DERIVATION OF REGRESSION TRANSFORMATION
MATRICES FOR FIRST AND HIGHER ORDER
AUTOREGRESSIVE DISTURBANCES®

by Ki-Jun Jeong**

L. Introduction

It is well known that if a linear regression model has disturbance terms
generated by a first order autoregressive process we can transform it into a
standard linear model by use of the transformation matrix.
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where p is the autoregressive coefficient. (See (3, p. 67J, [4, p. 260], (5]
and [7, p. 253]).) The matrix T is related to the covariance matrix of dis-
turbance terms by

(1.2) Vw)=0a* (T'T)™*

where « is the vector of the disturbance terms, and ¢,2 is defined later. We
can easily verify that the matrix T is really a correct transformation matrix.

We can get V(u) directly from the definition of autocorrelation. Because
V(«) is a positive definite symmetric matrix we can apply the procedure of
triangular decomposition or Cholesky’s method to get the inverse, V-1(x).
(See [6, Sec. 1-4].) Because V~'(w) is a positive definite symmetric band
matrix of width 1 (see eq. (2.20) below), the Cholesky decomposition into
lower triangular matrix with positive diagonal elements gives ¢,7 which

has the same band width, 1. (See [6, Theorem 1-13).) Thus we get T
from V().

*The author is grateful to Prof. Donald Ebbeler for useful comments and suggestions.
**¥The author is assistant professor of economics, Seoul National University.
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The same procedure applies to higher order autoregression models. But
the procedure of derivation of 7' from V() is tedious and inefficient even
for the first order case.

In this paper I will develop an alternative procedure which leads to the
matrix 7 directly in a more efficient way. Here I will illustrate the proce-
dure for the first and second order antoregressive models. The extension to
higher order models is straightforward.

II. The First-Order Autoregression Model

Assume that observations are arranged in the order of successive time
periods. Assume that the disturbances are generated by a first order auto-
regressive process which is described by the following equation:

Q2.1) wy=pu_tu, t=-—2, =1, 0, 1, 2,000
where

2.2) eI,

(2.3) E(v)=0,
and

(2.4 V(v)=04% Cov(v,v,)=0 for s+t.

An implication derived from (2.1) is

(2. 5) uz:Uz“FP'Ur#l'l‘ p2v2_2+ ......
from which we get

2
2.6) Viuy=E@)=—12"

and especially when =0,

Q.7 Vi=—%
i =
Now, the equation (2.1) can be rewritten as
Ve== 1l + Ut
or in matrix form for n observations,

v -p 1 0 Qw0 0 07 Uy
Vy 0 —p 1 00 0 0 ] )
(2.8) | - = e y
0 0 0 0 —p 1 0°
Ul 0 0 0 00 —p L_“ o

If we define
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w=v+ pliyly,
where i, is the first column of the n-th order identity matrix, then the rel-
ation (2.8) becomes
(2.9) w=Ru.
Because R is nonsingular we have
(2.10) u=R1w
(2.11) V)=RV(w)R'".
But because v and u, are uncorrelated, by (2.1) and (2.4) we have, from
(2.12) w=v+ puyiy,

2y 2

(2.13) V(w)=V(®) + p2V(up)iri) =ag2l+ {’ ”‘;’Z-i,iy

where the second equality is due to (2.4) and (2.7). If we define a matrix

1
!ww/lmpz 0 Qeeveen 0 J1=p% 0 Qeeveee 0 i
S'——r 0 1 QrereeeQ Cor §ie 0 1 Qreeens 0
| o 0 j 0 0 0 Toreors 0
|
0 0 0-01_ _ 0 0o o 1

then the relation (2.13) becomes
(2.14) Viw)=a2572%
Returning to (2.11) and utilizing (2.14) we get
(2.15) V(u)=0?R1S"2R".
Because S or S72 is a positive definite diagonal matrix we get
R™I82R' 1= RIS YRS 1) =(SR)"'(SR)' ' =(T"T)!
where
(2.16) T=_8R.
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Therefore we have

(2.17) V(u)=o2(T'T)"!
and

(2.18) V¥ (u)=0,2T"T.

Now, let us evaluate the matrices, 7,V-!(x) and V(x). From the defini-
tions of S and R, we get

M\/l‘j‘bz 0 Qeereeee 0 07
—p 1 Qeeeoes 0 0
3 — l ...... 0 0
(2.19) T=SR=" f
: 0 0 Qe 1 0
0 0 0-—p 1_

Thus we derived the transformation matrix (1.1) before we have V(u).?
Using (2.19) we evaluate

(2.200 VW (w)=0,2T"T=0,"2

00 Qe 0 —p 1

] 0 pz ...... p”_z p“vl—
0 1 0 e p”‘3 p"_z
2 P n—4 n—3
.2 V=12 F 0 1 e
pnvz pn~3 pn-4 ......... 1 0
_pn~l pn'Z pn*3 ......... P 1 __‘

71) We sometimes have a special fourth-order autoregressive process
ut:Pui—4+'U!, t:---~--—2, ._1’ 0’ 1' 2’ ......
for quarterly data. (See (8]). In this case the transformation matrix T, is obtained by simple
modification of T
Ts=SRy=(SX L) (RXI)=SRxL;=T x1I,
where Xis the Kronecker product, and S;, Ry are matrices S and R of the model.
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II. The Second-Order Autoregression Model

Assume that the disturbances are generated by a second order autoregres-
sive process described by the equation,

(3‘ D U= Py Polhy_pFVpy B enees -2, —1, 0, 1, 2,00
where p, and p, satisfy the following constraints:
Pzt 01<]
(3.2) ps—pr<l
~1<p,<1.

Further we assume that
(3.3) E(vo=0
3.4) V@) =a, Cou(vs,v)=0 for s#i,
We can derive from the above that (see [2, pp. 60-62])

- 2

(3. 5) \/(uz)—': :]l‘l'z: —(i“:%z'j:ﬁ
and
1 ede
I+p A--p?—pd
Especially we have the covariance matrix,

2 —

G.7) V= ljp: (1“1‘:%2”“1012 [;1 o 1*‘2;]

where u°=(u_,u,)’.

(3.6) Cov(uy,u,-1)=

Now equation (3.1) can be rewritten as

V== Polly_y— Prthyy Uy, Ee=rerer—2, —1, 0, 1, 2,00
or, in matrix from for n observations,
T T —p — 1 Qeveree 0 0 ]—‘u_l“'
I S o
V3 0 0 —ps —preeee 0 0 uy
e |
U 0 0 0 0 —p 11 _u _
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u=Quy t, ug *++ un)’
and
w=u+ p.°,
then the relation (3.8) becomes
(3.9) w=Ru,

Because R is nonsingular we have
(3.100) u=Rw,
Therefore if we have the covariance matrix of w, V(w), we can express
the covariance matrix of « as
(3.11) V{u)=R*V(w)R',
But
(3.12) w=v+Pu®
and v and «° are uncorrelated. Therefore we have

a2 1 1'p2 o1
(3.13) V(w)= V(@) +PV@)P =02l =20 — -y Pr=0yQ
l’f'pz (1"“02) — P 01 l—pz
where
Qu 0
o[, 4
0o I
and
0 1 1 1—p; 0102 }
n= NS RY Y] 2
It (=p)®—0® |, A—02) —p(1+p:%.

The inverse of Q,; is

G0 0, A+ [A—p2) —p1+p3)] —(l-i-pz)Ple]
. 1n =

2

- (1+Pz>.olpz 1—p0.

Because Q or ;7! is a positive definite symmetric matrix under condition
(3.2), we can find a triangular matrix s;;, such that
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su 0
Sp= { } , $..>0, 1=1,2,
331 a2
and
, s b 5g1® Sp1800 .
Sn Suf:“ =t

S21822 S22

The result of this evaluation is

G VL —p?— ) A +p)/(1—py) O ]
Oy = B
~ N/P]"’pg?(l |’p2>/(1 “{)2) ’\/1 - p22 J
If we define
Sy 0
kq:: { 1
o 1)

then
(3.15) Qu=38, '8! and Q=S"15""1,
Combining (3.11), (3.13) and (3.15), we get
(3.16) V(w)—e’R 'S 18" R/ - 1—-g2(T'T)"!
where
(8.17) T=S8R,
From (3.16) we can easily see that
(3.18) V- u =0y 2T'T,
Now the evaluation of matrices 7', V-'(x), and V(w) is straightforward.
From the definitions of S and R we get

, S11 0 Rll O SllRll 0
(3.19) T=SR- [ } ( }*[ ]

0 I) Ry Ry Ry Ry

{51 0 0 Qrevers wnenes 0 0 )
S217 01522 Sag 0 Qureenr wueees 0 0 ‘I
p2 ....... : pll ...... 00 ....... 0 |
=0 Py Py Lo eennee 0 0
6 .............. 0 ....... ; ) ...... 0 1 ....... () |

0 0 0 0 —p2 —on 1)

where

S21~ P1522== — v/ p,2(1+ p0) /(1 —pa).
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The matrix 7T transforms a second order autocorrelation model

(3.20) y=XB+u
into a standard linear model

(3.21) Ty=TXB+Tu
in the sense that the covariance matrix of the disturbance vector, Tu, is a
scalar matrix, i.e.,

(3.22) V(Tw)=TV() T =alT(T'TY) T =02 TT AT 1T =g2. 2

If we want V-'(x) and V(«) we can evaluate them according to (3.18)
and (8.16), respectively.
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