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Introduction

The purpose of this paper is to derive the distribution of the sum of squares
of least-squares (LS) residuals, e’e in a linear model, and the distribution
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of the LS variance estimator, s?, under serial correlation. Goldberger [1964,
p. 242], Johnston [1972, pp. 248-49], Malinvaud [1970, Sec. 13.4], and
Theil [1971, pp. 156-57] have discussed the bias of the variance estimator,
s?, under serial correlation. But no one seems to have discussed the
higher moments of s? under serial correlation. In this paper we shall show
that the increase in the variance of the variance estimator is very important
under serial correlation. Based on the new findings we shall show that the
chi-square test for the variance of disturbances may not be robust under
serial correlation.

For this purpose we need some new tools which will be devised in Section
I. The tools include the minor diagonal operators, the unit minor diagonal
matrices and the minor traces. For this purpose we also need some new
properties of the matrix M=I—X(X"X)~'X’, where X is the observation
matrix of explanatory variables. The central role of the matrix M in regres-
sion analysis is well known. But it seems that the properties of M have
not yet thoroughly been analysed. In Section II, we shall explain some new
properties of matrix M in terms of its minor traces.

Alternative models of serial correlation and properties of a quadratic form
in normal variables will be discussed in Appendices.

1. Useful Analytical Tools

In this section we shall derive some tools to be used in subsequent
sections.

1.1. Minor Diagonal Operators
The sth minor diagonal operator 4. is defined by

(1.1) ASA:B’ 321;2,"'3”'—15

where A and B are nX#n matrices and B is a matrix whose diagonals, s
elements above and s elements below the main diagonal, are the same as
those of A, and the other elements are all zero. The zeroth minor diagonal
operator is defined as

(1- 2) Aa:A;

where 4 is the diagonal operator which transforms an »X# matrix A into
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an znxn diagonal matrix B whose diagonal is the same as that of A:
€3 4A=B,
The complement of 4,
Q.9 4=1-4
will be called the off-diagonal operator, Some properties of the minor
diagonal operators and the off-diagonal operators can be stated as follows:

(1.5) 4,(aA+bB)=ad A+b4.B, 0<s<n,

(1.6) 4,(4,A)=8,,4,A, 0<s, t<n,

(1.6)'  4dA=24A=0,

a.m 4AAB—=4(4A)B=(44)(4B),
where @ and b are scalars, and 4. is the Kronecker delta function. For
further properties and applications of the diagonal operator, see Jeong

[1975].

1.2. Unit Minor Diagonal Matrices
The sth unit minor diagonal matrix, D, is defined by

1.8 D=4, s=0,1,2, +reeees n—1,
where ¢ is an #x 1 sum vector, [111-++-++1 1]/, The zeroth unit minor diagonal

matrix, Do, is I,, the nth order identity matrix, by the definition of ..
The unit minor diagonal matrices have the following properties:

1.9 D=D/, s=0,1,2, ,n—1.

(1' 10) ‘DS‘D‘:DI-—S_‘"DHS—BSM
DtDs:DI—s+D/+s—B,5, 0<S<tén/2'

(1' 11) D32:2In -+ -DZs_Csa 0<S<n/2,

where
"0y, 4-91;, 0 0 O -
1.12) By=| 0O 0000 , 0<s<t=n/2,
._.o 0 O Is Osa(t—s)_
119 ¢ 800 | <<
1.13) C;= y 0<s<n/2.
_00 I,_{

The orders of null matrices in B« and C; are determined conformably. If
n>>>s, t, then B« and C are negligible. Therefore we have

(1- 14) DsDtiDi—s+Dt+si—Dle, O<S<f<n/2,

so that D; and D, almost commute, and



The Distribution of the LS Variance Estimator — 307 —

(1.15) D221+ Dy, 0<s<n/2.

Remark: From the properties above we are tempted to define Ds=2I,, since

the properties of the unit minor diagonal matrices can then be stated simply.

But the present definition is convenient in other context as we shall see

later. 4
Let E; be a lower triangular matrix of order » defined by

wie  Ee=[1.0]) 0<s<n
where the orders of null submatrices are determined conformably. For con-
venience we shall denote the transpose of E: as E_.. Further we shall define
1.17) Eo=1I,
The E; matrices have the following properties:

1,18 E.E=E, ,, —nls, t, s+i1<n.
(1.19) E+E_—=D,, 0<s<n.

1.3. Minor Traces
The sth minor trace of an #xn square matrix A is defined by

1.20) triA=trD,A, s=0, 1, 2, -n—1.

By the definition of Do, the zeroth minor trace of A is rA. The above
definition of an sth minor trace of a matrix amounts to the sum of ele-

ments of diagonals s elements above and s elements below the main diagonal
of the matrix. In this context it is interesting to recall a property of the
trace of a matrix,

(1.2 trAB=1¢(A*B"):
given in Rao and Mitra [1971, p. 12], where * denotes the Hadamard
product such that

(1.22) A*B=[a;;1*[b;;]=[aihi;].
Using this property we have

(1.23) tred=irD A=t (DF*A )= (D ¥ A)e.

The minor trace operator has the following properties:

1.24) trs(aA+bB)=atr,A+-btr B, 0<s<n.
(1.25) tr AB=1trD,AB—trBD.A+trAD.B=trD,BA=ir,BA, s+0.
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(1.26) tri D, =2(n~5)0g, 5,0,
L.27 trsB = (n—5)8y, 5,t>0.
where a and b are scalars, and 4, is the Kronecker delta function. As
(1.24) shows the minor trace operator is lincar, but as (1.25) shows it
has no commutative property in general except for s=0.
1.4. Autocorrclations and Cross Serial Correlations
Let x; be an nx1 vector,
(1.28) X = [ Taivree o Zui]’y 1221, 2, 00eee k.
The normalized vector of x: is defined by
(1.2 x*=n"12514x,,
where A=1I,~»1/, and s?=n"'x;Ax;. As we shall see in Section II, if x; is
an nX1 sum vector, ¢, then it is convenient to define the normalization by
(1.30) xFompl 2,
The sample analogue of the sth autocorrelation coefficient of x: is defined

by

(1.31) f'i,',,;:“%‘xi*,sz,'*, i:1,2, """ ]C; 0<S<7Z.
1.32) Piye=XMX ¥ =1, i=1,2, ek
The sampling analogue of the sth cross serial correlation coefficient between
x: and x; is defined by
(1.33) rij,s:lx*,-’sz,-*, i,_i:1,2, """ k; 0<S<72.
a.30 Pipo=0i =X ¥ %%, 0,j=1,2, ok
In practice, s should be small compared to z, say, less than 1n.
Remark: The usual definition of the sample analogues of autocorrelation

and cross serial correlation coefficients is
(1.35) rij,s*:jg.x,,-*x,,H,j*:x,-*’E_sxj*,
and conventionally it is assumed that
K1.36) Tigss S jigms iy ¥y,
fo/r/ example, see Malinvaud [1970, p.516], But this assumption is not

. necessarily consistent with the definition (1.35). From (1.35) we have

.37 Tips =X M E_x ¥ = (M E_x*) =x M B _x* =% EX*=r;,.*
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Therefore the first and the third equalities in (1.36) hold. But the second
equality holds only when i=j.
From the property (1.19) of Section 1.2, we have

(1.38) Pips=h XX DxF= L (6 E_x¥*+ 2 Ex*) =1 (rij* +rij-%).
Therefore for i=j, ri,=ru*, and the statement,

(1.39) P45 T jiy—s =7 jiss=Tijy~s
always holds.

1.5. Minor Diagonal Decomposition of a Correlation Matrix

Let P be an nxn correlation matrix such that
(1. 40) bi=pu=p; if li—j|=|k—I|=s.

Then we can decompose it in terms of minor diagonals as follows:
n—1 n—1
1.41) P:ZOAS P:‘QPSDS: =1,

i.e., P can be expressed as a linear combination of D.’s. As we shall see
later, we sometimes encounter the cases where we should evaluate the trace
of a matrix product PM, where M is an zxn matrix. Using the decompo-
sition (1.41), we have

1.42) trPM=tr ("f_; p:Ds) M:"j:pstrsM,

i.e., the trace can be evaluated from a linear combination of the minor
traces of M.

II. Analysis of the Matrices X and M

2.1. Introduction
Let X be an nXk observation matrix of explanatory variables with full

column rank such that
@.1D X=[x; xg0eeee x]=[cZ],

where xi, i==1,2, «+++++ k, are nxX 1 vectors and x,=:. Let us define the matrices,
2.2 L=X(X*X"1X', M=I-L.

These matrices, especially M, are very important in regression analysis. A
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well-known property of L and M is that each is an idempotent matrix:

R=X(X' X)X X(X' X)X =X(X'X)" X'=L,

@3
Mi=(I-L)*=I-2L+L*=I-L=M.

Since L and M are idempotent, their corresponding ranks are the same as
their traces:

rank(L)=trX(X'X) 1 X' =tr (X' X) "\ X' X=2rI,=1,

@
rank(M)=tr(I,—~ L)=trI,—trL=n—*%.

The properties of L and M given above almost exhaust the properties
which can be found in the literature. Contrary to the importance of M,
inquiry into the properties of M seems not yet satisfactory. In this section
we shall investigate the properties of the matrix X and its derived matrices,
such as L or M rather thoroughly. Specifically we shall relate the properties
of L or M with the properties of the columns of X. The investigation starts
with the following theorem.

2.2. A Theorem
Theorem: If A* is a £x% nonsingular matrix and if we define

@5  X*=Xa*
(2' 6) I¥*=X* (X*’X*) —1 X%
Q.7 M*=I—L*,
then
2.8 L*=IL
.9 M*=M.,
Proof:
L*:X* (X*IX*) —-IX*I:XA* (A*/XlXA*)*lA*IXI
= XA*A* (X' X)) AM AV X =X (X' X) 1 X' =L,
Mr=I-L¥=I-L=M. Q.E.D.

This theorem says that any linear combination of the columns of X, so
long as the rank of X is preserved, can replace a column of X without
altering the resultant matrix L or M. For example, we can multiply a
column or add a multiple of a column to another without altering L or M.
Since some important quantities, such as the sum of squared residuals,
derived from the LS regression depend on X only through L or M, the
implication of this theorem is significant.
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2.3. A Normalizing Transformation
The above theorem is valid for the nonsingular A* defined by

Q-1
2.10) Ar=y102 [(1) z g:_l]
where
@.1D 2 =%y Tgreree Fl=nWZ
—s, -
R 535 O
(2. 12> Sz: . :(n—IAZIAZ>1,2
o - 5

2.13) A:I,,——-n‘ln’.

If we postmultiply X by A* defined by (2,10), then we get
Q2.1 X*t=XA¥=p 12 7] [1 —z’S,‘l]
0 S,

=n"2[e VA RRES? 4
==p-12¢ AZS, V]

(2. 15) X# Xk =y [s glz,A] [¢ AZS, 1]

=pn"1 [ e JAZS, ! :l
S, 1Z'Ac S, Z'AZS, ™!
sz
— |0 #7187 1Z'AZS, !
since
2.16) Ai=0,
and
.17 de=n.
From (2.14) and (2.15) we get
2.18) ! X#=y 2y fAZS, V] =[n172 0]
2.19) AX* X*= [1 14 :|
0 w8, (4Z'AZ)S, !
/
= [10 Sz—1sozzsz—1:| =1,
From (2.18) and (2.19) we conclude that the columns of X*, x*’s, are
normalized vectors in the sense defined in Section 1.4. Therefore the
matrix X* X* is the correlation matrix R of the columns of X:
I—l 00 00"

’ 0 1rygraera
(2.20) R=X*X#*= {10 gz] :‘ 0 793 17y ra

0 rorrar a1 _
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We also observe that R=I: if and only if the columns of X are uncor-
related.
2.4. Evaluation of the Matrix X’X and Its Inverse
From (2,10) we get

con 4=t [fE
Therefore we have

(2.22) X/ X=AX 1 X XF*A* 1= E %I] [}) zoej [}) §/] =" E SZR:S’Z—FZZ’]

@ X =arcxexnav=r [ 7750 [ 2] [Lsn S0

L [14+2/S,-1R,18, 71z —2'S,IR,1S, 1]
=n [ SR8,z SRS .

Specifically if xs are centralized so that z=0 and/or if x/’s are uncorrelated
so that R.=I,;, then the expressions (2.22) and (2.23) become simplified.

9.5. Lagged Serial Correlation Matrices of Explanatory Variables
As we have defined in Section 1.4, the sampling analogue of cross serial
correlation coefficeint of x: and x; at lag s is given by

(2.24) Fine= kXX DxF, i, f=1, 2, ek 0<s<Kn,
If i=; then it is autocorrelation at lag s. Therefore we may call the matrix,
(2.25) R=4X¥D.X¥*, 0<s<n,
the serial correlation matrix of explanatory variables at lag s.
Malinvaud [1970] defined a matrix which is essentially the same as
(2.26) R¥*=4L(X*XY'X'D.X,

and he said (in our notation):
“The R#** appear so to speak as autocorrelation matrix relating to the =
vector of the exogenous variables X.” (p.516)
But this expression seems to be unsatisfactory. If we define a matrix R:*
analogous to (2.26) as

.27 R*= 4 (XM X*)-1X% D X*, 0<s<n,
then

(2.28) RF=LF A*1( X' X)X’ D XA*=A*"\R¥* A%,
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Therefore

(2.29) trRF*=trR ¥,
But in general

(2.30) R*+R*

except when £=2,

If the columns of X are uncorrelated then R#*=R,. If the columns are
moderately correlated, then Rs* is approximately the the serial correlation
matrix of explanatory variables at lag s. But R#** is not.

2.6. Evaluation of the Minor Traccs of L and M
In this section we shall evaluate the minor traces of L and M in terms
of correlation coefficients of the columns of X.
When k=2. In this case the columns of X are always uncorrelated so that

2.3 X¥ X*=I,

Therefore
(2.32) L=X*X*,
(2.33) tr L= tr X* X5 = (36,2 %+ 0,¥X,%0) =X ¥ 00 %+ 20, % X% =2,

2.3 trM=n—trL=n—2,
The sth minor trace of L is

(2.85) troli=tr X* X% —tr D, (¥ X, % + x%,x%,7)
=X,% Dy ¥+ X% DX p* =2(r11,5 +72955), 05Kt

and the sth minor trace of M is

(2.36) tridM=—tr.L, 0<s<n.

When Columns of X Are Uncorrelated. This is a simple extension of the
previous case. In this case

2.3 X* X*=1I,,
Therefore

(2.38) L= X*X*,
(2.39) trL=tr X* X*=trI,=k,
(2. 40) trM=n—trL=n—k.

The sth minor trace of L is
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(. 41) trsttrDsX*X*’:trX*’DsX*:ikglx,»*’sz.-*=2;Z;r,~;,5, 05 <y
and the sth minor trace of M is
@4D) M=t L= =23 ri 0<s<<n,

When k=3 and r,570. In this case

o
e amxri=[hgol
where
r =1 — —
aw  mm [ mamn [t Y stam [ 7Y
(2.45) r=rys.
Therefore
0 0 0
(2. 46) XX I=L+r/Q—7) 0 r —1
_0 ~-1 r_
2. 47) L=X*(X#¥X*)-1X¥ = X*X* - [,
where
0 0 0| [Tx¥T
(2.48) Lo=r/(1—rD)[x* x.* %] 0 r —1 x,*!
0 =1 r_| _x*_

=r(1=r) 7 Hr (e XX + 205%x5%) — (x%%05* + x05%x,* )]

Since we have already evaluated the minor traces of X*X*’, to evaluate
the minor traces of L we only need to evaluate the minor traces of L.,
(2. 49) trLy=r(1—r*)"*(2r—2r)=0,
(2.50) trg=r(1—r®) " {r(%;* Dsxy* + x3* D;x3*) — 2%:% Dsx5*}

=2r(1—rB) " (rrogys+ 1733,5— 2ragys)
Therefore we have

.51 trL=tr X*X* +trL,—3,
(2- 52) trsL:trsX*X*,"'trsLa:Z<rlhs+r22,s+r33,s)
+ 27(1 ——7‘2>—1<7‘7‘22,s + rT33ys —27‘23,5> .

In the case when the terms in (2.50) tend to cancel out each other, tr.L
tends to be equal to tr:X*X* even when x, and x, are correlated. We may
expect this case frequently in economic data, see Ames and Reiter [1961].
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As before we also have

(2.53) trM=n—3,
(2.54) trdM=—trL.

When Columns of X Are Uncorrelated Except the Last Two. In this case

0,20 0
(2.556) (XX 1= +4r/(1—7r®)| 0 71~—l
_0~1 7r_
where
(2.56) r=rp-1sk
Therefore

(2.57) L= X* (X XH) T XX = X* X 4 L

where
(2.58) Le=r(L—rB)Hr (e ¥ ¥ + 2% 50,%7) — (0¥, ¥ -1 X%, %))

By the same manner as for (2.49) and (2.50) we have
(2.59) trL:=0),
(2.60) irsLe=2r(1 =17V (rrp—toh—15s F 1 kss— 2 b Lohrs) e

Therefore we have

2.6D) trL=k,
3
(2 62) trsL:trsX*X*,"l'trch:zz;Jrii;s+2r<l _rz>—1(rrk—1:k—1’s +rrkk’s_27'la-1’k,s),

(2.63) trM=n—k,
(2.64) troM=—tr.L.

When the terms in (2.60) tend to cancel out each other, tr.L tends to be
equal to & X*X* even when the last two columns of X are correlated.

When Columns of X Are Uncorrelated Ezxcept the Last Three. Assume that the
last three columns of X are correlated with common correlation coefficient

r. Then we get

T 030 0 O

i [T e 07 _ r(]_-—r) 0 2r —1 -1
(2.65) (X¥X¥*)1 = [ok s Rc-—l] =1, +-’1'T2+273“ 0 —1 2r —1

0 —-1-1 2r
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with
T1rrT
(2.66) R=| r1r
_rrl_
Therefore

2.67) L=X*(X¥X*)~1X *=X*X* | L,

where
(2.68) L= o {28 (R g X g™ - X0 X0 Y R 20 ¥ 2 *)

— {2 %) 205 ® A (o™ + X *) X0 * A+ (X p* H X *) 2 ¥)]

The minor traces of L. are

(2. 69) trLc:-m-l{—%l;;j%g (67 —61)==0,
@2.70 trch:“i 2%1;;_[7_‘;3’ {27 (Phogsbmgss T Tlm ko135 T Fhitss) — 6775}

where we assume that ri.s for i,j=k—2,k—1, k; ij, are all equal to r,.
Now we can evaluate the minor traces of L and M:

2.7D trL="F,
k
2.72) troL=tr X*X* +tr,L,— 2;1;«“-,3

+% {27<rk—2’k—2:s +r/.'—1:k-—1,s+ rltkas) _67'5} ’

.73 trM—=n—Fk,
2.74) troiM=—tr,L.

When the terms in (2,70) tend to cancel out each other, #r,L tends to be
equal to & X*X* even when the last three columns of X are correlated.
We may expect this case frequently in economic data, see Ames and Reiter
[1961].

In general, even when the columns of X are correlated the specific cases,
(2.52), (2.62) and (2.72), and the specific examples given in Table 2.1
suggest that correlation may not have much effect on the minor traces of
L or M. Therefore we may reasonably assume that (2.41) and (2.42) are
good approximations for the minor traces of L and M even when the
columns of X are moderately correlated. This assumption often leads to
useful analytical results.
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Table 2.1. Minor traces of matrices L and X*X*#
Data Sets Trace try tra  trg try irs tre tre

(A) Spirits n=20, k=3, max r;;=0.89

L 3.00 4.64 3.07 2.04 1.58 1.49 1.41 1.27

XX 3.00 5.21 4.34 3.55 2.80 2.17 1.7 1.35
(B) Textile n=17, k=3, max rij=0.22

L 3.00 5.04 3.85 2.46 1.43 0.66 0.18 —0.09

X X# 3.00 5.11 3.99 2.61 1.51 0.66 0.10 -—0.19
(C) Pears n=16, k=5, max ri;=0.69

L 5.00 3.20 4.20 1.56 1.66 0.04 —0.34 0.70

XX 5.00 5.86 5.31 2.28 1.33 —0.26 —0.83 —0.57
(D) Consumption n=21, k=3, max r;;=0.63

L 3.00 4.75 3.58 2.65 1.95 1.30 0.86 0.45

Xt X 3.00 4.53 3.19 2.09 1.40 0.73 0.22 —0.08
(E) Trend n=21, k=2, max ri;=0.00

L 2.00 3.62 3.24 2.87 2.50 2.15 1.81 1.48

XX 2.00 3.62 3.24 2.87 2.50 2.15 1.81 1.48
(F) Artificial(1) n=30, k=2, max r;;=0.00

L 2.00 0.00 3.73 0.00 3.47 0.00 3.20 0.00

XX 2.00 0.00 3.73 0.00 3.47 0.00 3.20 0.00
(G) Artificial(2) n=30, k=3, max ri;=0.06

L 3. 00 1.80 5.33 1.40 4.67 1.02 4.03 0.65

X*X¥ 3.00 1.80 5.33 1.40 4.68 1.02 4.03 0.65

For the description of data, see Appendix IIL

9.7. Commuiability of D, and M
Consider the case when the columns of X are uncorrelated. In this case
we get from (2.38),

(2.75) L:X*X*':é —
Consider the matrices, x#x*/, i=1,2, -k The trace is
(2.76) rxrx =x*x*=1.

Therefore the average magnitude of the diagonal elements of x#x* is n~1.
From (2.24), the minor traces are

Q.7

LroX XXX =X X DX X =21

Therefore the average magnitude of the elements of the sth minor diagonal
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of x*x* is
2.78) (=) riiss=n"Hnriiys/ (n—9)}
which is less than »~! in absolute value.

From the above reasoning, if the columns of X are uncorrelated, it
follows that the average magnitude of the diagonal elements of L is %/x,
and the average magnitude of the off-diagonal elements of L is less than
k/n in absolute value. Since M=I—L, the average magnitude of the
diagonal elements of M is (n-£)/n, and the average magnitude of the
off-diagonal elements of M is less than £/ in absolute value. Therefore,

for moderately large » and small %, the matrix M resembles the identity
matrix I» under certain regularity conditions, so that

2.79 D,M=MD;,

i.e., D, and M commutie approximately.
The statement (2.79) can be strengthened further if we can say that Ds
and L commute at least approximately, or,

(2.80) D L=LD..
Two important cases may be considered. If x: is stationary in the sense

that x; is evenly scattered around the average, z:;, without trend, then
the matrix x*x*' is approximately a linear combination of D,s. If

this holds for all x;, i=1,2, %, then by (1.14) in Section 1.2, the property

(2.80) holds.

Another important case when the property (2.80) holds is when the
matrix X consists only of a constant term x; and a trend or an arith-
metic progression X,:

(2.81) X=[x; x,].

Then we have
(2.82) L=X*X*=x*x* 4 %,¥X,*'.

Let us denote the vector x,* or x,* simply by x such that
(2.83) x=[z; z3 - Za]'.

Let us define

2.84) xx'=Y=[y;]
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(2.85) D,Y=Y= [ysij] .

If we can show that Y: is approximately symmetric, then D, and Y com-
mute approximately and, in turn, Ds and L commute approximately.
Therefore we shall prove that Ys is approximately symmetric.

The (.Hth element of ¥s is

(2.86) Vsij=itsrj+Yicssis $<by JER—S.
But the (G,j)th element of Y is

(2.87) Vij=xiZje
Therefore we get

2.88) Vsii= Lo+ BimsTi= (Ligs + Tivs) Tjo
For our specific x,

(2.89) Ti—Zis=Tiys—Ti,
or

2.90) Zipst Ties=2T;, sISN—S.
Therefore (2.88) becomes

(2.9D Vsij=2xi%j, s<ISn—Ss.
Likewise,

(2.92) V55— 2TiTi=Ysijy SIEN—S.
Therefore, if # is large and s is small compared to 7, then

(2.93) D, Y=YD,

and (2.80) holds.

In sum, if the explanatory variables are composed of a constant term, a
linear trend, and stationary variables, and if they are uncorrelated, then
(2.80) holds and (2.79) holds fairly accurately. In many cases we may
expect economic data which approximately satisfy these conditions.

Even when the columns of X are correlated, the specific cases, (2.47),

(2.57), and (2.67), suggest that correlation may not have much effect if
multicollinearity is not too extreme. Therefore, even when the columns of
X are moderately, correlated we may reasonably assume that D, and M
approximately commute. This assumption often leads to useful analytical
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Table 2.2. Comparison of traces of P2M and (PM)?

Data (n, k) P trP*M tr(PM)?

0 11. 00 11.00

Pears 0.3 9.50 9.30
(16.5) 0.5 8.38 7.75

0.7 6.22 4.93

0 14.00 14.00

Textile 0.3 11.85 11.75
(17.3) 0.5 10.57 10.15

0.7 8.25 7.08

0 17.00 17.00

Spirits 0.3 15.97 15. 86
(20.3) 0.5 16. 56 16.08

0.7 16.01 14. 41

0 19.00 19.00

Trend 0.3 18.81 18.76
(21.2) 0.5 19.99 19.72

0.9 19.27 18.18

0 18.00 18.00

Consumption 0.3 16. 87 16. 68
(21.3) 0.5 17.34 16.51

0.7 17.33 14.75

0 28.00 28.00

Artificial(1) 0.3 32.10 32.08
(30.2) 0.5 40. 69 40. 61

0.7 56. 87 56. 41

0 27.00 27.00

Artificial (2) 0.3 29.06 29.01
(30.3) 0.5 33.74 33.50

0.7 38.76 37.55

P is generated by the AR(1) process. For the description of data, see Appendix III. For alter-
native patterns of serial correlation see Appendix I,

results.

Commutability can be extended further: a matrix, which is a linear
combination of D/s, and M commute approximately. Especially, the
autocorrelation matrix P and M commute approximately:
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(2.94) PM=MP,

since P is a linear combination of D’s as we have seen in Section 1.5. A
direct consequence of it is the property,

(2.95) tr(PM)?=tr PMPM==tr P2M2=¢rP’M.

For the accuracy of this approximation, see Table 2, 2.

III. Distributions of e’e and s? under Serial Correlation

3.1. Introduction

Consider a linear model,
3.1 y=XB+u, u~N(0O, ¢*P)

with » observations and % explanatory variables (including a constant
term) and the autocorrelation matrix,

@2  P=%pD.

If we denote the vector of LS residuals by e, then
3.3 e=Mu, M=I-X(X'X)X,
and the sum of squared residuals is
3.4 ¢’e=u’Mu.
The LS variance estimator s? is given by
(3.5) s>=(n—k)"1ele.
It is well-known that if disturbances are serially independent, then

(3.6) ee~a??(n—k),
3.7 st~ (n—k) 16?2 (n—k),

so that

3.8 E(e'e)=(n—k)c?, Var(e'e)=2(n—k)d",
and

3.9 E(s®=0?, Var(s=2n—Fk)"1*,

But if the disturbances are serially correlated, then the properties, (8.6)
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to (3.9), are no longer true.

As (3.9) shows, s is an unbiased estimator of 's2 under serial independence.
Goldberger [1964, p. 242], Johnston [1972, pp. 248-49], Malinvaud [1970,
Sec. 13.4], and Theil [1971, pp. 256-57] have discussed the bias of the
LS variance estimator, s?, under serial correlation. But no one seems to
have discussed the higher moments of s* under serial correlation. In this
section we shall derive the distributions of e’e and s? under serial correla-
tion and consider the effect of serial correlation on the test for o2

3.2. Evaluation of the Moments of e’e
Since e’e is a quadratic form in normal variables, its moments can be

evaluated in terms of traces of (PM)’, see Appendix II. The first two
moments are

(3.10) E(e’e) =otrPM,
(3.11) Var(e'e)=204tr (PM )2==24%tr P2M.

The approximate equality in (3,11) follows from the argument given in
Section 2,7,

According to the arguments in Section 1.5, we have
@.12)  trPM=5pirM=trM+ L pirM.

Due to the properties of the unit minor diagonal matrices in Section 1.2,
P? can be approximated by a linear combination of Ds’s:

n=1
(3.13) P 2is§)Cst.
Therefore the trace in (38.11) becomes
@10 rPMestrEie, D, M=cir M+ Soyr M.

Thus the evaluation of (8.10) and (8.11) is reduced to the evaluation of
the minor traces of M, which has already been done in Section 2.6.
A straightforward evaluation of ¢,’s is as follows:

38.15) Pr=(I+pDy+ppDytreeeee )?
=1+ (P D)2+ (pe Dy)? - veeeee +2(p1 D1+ Dyt oo )
+20.Dy (P2 D5+ paDy-t -+ )+ 202Dy (p3 Dyt pyDyt-+oneer DR EEIEE
=I+p2QI+Dy) +p2 @RI+ D) +veeee +2(p1 D1+ poDyt-oeee )
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+2{p102(D1+D3) + p1ps(Dy+Dy) + 000001}
+ 2 {paps(Dy+Dg) +pops(Dy-+ D) +vvever} A veene
=1 +2p2+2p2+ veeee I
+ (2pr+2p1ps+ 2033+ -+ ) Dy
+ (P24 2P+ 2p1 b3+ 2papa-t 2pspyteveees D,
+ Cpst 20102+ 2p1p4+ 2P 5+ 3Pt oo YDgerens
+ (PPt 2pat+2p1bs+ 21 P+ 2pape+2paprt e YDy oo

n—1 n—1-s
=§O{Ps + ]Zzill’: (Pi-st 21} Ds
where po=1, and p_=p, Equating the coeficients of (3.13) and (8.15), we
get
<3- 16) Cs==p; +”;Z:1;:st(Pj~s +Pi+s>’ 3203 1, 2, e n—1

If the disturbances are generated according to the AR(1) process so that
3.17D Pe=ps $=0,1,2, +++eer ,

then, from (3.16), ¢, becomes

n—1-—s
(3.18) cs=ps +j§12’>j (Pi-stbits)

n=1-3

s n=1l-s
=Pst 2 PiPi-s T 21 Pibi-s T LPiPis
j=t j=s+1 =1
s, . n=l=2s  p=]-s
=P+ SppI LT+ L pipt
i=1 =1 i=1

=p5+sp5+2:§1p5p2f
={l+s+20%/ A=) p'={s+ A +pH/UA-pD}p,,  $=0,1,2, <<l
Specifically,
(3.19) c=1+pD/(1—p.

If the disturbances are generated according to the MA(1) process so that
po=1,
(3.20) p=p,
5=0, s>1,

then, from (3.16), ¢’s become

co=1+2¢%,
01=2P7
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3.21) cs=p%
=0, s>2.
For alternative patterns of serial correlation, see Appendix I.
Specific results need specific assumptions. From now on, unless otherwise

specified, we shall assume that

p=p’ s=0,1,2,

rii’s:r;‘j'y i:L 2;”""k; s=0, 1, 2,

(3.22)

------

rij,szoy ii]’ 320,1,2,
Then, from (3.10), (3.12), and (2.42), we get

n—1
L(e'e)=0c%trM-+o*Y pir.M
$=1

(3.23)
n—1 I3
=a*(n—k) — ZUZle“;rf,-‘
“=e?(n—k)— 20%% s‘;l( pri)t
=c'(n—k)(1—d),
where
@2 d=20-BD S/ A—pro),

From (38.11), (3.14), (8.18), (3.19), (3.22) and (2.42), we get

Var(e’'e)==2¢" [c,tr M+ gészrsM }

(3.25)
=00 {eo(n = B) =35 (s e)p S}
==p0 {c,(n—k) — 2@23: é(co( pri) s prid N}
=20'(n—k) (cy—dy) s
where

(3.26) dy=2(n—Fk)"! {C?:Z}:;Prii/ (1—p7riD -|-:ZIP7‘H/ (A—=pri)¥.

We may evaluate the moments of e¢’e analogously when the columns of X
are correlated. The moments are affected by the correlation only through
the minor traces of M. But as we have seen in Section 2.6, the minor
traces are affected by the correlation only slightly when the correlation is
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moderate. Therefore we may consider the approximation of the moments
of €’e for uncorrelated X also to be a good approximation for correlated X.
In (3.24) and (3.26), as n—, d,,d,—0, so that asymptotically we have
.27 Ee'e)=a?(n—F),
Var(e'e)==2c%,(n—k).
Note that the expressions in (8.27) are independent of X. Asymptotically,
the first moment is the same as that of the uncorrelated case, but the

second moment is not.

3.3. Distribution of e’ec under Serial Correlation
Since e’e is a positive semidefinite quadratic form in normal variables,
we can approximate the distribution by Patnaik’s two moment X* approxi-
mation, see Appendix II. By equating the first two moments of e’e and cx*(f),
we have
ef=a*(n—~k) (1—dy),
203 =20 (n— k) (co~—dy),
or
(3.28) c—0?(eg—dyp) /(1—dy),
S=—k)(1—d)?/ (co—dy).
Therefore we can say that the distribution of e’e under serial correlation

is approximately
(3.29) e'ea?(co—dy) /(1 —d) W {(n—k) (1—d)?/ (co—di)}.

Normally, d; and d, move in the same direction. Therefore the asymptotic
approximation (3,27) may be applicable to the case of moderately large #,
in which case (8.29) becomes

(3.30) eeuale® (n—k) fcy) .

3.4. Distribution of s? under Serial Correlation
The LS variance estimator s? defined by (8.5) is an unbiased estimator

of o% under serial independence. But under serial correlation it may be
biased. Under serial correlation generated by an AR(1) process, we get,
from (3.5) and (3.23),

(3.3D EGHD=m—k)1E(ee)=c*(1—d),
where d, is as defined by (3.24):
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b
d1:2(”—k)—1§11’7“ii/ A —=pri).

d, represents the relative bias of the estimator. If all explanatory variables
are serially uncorrelated then the bias is zero. But it is impossible when
there is a constant term. The bias tends to zero as n increases. Therefore

s? is asymptotically unbiased under serial correlation.
The variance of s% can be obtained from the variance of e’e. From (3. 25),

(3.32) Var(s®)=(n—k)2Var(e'e)==20*(n— k)" (co—dy),
where ¢, and d, are as defined by (3.19) and (3.26). If ¢g—d,=1, then
the variance is the same as the variance under serial independence. As n
goes to infinity d, goes to zero. But ¢, does not go to 1.

Patnaik’s approximation of the distribution of s? leads to

(3.33) 2t (n—k) "1 (eo—dy) /1~ d) X () =0* (1 —dy) F(f,00)
where

(3.3 F(f,00)=f"22(f)
is the “chi-square over degrees of freedom” distribution, and

(3.35) f=m—B1~-d)?/ (cg—dy).
Analogous to (38.30), the asymptotic approximation of the distribution of
s2 is

(3.36) S0 (n— k) "legX2((n— k) /o) =0’ F((n—k) /0, 00).

Table 3.1 gives some idea of the magnitudes of d;, d,, and the effective
degrees of freedom, f. From this table we see that the primary determinant

of fis p, and f is very close to (n—£)/c, even for n—f=30, The last
column of this table is explained in Section 3, 5.

3.5. Hypothesis Testing on o2 under Serial Correlation
As we have seen in Section 3,1, under serial independence s® is distrib-
uted as

(3.37) s2atF{(n—k),00) .
Therefore if we test a null hypothesis,
(3.38) H,y : o®=0,

against the alternative hypothesis,
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Table 3.1. Effective degrees of freedom and true significance level

p rea=rg dy d; ¢t S/ (n-k) f as*
n=33, k=3, a«=0.05
0 0 0 0 1 1 30.00 . 0.050
0.3 0 0. 0286 0. 0750 0. 8349 0. 8405 25.21 0.072
0.5 0 0. 0667 0. 2444 0. 6000 0.6125 18.38 0.129
0.7 0 0.1556 0.9730 0.3423 0. 3660 10.98 0. 266
0.3 0.3 0.0418 0.1053 0.8349 0. 8405 25.22 0.073
0.5 0.3 0. 0902 0.3113 0. 6000 0.6107 18.32 0.135
0.7 0.3 0.1910 1.1214 0.3423 0. 3636 10. 91 0.285
0.3 0.5 0. 0521 0. 1309 0.8349 0. 8422 25,27 0.073
0.5 0.5 0.1111 0.3778 0. 6000 0.6130 18.39 0.141
0.7 0.5 0.2274 1.2932 0.3423 0. 3666 11.00 0.307
0.3 0.7 0. 0640 0.1624 0. 8349 9.8461 25.38 0.074
0.5 0.7 0.1385 0. 4746 0. 6000 0. 6226 18.68 0.149
0.7 0.7 0. 2837 1. 5984 0.3423 0. 3878 11.63 0.345
7n=63, k=3, a=0.05
0 0 0 0 1 1 60. 00 0.050
0.5 0 0.0333 0.1222 0. 6000 0. 6050 36.30 0.130
0.7 0 0.0778 0. 4865 0. 3423 0. 3493 20. 96 0. 261
0.8 0 0.1333 1.2741 0.2195 0. 2289 13.73 0.382
0.5 0.3 0.0451 0. 1557 0. 6000 0. 6035 36.21 0.133
0.7 0.3 0. 0955 0. 5607 0.3423 0. 3465 2079 0.271
0.8 0.3 0.1544 1.3077 0.2195 0.2264 13.59 0.395
0.5 0.5 0. 0556 0.1889 0. 6000 0. 6036 36.22 0.136
0.7 0.5 0.1137 0. 6466 0.3423 0.3453 20,72 0.281
0.8 0.5 0.1778 1.5506 0.2195 0. 2250 13.50 0.412
0.5 0.7 0. 0692 0.2373 0. 6000 0. 6061 36.37 0.141
0.7 0.7 0.1418 0.7992 0.3423 0. 3470 20.82 0.300
0.8 0.7 0.2182 1.8534 0.2195 0.2262 13.57 0.443
(3.39 H,: o*+#ay?,

then the conventional critical region of size « is defined by
(3. 40) {s2] 520’ F g o (n—k,00)} U (s2|$2>00%F;_ 4 o (n—k,00)} .

But under serial correlation, s? is no longer distributed as (3.37) but as
(8.33). Therefore, the true significance level of the test, a*, under serial
correlation is approximately given by

(3.41) af=Pr{F(f,0) <A —d)7Fyu(n—k,c0)}
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+ Pr{F(f,00) >A~d) W Fi-ga(n—k,00)],

The last column of Table 3.1 shows some examples of the values of a,*
for different values of parameters, given a=0.05. ©> From this table we can
derive the following:

(1) Conventional ¥*-test on o may not be robust for moderately correlated

models.

(2) The dominant determinant of the true significance level is p, given

the nominal level a.

(8) For models with n—%=30, the effect of » and X on the true signifi-

cance level is small,

Appendix I. Alternative Models of Serial Corrclation*

A1.1. Linear Stochastic Models
Alternative serial correlation models can be defined by corresponding
linear stochastic processes. A general linear stochastic process u:, 1=0, 41,
42, seenee , can be represented by a weighted sum of present and past values

of a “white noise” process, v:
(AL D u;:vt—kiigbsv,_s, t==0, 1, k2, e

The white noise process may be regarded as a series of shocks which drive
the system. It consists of a sequence of uncorrelated normal random
variables with mean zero and constant variance, i.e., for all #

(AL 2) ECw)=0

ECowye)=r= {8?“’ iig:

) To check the accuracy of a;* we calculated

a*=Pr(s? <o’ F L o)+ Pr(s2>008F1- 4 o)
for Consumption data explained in Appendix III using the Imhof [1961)] procedure for evaluation
of the distribution of a quadratic form in normal variables, see Appendix 1I. The result is as
follows:

2 0.0 0.3 05 07

a* 0.050 0.068 0.134 0.345

For this data set =21, k=3, ry3p=0.681, and rss=0.631.
* This depends heavily on the presentation of Box and Jenkins[1970].
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If we define the autocorrelation coefficient at lag s by
(Al 3) Pszrs/roa

then, for the white noise process, p,=1, and ps==0, s>0.
Alternatively, the process #, can be written as a weighted sum of past
values of u’s plus an added shock, v,:

(AL D ut:i;n'su,_s—{-v,, t=0, 1, 2,

If we introduce the lag operator L such that
(AL ) Lu=u, g, Dw=us,
we can rewrite (Al.1) and (Al.4) as

(AL.6) w =¥ (L)v,
(AL.D I L=,

respectively, where
(AL.8) V(L)=1 +§</J5Ls
(AL®)  IL)=1-TmL"

A1.2. Stationarity and Invertibility Conditions for a Linear Stochastic Process

For the linear stochastic process represented by (A1.1) or (Al.6), the
process is stationary if the sequence of ¢ weights of the process converges.
The stationarity condition is that ¥(L) converges on or within the unit
circle.

For the linear stochastic process represented by (A1.4) or (Al1l.7), the
process is invertible if the sequence of » weights of the process converges.
The invertibility condition is that Z7(L) converges on or .within the unit
circle. The invertibility condition is independent of the stationarity
condition.

Al.3. Autoregressive, Moving Average, and Mixed Autoregressive Moving
Average Processes

The representations (A1.1) and (Al.4) of the general linear stochastic
process would not be very useful in practice if they contained an infinite
number of parameters, ¢, and =, We can introduce parsimony and yet
retain models which are representationally useful by use of autoregressive,
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moving average, and mixed autoregressive moving average processes.
The special case of (Al.4), in which only the first p of the weights are
nonzero, may be written

b
(Al. 10) u;:;¢sut_3+‘(),, t:o’ il’ iz, ...... s

where we now use symbols ¢, for the finite set of weight parameters. The
process defined by (A1.10) is called an autoregressive process of order p,
or more succinctly, an AR(p) process. This process is always invertible.

The special case of (Al.1), in which only the first ¢ of the weights are
nonzero, may be written

(Al.ll) ut:vl—éosvl—s; t:(), _tls :‘:2, """ 3

where we now use symbols —6, for the finite set of weight parameters.
The process defined by (A1.11) is called a moving average process of
order ¢, or an MA(g) process. The process is always stationary,

We may achieve parsimony by including both autoregressive and moving
average terms in the presentation of a process. Thus we define the mixed
autoregressive moving average process as

P
(A1.12) ut:;‘ﬁsut—s_l—vl—sjzlasvl—sy t:09 il, iZ, """ ’

which will be referred to as an ARMA( p,9) process. This process is stationary
if the autoregressive part is stationary and it is invertible if the moving
average part is invertible.

In the following we shall discuss some important characteristics of
the AR(1), AR(2), MAQ), MA(2), and ARMA(1,1) processes. The
AR(1) process is the most widely assumed process in economics. The AR(2)
process is sometimes assumed as a generalized alternative to the AR(2)
process. The MA(1) process appears naturally in the Koyck[1954, p.32]
transformation of a distributed lag model. The MA(2) process is a genera-
lized alternative to the MA(1) process. The ARMAC(1,1) process is a
generalized alternative to both the AR(1) and MA(1) processes.

Al.4, The First-Order and the Second-Order Autoregressive Processes
The AR(1) or the first order Markov process is defined by
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(A1 13) w=ty_q -k, =0, 1, T2, e ,
For stationarity we require
(AL 14) [¢] <.
The serial correlation coefficients, ps, satisfy the first order difference equation,
(Al 15) Ps=b1Ps-1, 50,
which, with the initial condition p,=—1, has the solution,
(Al 16) ps=¢:% 520,

Specifically p,=¢,. Therefore the autocorrelation matrix P for n successive
observations is

ALY P=L D,
where the D/s are the unit minor diagonal matrices defined in Section 1. 2.
The AR(2) process is defined by
<A1.18) u,:¢1u¢_1+¢2u,_2+v,, t=0, il’ iz, ......
For stationarity the parameters ¢, and ¢, must lie in the triangular region

defined by

Pat <1
(A1.19) Pa— <1
—1<¢:<1

The serial correlation coefficients, ps, satisfy the second order difference
equation,
(Al.20) Ps:¢lps—]+¢2ps—23 S>1
with the initial conditions,
(AL 2D po=1
b=/ L —¢s).

Therefore the autocorrelation matrix for »n successive observations can be

defined.
If p, and p, are specified, then ¢, and ¢, can be calculated by

(Al.22) pi=p1(1 =120/ A~p1®
Po=(Poa—p:D /1~ p®
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Here we note that if p, is specified beforehand, then the stationarity
conditions, (A1,19), restrict the range of the permissible p, as
(Al1.23) sup po=1
inf py==2p2—1.
We shall examine the behavior of ps when p,>0. From (Al.22) we see
that it implies ¢;>0. The characteristic roots of equation (AL, 20) are

(AL, 24) a1,85= % (= V/¢%1 + 46y)
If ¢,>>0, then the dominant root ¢, lics between ¢, and 1 and @, is negative
under stationarity so that as s increases ps decreases with short oscillations.
If ¢,=0 then a,=¢, and a,=0 so that it corresponds to the AR(1) case. If
$,<0 but ¢,2+44,20, then a, and a, are both positive but less than one so
that as s incrcases ps decreases monotonically. If ¢,2+4¢,<0, then the
roots are complex and as s increases p, exhibits damping oscillations with
damping factor +/—¢, and period of oscillation,

(Al.25) T=2m/(cos™ (1/2/ — o))
Since (A1.25) can be written as

(AL 26) $1=2 4/ —gcos2n/ 1),

for fixed 7, the locus of (A1.26) in the ¢ —¢, plane is a half parabola,
and the parametric change of 7' generates an isoperiod map (Jeong[1975b]).
Since p,>>0 implies ¢; >0, and it, in turn, implies cos(2z/1)>0, for p, >0,
the period of oscillation 7' is always greater than 4,

Al.5. The First-Order and the Second-Order Moving Average Processes
The MA(1) process is defined by

(Al.2D) w=v;— 0,0y, 1=0, 1,12, coeeee
This process is stationary for all values of 4,. But for invertibility we require
(AL 28 16, <1.
The serial correlation coefficients, ps, are given by
Pozl
(Al.29) p1=—0/(1+6,%
PSZO, S>]_.

Therefore the autocorrelation matrix P for » successive observations is
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(Al.30) P=I,+p,D,.
From (2.29) we see that
(AL 381) 211<+.

If p, is specified then the 6, which satisfies the invertibility condition,
(Al.28), is given by

(AL.32) O1=(/1—4p2—1D/2ps

uniquely.
The MA(2) process is defined by
(A1.33) =0, — 00,1 — 05015, £=0,F1, 2, ceeees
The process is always stationary. But for invertibility we require
0, +6,<1
(AL 34) 09,—0,<1
—2<6:,<1
The serial correlation coefficients are given by
b=l

(AL35)  p=—0:(1=02)/(L+0:2+0,D)
PZZ _02/(1 +012 -+ 022>
2s=0, s$>2.

Therefore the autocorrelation matrix P is of the form
(Al.26) P:In+P1D1+P2D2-
If p, is specified in advance, then the invertibility condition (A1, 84)

restricts the range of permissible p, as follows:

(AL 37) sup ps=4p2/ (1— /1=28%)

: [ 303/ QAH 12D, for 2/3=p << VT
inf 1’2—{?1—14@, oy I3, <VE

Al.6. The Mixed First-Order Autoregressive First-Order Moving Average
Process

The ARMA(1,1) process is defined by
(AlL.38) ut:¢1u1—1+'0;—01"0;_1, t==0, -1, 2,
The stationarity and invertibility conditions for the process are

(Al.39) [$.1<1
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16,1 <L.

The serial correlation coefficients are given by

(A1.40) =1
1= =101 (-0 /A +0,2~2¢:0,)
Ps:¢lps—l; s>1.

So for the ARMA(1,1) process, ps decays exponentially from the starting
value p, in contrast with the starting value p,—=1 for the AR(1) process.

If p, is specified in advance, the stationarity and invertibility conditions
(A1.39) restrict the range of permissible p, as

(A1, 4D Sup pp—=|p1
inf po=1p11 21p11 —1).

Appendix II. Quadratic Forms in Normal Variables

A2.1. Introduction
Suppose that x is an nx1 vector of central normal variables such that

(AZ. 1 xNNCOs V) ’

where V is an nXn positive definite matrix. A quadratic form of x, Q(x),
associated with a symmetric matrix A4 is defined

(A2,2) Qx)=x'Ax.

Many test statistics to be encountered in econometrics are intimately
related to such quadratic forms. We shall discuss appropriate properties of
the quadratic forms and the distribution of them. General references are
Johnson and Kotz [1970b, Ch.29] and Rao [1971, Scc. 38b.4].

A2.92. Distribution of the Quadratic Forms
Finding the distribution of Q(x) is equivalent to finding
(A2.3) PriQe) £q)=Pr(x’Ax£q), —oog<oo,
Since V is a positive definite matrix, we can decompose it as
(A2.0) V=TT,

where T is a lower triangular matrix with positive diagonal elements. The
matrix TYAT is symmetric, so if A is the diagonal matrix of eigenvalues
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of TAT and R is the associated orthogonal matrix of eigenvectors of it,
then we have

(A2.5) R'T'ATR=A.
Hence, if the linear transformation,
(A2.6) w=R'T-x or x=TRw,
is applied, then
(A2.7) Var(w)=E(@ww")=R'TE(xx")T'""'R=R'R=1I.
From (A2.2) to (A2.6),
(A2.8) Q(x)=x'Ax=w'R'T"ATRw=w'Aw= ;z’lzjwjz,
where the numbers, 2,=2,=:.+=2,, are the eigenvalues of T'AT or equiva-

lently of VA, and w;¥s are independent X2(1) variables due to (A2.7). If
we denote the distribution function of Q@ by F(q), it now becomes

(A2.9) I«‘<q>=Pr<§z,-wf<q>.

If A7s are bounded, then, by the central limit theorem, (standardized) F(q)
approaches a normal distribution as » tends to infinity,

A2.3. Characteristic Function and Moments
Since w*s are mutually independent X2(1) variables, the characteristic
function of Q is easily derivable from that of ¥2(1) as

A210)  pO=BED= I 1-2i2)"F.
The cumulants are obtained from the cumulant generating function,

(A2.1D) K(®)=InE(e%)= %j;nlln(l —218)

=3 2 A)/s

i=1 s=
=/s) (= DIZA,

see Lancaster(1953). Denoting the sth cumulant of Q by K,(Q), we have in
general

(A212)  KO=SE/HEQ).
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Comparing (A2.11) and (A2.12), we have
(4213 K(Q=27'G-DIgh=2"16-Dlr(VA)"
J:

If necessary, we can determine the mean ¢ and the sth central moments us
by

p=Ki(Q)=trVA

1=Ky (Q)=2ir(VA)?

ts=K3(Q)=8tr(VA)*

py— 3= K, (Q)=48tr (VA)!,
etc., see Rao[1973, p. 101].

A2.4. The Imhof Procedure of Exact Computation of the Distribution of
Quadratic Forms
There are several procedures available for exact computation of the
distribution of quadratic forms, for example, Durbin and Watson [1971,
Appendix 1], But it seems that the Imhof procedure is the most popular
among economists. Imhof [1961] proposed a computational procedure for
exact calculation of the distribution of Q(x) where x may be a noncentral
normal random vector. But since we need only the central case in the
present paper we shall confine the discussion to the central case only.
The Imhof procedure is a straightforward numerical integration of an
inversion formula by Gil-Pelaez [1951], namely,

A215)  F@=t-| i,
where Im(y) is the imaginary part of the complex number,
(A2.16) y=e g (t).
If we denote the complex number by
(A2.17) y=re",
then the imaginary part becomes
(A2.18) Im(y)=rsind,

Therefore the main problem reduces to how to explain r and ¢ in known
quantities.
If we denote
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CAZ, 19) 1 —2it2j=rjexp(i0j) s
then

(A2.20) =1+ F
0]': —tan™! (22]t) s

so that we have
Az2D)  y=eeH(1-2iat)F
= I ry bexp li(—tg— + 3200))
= I (14432 ¥ exp [i(— tg+ + Ttan™ 2]
Comparing (A2,17) and (A2.21) we get
(A2.22) r:lecl 4RI
0=t Jitan™2A).
From (A2.15) and (A2,18), we get
(A2.23) F(q)zg-—n-ls:z-lrsinadz,

r and @ being defined by (A2.22). If we substitute
(A2.24) u=2t,
then (5.23) becomes

= sinf(u)
)

(A2.25)  F@=4-n"| du

where
(A2.26) b=+ {j}?ltan"l(l,-u) —qu)
W2.2n) =l QR

Imhof [1961] also proved the following necessary result:
(2.2 lim SO — 5 ),

This follows from the fact that as u—0,
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(A2.29 sinf(u)— % (ZM qu)
7(w)—u.

The function y(x) is nonnegative and increases monotonically toward
infinity, Therefore, in numerical work, the integration (A2,25) will be
carried over a finite range, 0<u=<U, only. The degree of approximation
will depend, apart from rounding error, on two sorts of errors: first, the

error arising from using an approximation rule to compute the integral
over the range, 0<u<U, and secondly, a truncation error,

sinf (u)
(A2.30) ty=mn" vif@f

This truncation error can be bounded above as follows:

(A2.31) e ULS%%@L dusnt | i w)da,
(A2.32) rGo=ull L+3D 1 Su ] |4 iy 77 13,
1= = J=

Therefore we have

(A2.33) (10 <G T 1511721 | L 07idu= QU2 2y 072,

The errors can be controlled. Hence, F(¢) can be determined to any desired
degree of accuracy. A computer program for this procedure was provided
by Koerts and Abrahamse [1969, Chapter 9].

A2.5. Some Theoretieal Results
Independence of Two Quadratic Forms. Two quadratic forms x’Ax and x’Bx are

independent if
(A2.39) AVB=,
see, for example, Theorem 4,21 of Graybill [1961, p.88].
Independence of a Linear Form and a Quadratic Form. A linear form a’x and a
quadratic form x’Ax are independent if
(A2.35) a’VA=9,

see, for example, Rao [1973, p.188].
A Condition for a Quadratic Form to Be Distributed as %2, A necessary and suffi-
cient condition for a quadratic form x’Ax to follow a x? distribution with
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degrees of freedom is that VA has r unit characteristic roots, with the rest
being zero. See Johnson and Kotz [1970b, p. 178]. '
A2.6. Approximations to the Distribution of a Quadratic Form

Even though some exact computational procedures of the distribution of
a quadratic form are available it is useful to have some simple accurate
approximations to the distribution. There are a number of approximations
to this distribution, see Johnson and Kotz [1970b, Sec. 29.5]. But for some
analytical purposes the following approximations are useful.

Patnaik’s[1949] two-moment % approximation specifies approximating the
distribution of a positive semidefinite quadratic form, Q=x'Ax, by

(A2.36) Qe (f)
with ¢ and f chosen to make the first two moments agree, i.e.,

(A2.37) EQ)=trVA=cf
Var(Q)=2tr (VA =2c*,
which gives
(A2.38) c=tr(VAY?/irVA
J=@rVA)?/tr (VA2

This approximation gives fairly good results, see, for example, Imhof [1961,
Table 1],

Pearson’s[1959] three-moment %?> approximation specifies approximating
the distribution of Q by

(A2.39) QRb+cX*(f)
with 4, ¢ and f chosen so that the first three moments of Q agree, i.e.,

(A2.40) EQ)=irVA=b+cf
Var(Q)=2tr(VA)?=2c*
1a(Q)=8tr(VA)*=8c%,
which gives
(A2.41) c=tr(VAY}/tr (VA)?
S=@r(VAYDY/ (r(VA)*?
b=trVA— (tr(VAYD2/tr (VA =tr VA—cf.
This approximation is much better than the Patnaik’s. But the existence
of a constant & is an inconvenience for some analytical purposes. The
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approximation can be applied to an indefinite form of Q, but one must
assume that r(VA)? is positive. Otherwise one approximates the distribution
of —Q. For the accuracy of this approximation, see Imhof[1961, Sec. 4
and Table 17.

In both Patnaik’s and Pearson’s approximations, f is usually fractional,
so that an interpolation is needed if standard chi-square tables are used.
Otherwise we can evaluate the probability using the exact formula,

(A2.42)  PrOe(f)<a)=e 3 ((ha) bH/(EfHi+ D),
or the Wilson-Hiferty approximation,

(A2.43) Pre(f)<z)=0(((2:/ )1~ 1+2/f N Of/ DV,

where @( ) is the distribution function of the standard normal variable.
This approximation gives very good results, see Johnson and Kotz[1970a,
Sec. 17.5].

A2.7. Approximation to the Distribution of the Ratio of Independent
Positive Semidefinite Quadratic Forms
Since the Patnaik approximation is fairly satisfactory we may attempt to
approximate the distribution of the ratio of two independent positive
semidefinite quadratic forms, x’Ax and x’Bx, by an F-distribution con-
structed by fitting X2 distributions in both the numerator and the denominator
in the manner of Box [1954], i.e.,
(A2.44) (' Ax) [ (x' Bx) ~dF(f1,f2),
d=irVA/trVB
(A2,45) fi=@rVA? ) tr(VA)?
Fe=0@rVB)?/er(VB)2,

This approximation also gives fairly good results, see, for example, Box
[1954].

Usually f, and f, are fractional, We can evaluate the probability using
the exact formula,

(A2.46) Pr(F(fufo<F)=L(1/2f,Q/2f>,

where y=£F,/(fo+f.F,) and I,(a,b) is the incomplete beta function ratio.
To save computing time we can make use of the relation, L(ab)=1-—
I,_s(b,a). We can also evaluate the probability using Paulson’s approximation,
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Aza)  Prf<Ey=o {A7ER=U e )

where @( ) is the distribution function of the standard normal variable,

and g:=2/(9f)), i=1, 2, This approximation gives results to three significant

figures in most cases, see Johnson and Kotz[1970b, p.83] and Ashby[1968].

A2.8. Approximation to the Distribution of the Ratio of Independent Linear

Form and Square Root of a Quadratic Form

The distribution of the ratio of a linear form a’x to the square root of

a positve semidefinite and independent quadratic form x’Ax can be approxi-
mated by the Student’s t:

(A2.48) a’x/(x'Ax) ¥ ~di( )
where

(A2.49)  F=(trVAY/ir(VAY?
d=(a'Va)/Gtr VA2,

Probably it is Welch[1937] who used the approximation first.
In this case also, the degrees of freedom, f, is usually fractional. To
evaluate the probability we can use the formula,

(A2.50) Prt(H<t)=L(L, £,
where y=t,?/(f+¢*). Naturally, (A2.50) is the special case of (AZ2,46)

when fi=1, fi=f, and Fy=t.

Appendix III. Explanation of Data

The data sets used for illustrative purposes in the text include four sets

Name of Data Source
(A) Spirits (truncated) Durbin and Watson [1951, Table 1]
(B) Textile Theil and Nagar [1961, Table 4]
(C) Pears Henshaw [1966, Table 1]
(D) Consumption Klein [1950, p. 135, pp. 74~76]
(E) Trend (—10 —9eeeeer 9 10)’
(F) Artificial (1) (1 —1 1 —TLeeerer 1 —1)
(G) Artificial (2) Combination of trend and (F)

All data sets contain constant terms.



— 34z — O HAVE B3

of published data that have been used in the literature, e.g., Durbin and
Watson[1971]. In addition we use one set of “trend” data and two sets of
“artificial” data. The various data sets are described above.
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