SIER Working Paper Series No. 109

By

Taehoon Kim, Jacob Schwartz, Kyungchul Song, and
Yoon-Jac Whang

November, 2018

Institute of Economic Research
Seoul National University



MONTE CARLO INFERENCE ON TWO-SIDED MATCHING MODELS

Taehoon Kim', Jacob Schwartz?, Kyungchul Song®, and Yoon-Jae Whang*

November 29, 2018

ABSTRACT. This paper considers two-sided matching models with nontransferable utilities,
with one side having homogeneous preferences over the other side. When one observes
only one or several large matchings, despite the large number of agents involved, asymp-
totic inference is difficult because the observed matching involves the preferences of all the
agents on both sides in a complex way, and creates a complicated form of cross-sectional
dependence across observed matches. When we assume that the observed matching is a
consequence of a stable matching mechanism with homogeneous preferences on one-side,
and the preferences are drawn from a parametric distribution conditional on observables,
the large observed matching follows a parametric distribution. This paper shows in such a
situation how the method of Monte Carlo inference can be a viable option. Being a finite
sample inference method, it does not require independence or local dependence among the
observations which are often used to obtain asymptotic validity. Results from a Monte Carlo
simulation study are presented and discussed.

KEY wORrDS. Two-Sided Matching; Monte Carlo Inference; One-Side Homogeneous Prefer-
ences; Serial Dictatorship Mechanism
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1. Introduction

Two-sided matching models have been widely used to study various interactions among
people and firms. Examples are many, including medical residency match (Roth and So-
tomayor (1990), Agarwal (2015), among many others), marriage/dating markets (Choo
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and Siow (2006), Hitsch, Hortacsu, and Ariely (2010), Chiappori, Oreffice, and Quintana-
Domeque (2012)), loan markets (Chen and Song (2013)), venture capitals (Sgrensen
(2007)), merger markets in the mutual fund industry (Park (2013)), auction analysis (Fox
and Bajari (2013)), and teacher assignments (Boyd, Lankford, Loeb, and Wyckoff (2013)).

Large matching data pose challenges for econometric inference. Consider a matching be-
tween colleges and students. When a college and a group of students prefer to be matched
more than their alternatives, this match limits the set of students available to other col-
leges and the set of colleges available to other students. This strategic interdependence
potentially creates a nonstandard pattern of stochastic dependence among matches and
makes asymptotic inference difficult, because the stochastic dependence is not in the form
of weak spatial dependence or conditional independence much studied in the literature of
asymptotic inference with cross-sectionally dependent data.

A popular approach to econometric modeling of matching markets is to model them
as matching with transferable utility, where transfer of payoff between agents is allowed.
(See Choo and Siow (2006), Galichon and Salanié (2012), Graham, Imbens, and Ridder
(2014), Fox (2010), Fox and Bajari (2013).) However, there are many forms of matching
markets such as marriage markets or medical residency matching, where payoff transfer
does not constitute a realistic feature. A recent body of literature develops empirical mod-
els of non-transferable utility. (See Menzel (2015) and Diamond and Agarwal (2017).)

This paper proposes a new approach of analyzing data from a large matching market.
Here we consider a large, two-sided, many-to-one matching market with non-transferable
utilities, where we allow agents to care about both observed and unobserved hetero-
geneities of the agents on the other side, but restrict one side of the agents to have ho-
mogenous preferences." The assumption of one-sided homogeneity of preferences in this
paper is made mainly to ensure an explicit form of a unique stable matching mechanism
that underlies the matching data. When the matching mechanism that is implemented
in practice is known (such as in empirical examples of medical residents’ matching with
hospitals or students assigned to schools (e.g. Agarwal and Somaini (2018)), one can
still apply the Monte Carlo inference approach of this paper without assuming one-sided
homogeneity of preferences.

The main departure of this paper from the literature is that this paper develops a finite
sample inference procedure for the payoff parameters in the matching market. The main

This assumption of homogeneity in preferences of one side is certainly restrictive, and yet this asymmetry of
preference heterogeneity between the two sides reflects various many-to-one matching markets in practice.
For example, colleges mostly agree on who the best students are whereas many students face tradeoff be-
tween the distance from their homes to a college and the college’s quality. This assumption of homogeneous
preference on one side is not unprecedented in the literature either. See for example Agarwal (2015) who
used this assumption in the analysis of medical residents’ matching market.
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idea is as follows. First, we note that the preference homogeneity on one side implies
the existence of a unique stable matching which can be implemented as a form of a serial
dictatorship mechanism. This mechanism has an explicit form where the student ranked
first by the colleges is matched to his most preferred college and the student ranked second
matched to his most preferred college among those colleges whose quota is not filled, etc.
This characterization determines the exact distribution of the observed matching up to an
unknown parameter, when the unobserved heterogeneities are from a parametric family
of distributions. Thus one can construct a test statistic and invert the test to perform finite
sample inference on structural parameters.

The approach of Monte Carlo inference can be viewed as an extension of randomized
tests of R. A. Fisher. Randomized tests achieve finite sample validity using a test statis-
tic whose conditional distribution given data (i.e., the permutation distribution) is fully
known. Similarly, the approach of Monte Carlo tests also focuses on a situation where
the test statistic’s distribution given the true parameter value is fully known. The Monte
Carlo inference approach was developed to implement a permutation test (Dwass (1957)),
Besag and Clifford (1989), Hope (1968), and introduced to econometrics and extended
to various econometric models in work by Jean-Marie Dufour and his coauthors. (Dufour
(2006). Also see Dufour and Khalaf (2003) for an overview of this approach in the context
of econometric models.)

While this paper’s approach provides a useful, alternative way to analyze matching data,
there are limitations. The major limitation of this paper’s approach is the assumption
that we observe the entire set of players in the large matching game. This assumption
is frequently used in many game-theoretic models, and hard to remove, because without
this assumption, the payoff specification involves actions or characteristics of players that
are not observed by the econometrician and one needs to assume a particular way the
players are sampled in each game.? Nevertheless, assuming full observation of players in a
game is restrictive in modeling the interactions among many agents. Second, as mentioned
previously, this paper uses the one-sided homogeneity of preferences in this paper mainly
to ensure an explicit form of a unique stable matching mechanism. It would be good to
relax this requirement so that multiple stable matchings are potentiallly allowed in the
model.

We performed Monte Carlo simulation studies using a simple many-to-one matching
model between students and colleges. Due to the nature of finite sample inference, any
deviation from the nominal size stems from the Monte Carlo simulation errors. With the

2Canen, Schwartz, and Song (2018) for an empirical model of linear interactions over a large network.
Using a set of behavioral assumptions, they produce best responses that exhibit local dependence, and permit
partial observation of the players by the econometrician for inference.
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number of Monte Carlo replications equal to 1000, the Monte Carlo inference exhibit
reasonably good size properties. However, we have found that the power properties are
uneven across different directions in which the parameter deviates from the true parame-
ter. When we increase the number of the students, the power improves yet again unevenly
across different directions of deviations.

The paper is organized as follows. The next section gives a general overview of the
Monte Carlo inference approach. In Section 3, we introduce a two-sided many-to-one ran-
dom matching model based on a college admission model in Roth and Sotomayor (1990).
Section 4 presents an approach of Monte Carlo inference, explaining ways to construct
test statistics and critical values. Section 5 gives results from a small scale Monte Carlo
simulation experiment and discusses them. In Section 6 we conclude. In the Appendix, we
provide a simple algorithm that generates matching based on a serial dictatorship mecha-
nism.

2. Monte Carlo Inference: Overview

2.1. Monte Carlo Inference

In this section, we provide a general overview of the finite sample inference approach
that we employ in this paper. Suppose that Y is an n-dimensional endogenous random
vector and X is a vector of exogenous random vector. Suppose further that the conditional
distribution of Y given X = x follows a parametric family of distributions, say,

F(x) = {F(]x): 0 € ©).

In our context, Y represents the matching outcomes between two sides of agents (e.g.,
students and colleges). Note that such a parametric family assumption underlies maxi-
mum likelihood estimation, where the random map 0 — f,(Y|X) refers to the likelihood
function, when fy(-|x) denotes the conditional density function corresponding to Fjy(-|x).

Let us first consider a finite sample inference on 6,, where 6, denotes the true parameter
such that Fy, (-|x) = F(:|x), where F'(-|x) denotes the conditional distribution function of
Y given X = x. First, we construct a test statistic 7,,(Y, X, #). A standard way to construct
a test statistic usually involves a sum of independent or locally dependent observations to
facilitate asymptotic theory. However, in our case, it is not necessary to be able to express
the test statistic as a function of the sum of random variables for the inference procedure
to exhibit finite sample validity. As we shall see, our matching data is such that each
match between a student and a college involves all the other agents’ payoff components
nonlinearly.
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A confidence set is generated in the following way. First, for each § € ©, we draw by
simulation

Y1 (0), ..., Yr(0) ~ iid. Fy(-|X).

We construct ¢,(0), ..., tr(f), where ¢,.(0) = T,,(Y,(0),X,60), with r = 1,..., R. Let ¢,(6) be
such that

ca(Q):inf{ceR:}%Zl{tr(@)gc}zl—a}.

r=1

Then the finite sample confidence set is defined to be
Co=1{0€0:T,(Y,X,0) <c.(0)}

By construction, the confidence set is valid in finite samples. This approach to inference is
called the Monte Carlo inference approach. This approach is generally applicable in a set-
up where observations are from a parametric family of distributions and random draws
from these distributions can be obtained by simulation, i.e., a situation where one applies
maximum likelihood estimation. In contrast to maximum likelihood estimation, Monte
Carlo inference is valid in finite sample inference, and hence does not require assump-
tions that are used to ensure asymptotic validity of inference. Such asymptotic validity
is obtained by assuming that the observations are independent or locally (or weakly) de-
pendent along a certain known dependence ordering. Such local dependence is hard to
verify in our context of a large matching market, because the matching outcomes involve
all agents’ idiosyncratic payoff components. The Monte Carlo inference approach offers a
viable solution in this situation.

While the choice of a test statistic does not influence the finite sample validity of the in-
ference, it affects the power properties. One way to construct a test statistic is to compare
some features of the observed outcomes and those of predicted outcomes, where the pre-
dicted outcomes are genereated by simulations. More specifically, suppose that ¢, (Y, X)
denotes a vector where each entry captures some aspect of the data (Y, X). Using the
simulated draws Y,.(f),r = 1, ..., R, we can construct

R
@D T(Y.X.0) = 5 37 6(0a(Y. X), (¥, (60), X)),

where 6(g,(Y,X), 9,(Y(0),X)) is a scalar measure of discrepancy between g, (Y, X) and
g.(Y,(0),X). If this discrepancy gets larger fast as ¢ moves away from 6,, 6 will be less
likely to be included in the confidence set.



The Monte Carlo confidence set is obtained by inverting the test statistic, and hence can
be computationally intensive when the parameter dimension is large.

2.2. Subvector Inference

When the parameter of interest is a subvector of 6, we can construct a confidence set
for the subvector by projecting the confidence set of 6, onto the subvector. More generally,
suppose that our parameter of interest takes the following form:

B=1y(0) € B,

where 1 is a map known to the econometrician. For example, we may have $ = 0;, where
g, is the j-th element of §. The projection approach suggests that we may construct a
confidence set consisting of 5’s such that there exists ¢ in the confidence set of 6, such that
p = (0). This way of doing subvector inference is called the projection approach.

An alternative way is a profiling approach. (See Barndorff-Nielsen (1983), Romano and
Shaikh (2008), and Bugni, Canay, and Shi (2017).) To construct a confidence set, we may
take a profiling approach. We fix 6 and let Y,(0),..., Yr(0) be given as before through
simulations. Let v, () be such that

0€0:v(0)=F jco. y(5)=p

R
fya(ﬂ):inf{ceR:%Zl{ inf sup Tn(YT(é),X;H)gc} 21—04}.

r=1

Then the finite sample confidence set is defined to be
R = {5 €B: 9€9:13§9)26 T.(Y,X;0) < fya(ﬁ)} .

It is not hard to see that this confidence set for the subvector f is valid in finite samples.
This Monte Carlo inference version of subvector inference has some differences from the
standard profiling approach. First, note that the distribution of Y is equal to that of Y,.(6,),
but not necessarily equal to the distribution of Y,.(0) for all § such that 5, = ¥(6). To cover
this discrepancy in finite samples, we take the supremum over § € © in the computa-
tion of critical values to ensure finite sample validity. Second, one of the main challenges
in the subvector inference literature is that it is hard to approximate the distribution of
infgco. v(9)=p Tn(Y, X; 0). This approximation often requires a careful choice of tuning pa-
rameters as well. However, being a finite sample inference method by nature, the Monte
Carlo based subvector inference does not suffer from this difficulty. Third, the computa-
tional cost of doing subvector inference through profiling may not be reduced substantially
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relative to the projection method, especially when the evaluation of 7,,(Y,.(6), X; #) is com-
putationally costly.”

3. A Two-Sided Random Matching Model

3.1. A College Admissions Model

We begin with a standard college admissions model as in Chapter 5 of Roth and So-
tomayor (1990) using different notation that is suitable for our purpose. Then we in-
troduce a random preference profile, and make explicit the distribution of the observed
matching.

Suppose that we have a set of students indexed by N, = {1, ...,n,} and that of colleges
indexed by N. = {1, ...,n.}. In many situations, the colleges are capacity-constrained for
various reasons. For each college j, let ¢; be a positive integer that represents the quota
of college j. To accommodate the possibility of students or colleges unmatched, define
N! = Ny;U {0} and N, = N.U {0}, so that unmatched student (or college) is viewed as
being matched to 0. (When we need to view N! and N! as an ordered set, according to
the ordering of natural numbers, we take 0 to be the last element of N, and N/.) A (many-
to-one) matching under (the capacity constraint) g = (gq;);en. is defined as a (point-valued)
map p : N, — N! such that |p~!(j) N N| < g, for each j € N,, i.e., the number of the
students assigned to each college does not exceed its capacity.

The matching result depends on a preference profile of agents. In this paper, we allow
for only strict preferences so that each student is never indifferent between choices from N
and the same with each college. It is convenient if we represent each preference ordering
with a permutation of the agent indices. Let II,. and II, be the collections of permutations
over N! and N/ respectively, so that each permutation is associated with a preference
ordering. (A word of caution with subscripts: II. represents the set of preferences of
colleges over students.) For example, suppose that N, = (0,1,2,3,4). If a student has
preference ordering = € Il over colleges N! such that 7 = (3,2,0,4,1) (or equivalently,
m(1) =3, 7(2) = 2, 7(3) = 0, etc., this means the student ranks college 3 as highest, and
college 1 as lowest (even lower than being unmatched.)

More formally, for given 7 € II,, we write i; = iy if 771(4;) < 77 1(4), i.e., i; is ranked
higher than i, by preference 7. Given preference 7 € Il of student i over colleges, we say
that college j is acceptable by student i if j >, 0. We make similar definitions for college
3Schwartz (2018) used the Monte Carlo subvector inference approach following this paper’s proposal. How-
ever, his setting permits using standard inference on part of the parameter vector as a first step, applying

Monte Carlo inference for the remaining parameters. This two step approach no longer ensures finite sample
validity. Nevertheless it sharpens the inference results and reduces the computational costs.
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preferences. For two sets S; and S, of students and a preference ordering 7 of a college,
we write S; =, Sa, if for all i1 €5 and iy € S, 11 =1 9.
The collection of preference ordering profiles, = = (7, ), is given by

IT = 1% x I1*,

where 7, € II?* and 7. € II”*. Given a quota vector ¢, we call any map p : N, x IT — N! a
matching mechanism under ¢, if for each 7 € II, u(-; 7) is a matching under ¢.*

In modeling a predicted outcome of matching in economics, it is standard in the litera-
ture to focus on (pairwise) stable matchings (Roth and Sotomayor (1990)).”

Definition 3.1. (i) A matching p : N, — N/ is stable with respect to w = (7, w.) € II, if
the following two conditions are satisfied.

(a) There is no i € N, such that 0 >, x(:) and no j € N, such that 0 >, i’ for some
i€ pt(j).

(b) There is no pair (i,j) € Ny x N, such that both j >, u(i) and i >, i’ for some
i€ pm(g).
(ii) A matching mechanism p : N, x II — N/ is stable if u(-; ) is stable with respect to
each 7 € II.

Definition 3.1 says that a matching is stable with respect to =, if (a) each student
matched with a college prefers to be matched with the college than to remain unmatched,
and each college matched with a student prefers to be matched with the student than to
remain unmatched, and (b) there is no unmatched pair of a student and a college both of
whom prefer to be matched with each other than with their current matches.

3.2. Random Preferences

3.2.1. Students’ Heterogeneous Preferences. Let us introduce random preferences for
students with a view to an econometric modeling. It is convenient to introduce notation
that turns a vector of real numbers into a permutation according to the ordering of the
numbers.

Definition 3.2. Given a = (a;);en; € R™ 1, let p,(a) € II, be such that p;*(a)(i) denotes
the rank of a;. For example, suppose that a = (—0.9,0.2,0.7, —0.2). Then p,(a) = (2,1, 3,0).

“By the definition of a matching mechanism as a map on N, ! x II, it is anonymous in the sense that the
matching mechanism remains invariant to the relabeling of the agents’ indices.

°A proper development will require defining preferences over sets of students by colleges, and defining sta-
bility of a matching in terms of these preferences. When the preferences are so-called responsive, the group
stability is equivalent to pairwise stability. As we make use of pairwise stability for econometric inference,
we refer the reader to Chapter 5 of Roth and Sotomayor (1990) for further details.
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Hence the third entry of a (we start with zero so 2 represents the third entry) is ranked
first. We define similarly p. € II..

The students’ preferences are drawn in the following way. First, each student i is given
a heterogeneous single index over colleges

Us(4, 75 €i5 Bo) = fs(@s4, Tejy €13 Po),

which represents student i’s “score” of college j, where z,,; denotes the characteristics of
student ¢ and x.; those colleges j that are observed by the econometrician, ¢, ;, unob-
served taste component associated with the match between student i and college j, and
fs(+,+, s Bo) denotes a certain parametric function known up to a true parameter vector [.

For example, one may consider the following single-index specification with an additive
error:®

fs(Tsis Te gy €35 Bo) = «’E:;,jﬁo,l + Is,z‘x/c,jﬁog + E€ij-

However, this paper’s procedure does not require this particular structure; all that is re-
quired is that the function f, is assumed to be known to the econometrician.

To characterize the preference for being unmatched (i.e., an outside option), we also
define

v5(1,0; €40, Bo) = fo0(Tsisi0; 50),

for some parameter /3. Throughout this paper, we often write simply v; (i, j; £; ;) suppress-
ing the notation for 3. Also define v,(i; ;) = (vs(7, j; €i5))jen:, i.€., the vector of the scores
given to the colleges (by student 7).

Let us assume that the preference profile for the students is given as follows:

7s(e) = (ms(es))iy, where 7, ;(g;) = ps(vs(i;€;)), for all i € N.
Therefore, for each i € N, the random preference 7 ,(s;) places a college j as first when

vs(, j;€;,5) is largest.

3.2.2. Colleges’ Homogeneous Preferences. Throughout this paper, we assume that the
colleges have the same preference over the students. Again, let x,; be a vector of student
1’s observable characteristics. Let

V(73135 70) = 9e(Ts,i5 i3 Y0)

6Adding an additive term whose covariate depends only on z, ; instead of the interaction term z. ; is super-
fluous for “identification”, because variations in x5 ; do not change the ranking of the colleges by the student
1.



10

be student i’s single-index, where 7; represents student i’s unobserved quality and g. is a
function known up to the parameter ~,. As for an outside option, define

v.(0; 70, Y0) = 9e,0(10; F0)-

From here on, we often write v.(i;7;) simply, suppressing the notation for ~,. The colleges’
preference over students is not solely determined by the students’ observable character-
istics. The common random preference of each college j for each student i is given as
follows:

me(n) = pe(ve(n)),

where v.(n) = (ve(4;7;))ien;. Thus each college j ranks a student ¢ as highest if v,(i;7;) is
highest.

3.3. The Joint Distribution of a Large Observed Matching

In this section we obtain an explicit expression of the distribution of the observed
matching when the matching arises from a stable matching mechanism. Throughout
this paper, we regard z,,; and z.; as non-stochastic, which means that all other unob-
served random components such as 7 and ¢ are independently drawn from these observed
characteristics. Recall that the preference profile of students and colleges are given by
w(e,n) = (m.(n), ws(e)), where we simply write the preference profile of colleges as 7.(n)
because it is the same across the colleges.

Let Y denote the observed matching which is generated by a stable matching mecha-
nism, say, u(-;7(s,1)).” In other words,

Y () = p(5m(en)).

This is a reduced form for the observed matching. The randomness of the observed match-
ing comes from the randomness of the students’ and colleges’ preferences (i.e.,  and ¢).

We make the following assumptions regarding the random preferences for students and
colleges.

Assumption 3.1. (v.(n), (vs(i;€;))icn,)) is @ continuous random vector.

The continuity assumption is made to generate strict preferences. Later we assume that
the distributions of 7,’s and ¢, ;’s are independently drawn from certain parametric families
of distributions.

7Our choice of notation for matching as Y is to emphasize that matching is an endogenous outcome.
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Let us define

Ns(n) = {Z S Ns : vc(i;ni770) > ’Uc(o;ﬂoﬁo)},

which is the set of students that colleges prefer to match than to stay unmatched with
any student. The stability of matching i requires that u(:) = 0 for all i ¢ N,(n), that is,
students not preferred by any of the colleges (to the alternative of staying unmatched) are
not matched with any colleges under . If Ny(n) = &, there is no college-student pair that
is matched under a stable matching i.. Thus, it suffices to determine the match between
colleges with students in Ny(n) when N (n) is not empty. Let us enumerate the student
indexes in N4(n) as {S(1),..., S(n})} with ny = |Ns(n)|, so that S : {1,...,n.} — N, is a
(random) map depending on 7.

As we shall see now, the stability of matching yields a useful distributional characteriza-
tion of the observed matching. For each S(i) € N,(n), and for any set A C N/, let

. . . —1 .
pilA; ma) = minm g (j)-

In other words, p;(A; 7,) is the ranking of a college that is most preferred among colleges
j in A by student S(i). Hence

Ts,S(i) (Pz’(A; Tl's))

denotes the college among A that is most preferred by student S(7).

Suppose that the colleges’ homogeneous preference is given by 7.(1)(1) = S(1), 7.(n)(2) =
S(2),...,m(n)(n) = S(n.). In other words, the colleges prefer student S(i) to S(j) in Ns(n)
if and only if i < j. Thus, let us simply write 7.(n7) as N,(n). In the stable matching with
this 7.(n), student S(1) is ranked highest by all the colleges and chooses his most preferred
college first. Then student S(2) chooses his most preferred college among the colleges
whose quota is not filled yet, etc.® To formalize this matching mechanism, let us define for
each student S(i) € N,(n),

T (Ma ﬂ's) = Ts,5(i) (pz(N[z—l] (773); 7l's)) 5
where Ny (7,) = N/, (setting ¢; = oo if j € N/ is 0),’

Nii—y(ms) = {7 e Nowgy([i — 1)) < g5},

8n the literature of mechanism design, this mechanism is called a serial dictatorship mechanism. (See
Satterthwaite and Sonnenschein (1981).)

“Using the notation [i] instead of i is meant as a reminder that the quantity depends on the “history” [i] =
(1,2,...,4 — 1,1), rather the current agent index i.
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and
(3.1) gi([i = 1;ms) = {¢' € Ny - 7([¢' — 1];75) =7, S(i') < S(i)}].

The college 7([1]; 7r,) is one that student S(1) prefers most among all the colleges in N/.
Then 7([2]; ;) is a college that student S(2) prefers most among all the colleges whose
quota is not yet filled once student S(1) is assigned to college 7([1]; 75). Now 7([3]; 7,) is a
college that student S(3) prefers most among all the colleges whose quota is not yet filled
once students S(1) and S(2) are assigned to colleges 7([1]; 7w5) and 7([2]; 75) respectively.

Note that the assignment of each student S(i) to a college 7([¢]; ;) is fully known up
to the students’ preference profile 7([i]; ws). Thus the matching of each student S(i) to a
college 7([i]; ;) is a unique stable matching that is explicitly represented as a function of
random preferences. In other words, for each S(i) € N,(n),

(3.2) p(S(0); ms(e), Ns(n)) = 7([i; 7s)

Note that 7([i]; s) depends on the history of choices of students S(1),5(2),...,5(i), not
merely that of the last student S(7).

It is straightforward to extend this result to a general case where 7.(n)(i) # S(i) for
some i = 1,...,n.. We begin with student =, '(n)(1) (i.e. ranked highest by the colleges
according to 7.(n)) and let him choose his best choice among all the colleges. Then we
move onto student 7, *(n)(2) (ranked second highest by the colleges).

To see its major implication for the distribution of the observed matching, note that

(3.3) Y(S(@) = p(S@);ms(e) me(n))
= p((Som (n)o8)(i);ms(e,m), Ne(n))

where 7,(¢,n) is a profile of students’ preferences over colleges with the S(i)-th student’s
preference over the colleges equal to

T (Soms L (m)os) (i) (€):

for each S(i) € N4(n). The second equality in (3.3) follows because the matching mech-
anism is anonymous. In other words, college Y (S(i)) matched by student S(i) should
be the same college matched by the same student after relabeling the student S(i) as
S(m 1 (n)(S(2))). (Recall that m(n)(S(7)) represents the ranking of student S(i).) After
this relabeling, the colleges’ preference ordering over the students becomes: S(i) >, S(j)
if and only if i < j. Then from (3.2), we obtain the following result.



13

Theorem 3.1. Suppose that the matching mechanism p is stable, and that Assumption 2.1
holds. Then for each S(i) € N4(n),

Y(S(i) =7 (x5 (n) 0 ) (i) s (e m)) |
where (7 (1) 0 §)(i)] = (1,2, .. (" (n) 0 S)(0))

The expression in the theorem provides an explicit reduced form for the matching Y.
It shows how the randomness of the observed matching Y depends on the random pref-
erences. It shows that each single match Y (S(7)) of student S(¢) is a complex function of
the preferences of all the students and colleges. While incorporating this interdependence
is crucial to properly take into account the inherent endogeneity of observed matching, it
hampers the use of standard asymptotic theory. Thus this paper pursues an approach of
finite sample inference. Indeed, Theorem 3.1 shows that once we parametrize the distri-
bution of ¢, ; and 7;, we can obtain the full joint distribution of the observed matching up
to a parametrization. Comparing the sorting pattern of observed characteristics implied by
this predicted distribution and the observed sorting pattern, we seek to ’perform inference
on the structural parameters in finite samples.

4. Monte Carlo Inference

Let us formalize the data generating process. First, the nature draws ¢, ;’s, i.i.d., i =
1,..,ns, and j = 1,...,n., from a parametric distribution, say, Fy, and »;’s, i.i.d., from a
parametric distribution, say, Gy. Note that the inference procedure also allows the error
term to be involved in the single indices nonseparably, as in the case of random coefficient
models.

4.1. Test Statistics, Critical Values and Confidence Sets

We explain a general method of constructing a test statistic and a confidence set. We
define 6 = (33, 3,7,7%). First, for b = 1, ..., B, we let n;, be the b-th simulated draw from Gy
and €7, from Fy. We construct simulated matchings: for N(n;) with 7y = (1} )icn,, and
S(@) € Ns(n5),

Y3 (S(0);0) = 7 ([me(m) (S ()]s mwslesmy)

where e} = (£} ;) (1j)en.xnz- We also draw forr =1, ..., R, 7;,’s and ¢; ,’s i.i.d. from Gy and

from Fy, respectively, independently of ;,’s and ¢; ;. We construct simulated matchings:

YT(‘S(i); ‘9) =T ([71'8(777,)71(5(@'))]; 778(57’7 777“)) )
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where 7, = (1;,)ien, and e, = (&)@ j)en,xn;. Hence conditional on X, Y;(s;;60)’s and
Y. (i;0)’s are independent. We set Y; (i;6) = 0 for all « ¢ Ns(n*) and Y, (s;;60) = 0 for all
i ¢ Ng(n,). An algorithm for computing the matching this way is provided in the appendix.
Let us define

Y.(0) = {Y.(3;0):i€ Ny}, and
Y;(0) = {Y;(i;0):i€ Ng,b=1,..., B}.

Then we can construct a test statistic as a function of the observed matching Y, the simu-
lated matchings Y%(6), and the observed characteristics , X, say,

T<0) = fn(Yu ?*3(0)7 X)7

for some function f,,. (Some examples of the test statistics are given below.)
As for the critical values, we simulate the test statistic using simulated matching Y. (6)
in place of observed matching Y:

T.(0) = £,(Y,.(0),Y5(0),X),r=1,... R,

where the simulations of Y, (#) and take ¢,(f) to be the 1 — « percentile of the empirical
distribution of the simulated test statistics 7,.(f),r = 1,..., R. Then the confidence set is
given by

C={0€0:T(0) < cal0)}.

The finite sample validity of the confidence set (up to a simulation error) immediately
follows from Theorem 3.1.

One may choose R and B differently. Choosing a large R will reduce the Monte Carlo
error in the coverage probabilities, and choosing a large B will improve the power proper-
ties (i.e., shrink the size of the confidence interval), not affecting the finite sample validity
of the inference. This power improvement will be attenuated after a large enough B.
When the computational cost of matching Y (i; #) is substantial, it is practical to use only
minimal B as long as it ensures decent power properties of the inference.

4.2. Constructing Test Statistics

In this section, we discuss ways to construct a test statistic which is based on comparing
features of observed matching outcomes and those of predicted ones. More specifically, we
define

(4.1) Fa(Y, Y 5(0),X) = m, (Y, Y5(0), X),
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where

ma (Y, Y%5(0) Zmax (X5, %0: Y, X) — P(x1,%2; Y5 (0), X)),
and
(42) P(Xs> Xe; Ya X) = i Z 1{Xz’,s = X, XY(i),c - Xc}'

5 GeN,

Here ﬁ(xs, x.; Y, X) measures the proportion of students with characteristic x, which are
matched with colleges with characteristic x. through matching Y. (See Diamond and Agar-
wal (2017) and Schwartz (2018) for the use of similar test statistics.) One may use some
other features of the matchings. For example, following Diamond and Agarwal (2017), we
may consider

B
b:
where
A 1 — 2
A(Y,X) = — Z (Xis — Xv-1(v(i)).5)
S jeN,
and

— 1
Xy-1(Y(i)s = oo D
YO = N 2
(Y(2))
The quantity A(Y,X) measures the dispersion of the observed characteristics of the stu-
dents who are matched with the same college as student i. Then, we may take

4.3) Fa(Y, X 5(0),X) = m, (Y, Y5(0),X) + m, (Y, Y%5(0), X).

This combination of two criteria attempts to capture potential deviation of § from 6, on
two fronts: comparison between observed characteristics of matches and predicted char-
acteristics and comparison between observed within-match characteristic dispersion and
its predicted version. It is important to note that it is not a priori ensured that using the
two criteria instead of one improves the power properties of the inference. However, Dia-
mond and Agarwal (2017) demonstrated through simulations that using a combination of
criteria such as in (4.3) can sharpen the accuracy of inference.
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5. Monte Carlo Simulation Studies

In this section, we investigate size and power properties of our simulation-based infer-
ence procedure. We wish to infer the preference parameters of agents, § = (6,.,0,). For
simplicity, our simulation design is such that every student and every college is acceptable
to each other’s side. Recall that the value of the college j to student i is given as

vs(1, J; €14, 0c) = 00 + €ij,
and the value of a student j to the colleges’ is given as
Uc(i; Ni, 05) - sti,s + n;-

In the simulations, we choose z;; and . ; to be discrete, scalar random variables, drawing
them i.i.d. from the uniform distribution on {1,2,3}. The variables ¢,; and 7, are drawn
i.i.d. from N (0, 1) and independently of one another and of the covariates. We consider the
case that each college has an equal number of positions, X and consider the performance
of the inference procedure for K € {5,10,20}. For the simulations, we set the true value
of the preference parameter to ¢, = (1,1). The simulation numbers R and B are chosen
from {100,500} and Monte Carlo simulation number is set to be 1000.
We consider the test statistics in (4.1):

P(xg, 7Y, X) — P(zy, 20, Y5 (0), X))

where
Py Y, X) = — 3 1y = 20, Xy = )
% ieN;
The test statistic compares the observed and predicted joint distribution of covariates be-
tween matched agents.

The results are reported in Tables 1 - 2. The results in Table 1 are from using R =
B = 100 and those in Table 2 are from using R = B = 500. In general, the size and
power properties of the inference procedure are acceptable. There is little size distortion
(particularly for K = 10 and K = 20, and the rejection probabilities increase in the sample
size for alternatives away from the true parameter value. It is interesting to note that the
results are not very different between the two tables. This means that considering the
substantial increase in the computational cost using a higher value of R, B, it appears
using R = B = 100 is just enough for practical purposes.



TABLE 1. Empirical Rejection Probabilities for Monte Carlo Inference on
Preferences, R = B = 100.
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K=5 K =10 K =20
05 0. 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
0.5 n =200 0.9870 0.8720 0.8180 0.9700 0.8340 0.7620 0.9470 0.7840 0.6680
n =400 1.0000 0.9990 0.9920 1.0000 1.0000 0.9960 1.0000 0.9980 0.9810
n =600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 n=200 0.2320 0.0640 0.1040 0.2430 0.0620 0.0830 0.2500 0.0470 0.1150
n =400 04170 0.0340 0.0770 0.4360 0.0450 0.0970 0.5100 0.0500 0.1010
n =600 0.6170 0.0580 0.0910 0.6290 0.0460 0.1040 0.6590 0.0510 0.1110
1.5 n=200 0.0700 0.6820 0.9340 0.0790 0.6380 0.9210 0.0840 0.5890 0.9100
n =400 0.1040 0.9660 0.9980 0.1350 0.9520 1.0000 0.1570 0.9150 0.9960
n =600 0.1590 0.9990 1.0000 0.1810 0.9960 1.0000 0.2300 0.9940 1.0000

Notes: This table explores the size and power properties for the inference on student and college pref-
erences when each college has the same number of positions, K. The true value of the parameter is
0so0 = 0.0 = 1. The simulation number is 1000. In each iteration of the simulation loop, we use 100
random draws to compute the critical value.

TABLE 2. Empirical Rejection Probabilities for Monte-Carlo Inference on
Preferences: R = B = 500
K=5 K=10 K =20
05 0. 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
0.5 n=200 0.9860 0.8850 0.8300 0.9760 0.8370 0.7470 0.9520 0.7820 0.6670
n =400 1.0000 0.9990 0.9960 1.0000 0.9990 0.9960 1.0000 0.9980 0.9860
n =600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0 n=200 0.2280 0.0610 0.0870 0.2530 0.0510 0.0910 0.2400 0.0490 0.1110
n =400 0.4230 0.0310 0.0690 0.4470 0.0530 0.0960 0.4940 0.0510 0.0920
n =600 0.6280 0.0570 0.0880 0.6250 0.0470 0.0960 0.6640 0.0450 0.1110
1.5 n=200 0.0650 0.6820 0.9510 0.0710 0.6500 0.9210 0.0910 0.5990 0.9200
n =400 0.1010 0.9650 0.9980 0.1260 0.9520 1.0000 0.1590 0.9150 0.9960
n =600 0.1540 0.9990 1.0000 0.1710 0.9950 1.0000 0.2100 0.9930 1.0000

Notes: This table explores the size and power properties for inferring student and college preferences when
each college has the same number of positions, K. The true value of the parameter is 6,9 = 6.9 = 1. The
simulation number is 1000. In each iteration of the simulation loop, we use 500 random draws to compute

the critical value.
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6. Conclusion

This paper proposes Monte Carlo inference for a large matching model. The main chal-
lenge for inference in a large matching model is to deal with a complex form of cross-
sectional dependence created by strategic interdependence between agents. Being a finite
sample inference method, Monte Carlo inference can be used to deal with this difficulty,
when the matching mechanism is explicitly known to the econometrician. Although we
do not prove the power properties of the inference as the number of the agents grows,
our Monte Carlo simulation suggest that the confidence intervals will shrink as the sample
sign grows, which would indicate an accumulation of information as the number of agents
grows.

Monte Carlo inference exhibits some limitations. First, the inference works only when
the matching process is fully parametrized. When the parameter is high dimensional,
Monte Carlo inference can be computationally costly. Second, it only applies to a situation
where the econometrician knows precisely the underlying matching mechanism. One may
take a known stable matching mechanism such as a Deferred-Acceptance mechanism as
part of econometric specifications. However, it would be desirable to pursue an empirical
model which does not require a full specification of a matching mechanism. This direction
of research appears promising and is left to future work.

7. Appendix: Serial Dictatorship Algorithm

In this section, we provide a Matlab code for serial dictatorship algorithm which returns
a serial dictatorship matching of students to college positions given heterogeneous stu-
dent preferences and homogeneous college preferences. Let us introduce the definition of
variables.

e x_s, x_c: n, x 1 vector of student characteristics and n. x 1 vector of college
characteristics.

e theta_s, theta_c: scalar student and college preference parameters.

e N_s, N_c: number of students and colleges.

e student_score: nyx1 vector of college preferences over students, based on theta_s,
x_s and standard normal random variables.

e coll_rank: The indices associated with the preferred students of colleges. For
example coll_rank(1) is the index of the most preferred student according to
colleges.

e val_ji: n.xn, matrix whose (7, 7) element is associated with the value that student
i places on college j based on theta_c, x_c and standard normal random variables.
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e pos_vec: n, X 1 vector whose ith element says the college associated with the ith
college-position.

e val_ji_pos is an n, x n, matrix whose(j, ) element is the value that student ¢ has
for position j.

e val_fv: n, X ng matrix whose (j,r) value is the value that the student ranked r
highest according to coll_rank has for college position j.

e matching: n, X 1 vector, where matching(i)= j means student i € {1,...,ns} is
matched with college position j € {1, ..., n,}.

The following Matlab code of function serial_dictatorship returns matching given
theta_s theta_c, x_c, x_s, N_s, N_c, and pos_vec when the colleges’ ranking of students
is based on students’ score generated from a model with additive normal errors. One can
change this specification in the code for alternative specification of the way colleges rank
students.

function matching =serial_dictatorship(theta_s, theta_c, x_c, x_s, N_s, N_c,pos_vec)

student_score = theta_s*x_s + normrnd(0,1,N_s,1);
[~,coll_rank]

sort (student_score,’descend’) ;

val_ji=repmat ((theta_c*x_c),[1 N_s]) + normrnd(0,1,N_c,N_s);
val_ji_pos=val_ji(pos_vec,:);
val_fv=val_ji_pos(:,coll_rank);
inverse_matching=zeros(N_s,1);

matching=inverse_matching;

id=1:N_s;

for i=1:N_s
[7,index]=max(val_fv(:,i));
inverse_matching(coll_rank(i))=index;
val_fv(index, :)=-inf;

end

matching(inverse_matching)=id;

end
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