L) is the probability that

j ∈ J chooses L ∈ Ls
j
as a coalition. Again, ξs

j(Li j) + ξs
j(J) = 1.

Next, define a proposal rule Yk : Ls
k
→ X for player k ∈ I s

+ such that Yk(L) is player k’s proposal

given a coalition L ∈ Ls
k
. We construct the proposal rule as follows:

• For player i: Y i
i (Li j) = Y i

j(Li j) = 1/2 for all j ∈ J.

• For player j ∈ J: Y j
i (Li j) = Y j

j (Li j) = 1/2, and

Y j
i (J) = 0, Y j

j (J) =
1
2
, Y j

h(J) = sh

1 +
si + s j −

1
2

1 − si − s j

 for h ∈ J\{ j}.

It is straightforward to check that all the proposals made under Yk are feasible.

Given the coalition formation strategy ξs
k and the proposal rule Yk, construct player k’s proposal
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strategy µk(s) in state s as µk(s) = Yk ◦ ξs
k, or equivalently,

µk(y|s) =


ξs

k(L) if y = Yk(L) for L ∈ Ls
k
,

0 otherwise.
(14)

The following lemma establishes the players’ utilities in state s and that any proposal made under

µ(s) is always accepted by a decisive coalition.

Lemma 4. Fix any s ∈ Xe
NC. Under the proposal strategy µ(s) defined in (14),

(i) If accepted, any proposal made under µ(s) would make the state either oligarchic or colle-

gial in the next period.

(ii) Uk(s) = sk for all k ∈ I.

(iii) All proposals are accepted by a decisive coalition in undominated voting strategies.

(iv) µi(s) is an optimal proposal strategy of player i.

Proof of Lemma 4. Part (i): It is straightforward from the construction of the proposal rule Yk.

Part (ii): Lemmas 1 and 2 imply that for any oligarchic or collegial state s, UT
k (s) = sk for any

T ≥ 1 and k ∈ I. Then, Part (i) implies that for every proposal y offered under µ(s), UT
k (y) = yk.

Then, from (2), the T -period utilities of player i and player j ∈ J are given by

UT
i (s) =

1
T

si + (T − 1)
∑
k∈I

sk

∑
y:µk(y|s)>0

µk(y|s)yi


=

1
T

si + (T − 1)

si

∑
j∈J

ξs
i (Li j)Y i

i (Li j) +
∑
j∈J

s jξ
s
j(Li j)Y

j
i (Li j)




=
1
T

(
si + (T − 1)

( si

2
+

si

2

))
= si,

UT
j (s) =

1
T

s j + (T − 1)

 s j

2
+ siξ

s
i (Li j)Y i

j(Li j) +
∑

h∈J\{ j}

shξ
s
h(J)Yh

j (J)




=
1
T

s j + (T − 1)

 s j

2

2 − 1 − 2si

1 − si

∑
h∈J\{ j}

sh

1 − si − sh

 +
∑

h∈J\{ j}

s jsh(1 − 2si)
1 − si

1 +
si + sh −

1
2

1 − si − sh





= s j.

Part (iii): It remains to show that all proposals are accepted by a decisive coalition in undominated

voting strategies. For the proposals associated by the coalitions Li j for any j ∈ J, such proposals
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are accepted by i and j since they receive UT
i (y) = UT

j (y) = 1/2, which is strictly greater than

UT
i (s) = si and UT

j (s) = s j, respectively. The proposals associated with J are accepted by all

members of the coalition, since the proposer j receives U j(y) = 1/2 > s j = U j(s) and any other

player h ∈ J\{ j} receives Uh(y) = sh + sh
1−si−s j

> sh = Uh(s).

Part (iv): Lemma 3 implies that the utility of a player in a noncollegial state cannot be higher than

1/2. Then, optimality follows from the fact that any proposal made under µ(s) yields 1/2 to the

proposer. �

B.2 Equilibrium Profile for s ∈ Xne
NC

For the set Xne
NC, as opposed to the direct construction used in Section B.1, we utilize a fixed-point

theorem to construct the candidate profile.

Fix any s ∈ Xne
NC. Let X̂ = X/(XT ∪ XD) = {V ′ ∈ Rn|

∑
i V ′i = 1, 0 ≤ V ′i ≤

1
2 ,∀i ∈ I}. For a vector

of the players’ reservation values r ∈ X̂ and player i’s decisive coalition Li ∈ L
s
i , define player i’s

proposal rule Y i : X̂ × Ls
i → X̂ as follows:


Y i

i (r; Li) = min
{

1
2 , 1 − R

}
,

Y i
j(r; Li) = r j + 1

|Li |−1 max
{
0, 1

2 − R
}

for j ∈ Li\{i},

Y i
k(r; Li) = 0 for k < Li,

(15)

where R =
∑

h∈Li\{i} rh. It is easy to check that Y i(r; Li) ∈ X̂ for any r ∈ X̂ and Li ∈ L
s
i . Additionally,

observe that Y i
j(r; Li) ≥ r j for any j ∈ Li. Therefore, if r is a vector of players’ reservation values

in state s, Y i(r, Li) is accepted by a decisive coalition.

Let Ξs
i = ∆Ls

i be the set of probability distributions over Ls
i . Let ξs

i ∈ Ξs
i be player i’s coalition

choice strategy, where ξs
i (Li) is the probability that player i assigns to Li ∈ L

s
i . Given this, define

player i’s best-response coalition correspondence Bs
i : X̂ ⇒ Ξs

i by

Bs
i (r) = arg max

ξs
i ∈Ξ

s
i

∑
Li∈L

s
i

ξs
i (Li)Y i

i (r; Li)

Since its maximand is continuous in both r and ξs
i , Bs

i is nonempty, compact-valued and upper

hemicontinuous by the Theorem of Maximum.Additionally, Bs
i is also convex-valued for all r ∈ X̂

since Y i
i (r; Li) = Y i

i (r; L′i) for all Li and L′i in the support of any ξs
i ∈ Bs

i (r). Denote the profile of
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the best-response coalition correspondence as Bs = ×i∈I Bs
i .

Denote the set of coalition choice strategy profiles as Ξs ≡ ×i∈IΞ
s
i . For each profile ξs ∈ Ξs and

a vector of reservation values r, define a function ψs : X̂ × Ξs → X̂ by

ψs
i (r, ξ

s) =
∑
j∈I

s j

∑
L j∈L

s
j

ξs
j(L j)Y

j
i (r; L j).

Note that ψs is nonempty and continuous in r and ξs.

Consider a self-map Ψs : X̂ ⇒ X̂ such that Ψs(r) = {r′ ∈ X̂|r′ = ψs
i (r, B

s(r))}. Observe that X̂

is a compact convex set, Ψs is upper hemicontinuous, and Ψs(r) is a nonempty compact convex-

valued set for any r ∈ X̂. Therefore, Ψs has a fixed point by Kakutani’s fixed point theorem. Denote

any fixed point of Ψs by rs∗, and let ξs∗ ∈ Bs(rs∗) be such that ψs
i (r

s∗, ξs∗(rs∗)) = rs∗.

Finally, we construct a candidate proposal profile µ(s) as follows:

µi(y|s) =


ξs∗

i (Li) if y = Y i(rs∗; Li) for some Li ∈ L
s
i ,

0 otherwise,
(16)

Lemma 5. Fix any s ∈ Xse
NC. For µ(s) constructed in (16), the following are true:

(i) If the proposal is accepted, the next period’s state is either oligarchic, collegial or in Xe
NC.

(ii) All proposals are accepted by a decisive coalition in undominated voting strategies.

(iii) µi(s) is player i′s optimal proposal strategy.

Proof of Lemma 5. Part (i): Without loss of generality, assume that player i is the proposer. By the

construction of µ(s), player i must propose Y i(rs∗, Li) for some Li ∈ L
s
i . The case with Y i

i (r
s∗, Li) =

1/2 is straightforward, so it suffices to show that for any proposal with Y i
i (r

s∗, Li) < 1/2, Y i(rs∗, Li) ∈

Xe
NC.

Let L̄i = Li\{i} and Li = I s
+\Li. We first prove the following claim:

Claim 4. Suppose that yi = Y i
i (r

s∗, Li) < 1/2 for some proposal made by player i under µ(s). Then,∑
k∈L̄i

sk − s j < 1/2 for all j ∈ L̄i.

Proof. Since yi < 1/2, from (15), it must be that yi = 1 −
∑

k∈L̄i
rs∗

k . Suppose to the contrary that∑
k∈L̄i

sk − s j ≥ 1/2 for some j ∈ L̄. Since si > 0, it must be that
∑

k∈Li
sk − s j > 1/2, which implies
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that Li\{ j} is a decisive coalition. However, then there exists a proposal y′ = Y i(rs∗, Li\{ j}) with

y′i = min

1
2
, 1 −

∑
k∈L̄i\{ j}

rs∗
k

 > 1 −
∑
k∈L̄i

rs∗
k = yi

, which contradicts the optimality of µi(s). �

To demonstrate Part (i), we claim that player i is the one who can form a coalition with every

other player, i.e., yi + y j > 1/2 for any j ∈ L̄i. Suppose to the contrary that yi + y j ≤ 1/2 for

some j ∈ L̄i. Then, since yk = rs∗
k for k ∈ L̄i,

∑
k∈L̄i\{ j} yk =

∑
k∈L̄i\{ j} r

s∗
k ≥ 1/2, which implies∑

l∈L rs∗
l + rs∗

j < 1/2. By Claim 4, si + s j +
∑

l∈L sl > 1/2, and thus, L′ = {i, j} ∪ L is a decisive

coalition. However, then there exists a proposal y′′ that will be accepted by all members in L′ such

that y′′i = 1/2 > yi, y′′l ≥ rs∗
l for l ∈ L′\{i} and y′′k = 0 for k < L′, which contradicts the optimality

of µi(s).

Part (ii): Part (i), combined with Lemmas 1,2 and 4, implies that for any proposal y made under

µ(s) with positive probability, it must be that UT
i (y) = yi ≥ rs∗ for any T ≥ 1 and i ∈ I. Additionally,

by the construction of Y i(r; Li), limT→∞UT
i (s) = rs∗

i for all i ∈ I. Thus, any proposal y in the support

of µi(s) for some i ∈ I is approved by a decisive coalition in undominated voting strategies.

Part (iii): Assume without loss of generality that player i is the proposer. If yi = 1
2 , it is obviously

the optimal proposal for player i. Now assume that yi <
1
2 for some y such that µi(y|s) > 0. Then,

y ∈ Xe
NC by Part (i), which implies by Lemma 4 that UT

j (y) = y j for all j ∈ I. Additionally,

y j = rs∗,T
j if yi <

1
2 by the construction of Y i (equation 15). Then, y is an optimal proposal of

player i, since (a) it provides no more than UT
j (s) to a set of decisive coalition partners, and (b) by

the definition of Bs, y maximizes player i’s utility among the proposals that satisfy (a). �

Let us summarize our findings. Consider the following Markov profile:

• s ∈ X\XNC: as described in Lemmas 1 and 2.

• s ∈ Xe
NC: as constructed in Section B.1.

• s ∈ Xne
NC: as constructed in Section B.2.

Then, Lemmas 4 and 5 imply that the constructed profile is an equilibrium that satisfies the condi-

tions in Definition 1.
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