— 344 —

Adaptive Expectations and Partial Adjustment:

Estimation and Discrimination
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1. Introduction

When the “adaptive expectations” and “partial adjustment” models are
combined into a single model, the expectations and adjustment parameters
enter the final equation of the model symmetrically and pose a problem of
identification.® Further, we cannot discriminate between the adaptive model
and the adjustment model by regression analysis for their respective final
equations contain the same observed variables,®

The purpose of this paper is, first, to present a model containing the
concepts of both adaptive expectations and partial adjustment processes and
to use the form of the disturbance terms of the final equation as a source
of identifying parameters. We then present maximum likelihood (ML)
methods of estimating the final equation under three alternative assumptions
about the disturbance terms. The procedures are similar to the ML methods
suggested by Dhrymes (1], Zellner and Geisel [7). The estimation
methods are then applied for illustration in the analysis of quarterly inve-

* Associate professor of economics at Carleton University, Ottawa, Canada. This study has
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(1) This identification problem is discussed in, e.g., Johnston[4, pp. 302-3) and Waud [(6].

(2) Feige [3) and Waud (6] discuss the difficulties involved in interpreting distributed lag form-

ulations and empirically discriminating between the expectations and adjustment models.
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ntory data.

In Section 2 we describe a model embodying the conceptual ingredients
of both partial adjustment and adaptive expectations models and introduce
three alternative assumptions about error terms. Although the model is in
the framework of inventory analysis, the estimation methods presented in
Section 3 are more generally applicable. Section 3 present the proposed
estimation methods. Section 4 is devoted to analyzing the behavior of
quarterly inventory data, 1961:1—1973:1II, of the Canadian manufacturing
industry. The last section contains some concluding remarks.

II. The Model

Following the flexible accelerator approach, we assume that the firm has
a desired level of finished goods inventories given by

@.D Y¥*=a-+ ﬂXt+1*

where Y/* is the desired level of inventories at the end of period ¢t and X, *
the expectations on the sales volume for the following period held in
period ¢. Both the desired level of inventories and the expected sales are
theoretical magnitudes, which are not directly observable, and we introduce
hypotheses about how these theoretical magnitudes are determined.

About the formation of the expectation we assume that the firm revises
its expectations on sales each period by a fraction § of the difference bet-
ween the actual and expected sales:

2.2) X ¥ —X*=0(X,— X*), 0<06L1

where the parameter § is called the “coefficient of expectations” reflecting
the proportion of the expectational error taken to be permanent. The
desired level of inventories in (2.1) will not necessarily equal the actual
level and the firm changes, we assume, its inventories according to the
discrepancy. We postulate the partial adjustment function of the form

2.3 Y~ Y= y(¥¥~ Y, )4+u, 0<r<1

which asserts that in period ¢, a fraction 7 of the gap between the desired
end-of-period level and the actual starting level of inventories is filled on
the average. The parameter 7 is called the “coefficient of adjustment”
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reflecting the fact that there are limitations to the rate of inventory adjust-
ment due to institutional rigidity or the increasing cost of instantaneous or
rapid change in production. Although the firm plans to change inventories
in proportion to the discrepancy between the desired and actual levels of
inventories, its plans may be upset by the errors in sales forecasts; we
introduce a random error term u in (2.3).

Combining (2.1), (2.2), and (2.3), we obtain a general model embo-
dying the assumptions of both adaptive expectations and partial adjustment,
and readily derive its final equation by the Koyck transformation as

@9 Yi=ard+proXi+ (A~ + Q=D Ve — A=A =0) Yiez bty — L =0ty

This is the basic equation we analyze. Notice that parameters y and
appear in the equation symmetrically except in the composite error term.

It is readily seen that the partial adjustment model is a special case of
this general model with 6=1, and the final equation (2.4) becomes

(2.5) Yi=ar+8r X+ (1—7) Yo +uy.

The expectations parameter 6 being equal to 1 implies that the firm believes
the sales in the current period to continue in the following period. On the
other hand, the adaptive expectations model is another special case of the
general model with y=1, and the final equation (2.4) now becomes

2.6) Yi=ad+ 86X+ (1—08) Yy + o — (1 ~8)usy

The adjustment parameter y being equal to unity means that the firm
closes the gap between the desired and the actual levels of inventories at
the end of period t. The two final equations (2.5) and (2.6) contain exa-
ctly the same variables; the only difference is that the former has a sim-
pler disturbance term than the latter. When both the adaptive expectations
and partial adjustment processes are operative, the final equation (2.4) is
relevant. When only one of the two processes is in operation, either (2.5)
or (2.6) is relevant, but one cannot discriminate between the two processes
on the basis of (2.5) and (2.6).

Using the final equation (2.4) we consider the problem of identifying
and estimating structural parameters and examine how we can discriminate
the adaptive expectations model from the partial adjustment model when

only one of the two is operative. In analyzing (2.4) we assume that X, is
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an exogenous variable. With regards to the error term in (2.4) we consider
three alternative assumptions.

Assumption I: #,—(1—8)u,.;—e, and
e,~NID (0, ¢%).

This assumption is rather special because no economic theory suggests that
the error term u’s satisfy a first-order Markov process with parameter (1—
d), the same parameter appearing in the adaptive expectations hypothesis.

Assumption II: #,~NID (0, ¢2).

This assumption of serially independent »’s may not be very plausible
particularly when the data used pertain to periods of a short interval.

Assumption III: w,—pu, ;+e, |p|<1, and
e,~NID (0, o2).

This allows for the possibility that the «’s may be autocorrelated. If p=0,
Assumption III reduces to Asumption II; if p=1—4, it reduces to Assum-
ption I

III. Maximum Likelibhood Estimation

Now we examine the ML procedures of estimating parameters of (2.4)
under the three alternative assumptions about the error terms.

Case (a). w,—(1—8)u;=e;, e,~NID(0, o2).
This is the simplest possible case. Reparameterizing as

3.0 Bi=ayd, Bi=prd
Bi=U-N+UA-®, B[=—-1-1NU1-3),

we rewrite (2.4) as

3.2 Yi=B1+BeXi+BsYi 1+ BiYiaten

If we assume that Y, and Y., are fixed, the logarithmic likelihood function
for the parameters of (3.2) is given by

B.3 L(By, B2 Bss Pus Usldat@:”‘—g— In (27 _%‘— In o?

— i Y=t Y= Bi— B X — B3 Yi1— B Vi)™
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Thus ML estimators of the 8’s are identical with ordinary least squares
estimators obtained by minimizing

G0 L (Y= Bi—BeXi—BsYim1— PrYio)?

So least squares applied to (3.2) will yield consistent estimates of B’s
under Assumption I. Then (3,1) can be employed to obtain consistent

estimates of « and 8; ¢ can be estimated consistently by
B8 &= Dk (Y- h—hX— R Yo=Y’

It is clear, however, that the symmetric appearance of y and d in (2.4)
makes it impossible to estimate the two parameters separately. Only their
function, 70 and y+4d, can be consistently estimated from the relation,
(3.1). @ Further, if 7 (or §) equals one so that the partial adjustment Cor
adaptive expectations) model is the correct specification, it is not possible
to distinguish empirically between the partial adjustment and adaptive
expectation models on the basis of the least squares estimation.®

Case (b). u,~NID (0, o2).

On this assumption about the u’s, the composite disturbance terms, «,—
(1—®)u,;, and the lagged values of Y on the right-hand side of (2.4) are
correlated, and least squares applied to the equation will yield inconsistent
estimators.

Following Zellner and Geisel (7], we define 6,=Y,—« and write 4, from

(2.4) as

(3.6) b=U-1Yi—U-1A—=8Yistard+proX,+ (1-0)0,_;.
By successive substitution for § we have

@.7D 0=0-1 2y~ A= Zip+arlyy+res+0.Zs,

where
Zu:Zﬁ:l A—-0)1Y .y,

Zy=3=1 (1—8)'Y i1,

3.8 Zig=Yi= 0(1—8)"1,

(3) See Waud (6, p.207, n. 2].
(4) See Waud (6, p. 206). If the coefficient of Yi-z is not significantly different from zero, all
we can conclude is that (2.5) or (2.6) is the correct specification.
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Zy=Xt=1 01 —8)"1Xyisy
Zis=1-0"
Therefore, we may write

GN)) Yi=U-9@y—2Z,p) v arZiz+ BrZiy4-0.215+ w1,

Suppose we are given initial values, ¥,and Y.,, of the dependent variable.
We may also regard 6,—=Y,—u, as an unknown parameter. Since the #’s are
NID (0, o2, it is clear from (3.9) that for fixed § minimizing

3.1 Tl i =0m (Y~ (U= Zu—Zig) —arZiz— PrZiy— 00 Zis)?

with respect to 7, @, 8 and 6, will yield ML estimates. But é is unknown,
and for finding the global minimum of (3.10) we resort to a search
procedure: we select a grid of & value in the range of 0<6<1, for each
value of § on the grid compute the data matrix from Y, and X: as descri-
bed in (8.8), and apply least squares to (8.9). That value of § and the
associated estimates of a, g and y are chosen which yield the minimum sum
of squares. The estimate of ¢2 is the minimized sum of squares divided by
sample size. The large sample standard errors of these estimates are obtained
by taking the square roots of the main diagonal elements of the inverse
of the information matrix evaluated at the given parameter estimates,®

Case (¢). w=puwi—1+e, |p|<l, es~NID (0,0%).
As before we define 6,=Y,~u so that
@G.1D 01— 00,1 =Y—pY1y— (s —pths—1).

From equation (2.4) we have

3.12) Y, (p)=ard(1—p) +BrdX,(p)
FLA-ND+ A=D1V (@) — A=D1 =8) Yi-2(p)
+u,(p) — (1 -8 w100,
that is,

(5) As Dhrymes (2] noted, 6o cannot be consistently estimated because the variable which it
corresponds, i.e., Zi=(1—8)* has the property that

g (1-8)# oo,
The parameter 8, represents the average inventory stock in the initial period, and we are

seldom interested in its estimate. As the sample size increases, the observations on Zis approach
zero, and this variable has been eliminated in forming the information matrix.
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(3.13) 0.(p) =ard(1—p) +pBréX: (o)
+ A=Y (@ —A-1NA=8Yi2(p
+(1=6)0:-,(p),
Where Y[(())ZYt—pY,_l, 0;(,0)20,—‘00;_1, etc.
By successive substitution in (3.13) we obtain

(3.14) 0,(p)=A~1)Z11(p) = (1 —1)Z:a(p)
+ayZiz (o) +BrZin(o) +0(0) Zis,

where 7, through Z; areas defined in (3.8) and Z,(p)= Zy—pZ .y, elc.

Therefore, we may write

(3.15) Y, (p)=0:Cp) +u.(p)
={1-riZulp) — Zip () 1+ arZ;;(p)
+BrZiup) +0:(p) Zis+e

Since the e’s are NID (0, o2 by assumption, it is clear that for fixed 4

and p minimizing

(3.16) S e=xn, {Yi(o) — A=) [Z1(o) —Zi2(0)]
- 057’213(.0) —Briy (P) -, (P) Zi5)®

will yield ML estimates.® Again we rely on a search procedure: we mini-
mize (8.16) over the region 0<6<{1 and |p[<1. We select a grid of 5, p
values on the grid fit (3.16) by least squares and obtain the residual sum
of squares. The desired estimate of the parameters are these which corre-
spond to the grid point yielding the smallest residual sum of squares. The
large sample standard errors of these estimates are estimated by the square
roots of the main diagonal elements of the inverse of the information
matrix evaluated at the given parameter estimates.

IV. An Example

We now turn to examine some preliminary empirical results of estimat-
ing the inventory equation (2.4) using quarterly Canadian data and ML
methods described above. This section provides an illustration of estimating

(6) Refer to n. 5 above for the estimation of #y(p) and the formation of the information matrix.
(7) Unless otherwise noted, we use the 0.05 level of significance throughout this section.
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and discriminating the adaptive expectations and partial adjustment models,
and is not intended as a rigorous empirical study of inventory behavior.
Quarterly data on sales (shipments) and finished-good inventories of total
manufacturing industry have been obtained for the period of 1961:1-1973:
III from deseasonalized monthly data published by Statistics Canada. Sources
of data are given in the Appendix. Difficulties involved in deflating sales
and inventories have led to use of the current dollar figures.

Results of estimation are presented in Table I. Taking the ML estimates
under Assumption I first, we note from the column under heading I that
all regression coefficients comply with a priori ranges and that all regre-
ssion coefficients except (1—7y) (1—0) are significantly different from zero
at the 0.05 level.®® The short-run marginal inventory/sales ratio (8r8) is
estimated to be 0,027 while the long-run marginal inventory/sales ratio

Table I. Maximum Likelihood Estimates of Parameters in (2.4) under Alternative
Assumptions about Disturbance Terms?®

Assumptions
Parameters
I 11 I
0 —_ . 226 . 260
(. 00799) (. 00905)
v — . 242 . 264
(. 0622) (. 0685)
@ . 542 .535 .519
(n.c.) (.125) (.130)
B 210 .212 .212
(n.c.) (.012) (.013)
P _ — .10
(.995)
ayd . 0706 0344 . 0356
(.0311) (n.c.) (n.c.)
Bro . 0274 L0137 . 0145
(. 0083) (n.c.) (n.c.)
A-p+A-8 .9718 1,492 1,476
(.1516) (n.c.) (n.c.)
A=y (A-8) .1022 . 5564 . 5446
(.1488) (n.c.) (n.c.)
8 .1304 . 0644 . 0686
(n.c.) (n.c.) (n.c.)
r+0 1.028 . 508 .524
(n.c.) (n.c.) (n.c.)
o? . 0014 . 001247 . 001263

aThe figures in parentheses below the coefficient estimates are the estimated large-sample standard
errors. The symbol (n.c.) indicates not calculated,
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(B is 0.21. Point estimates of 79 and y+45 yield an average lag between
changes in sales and inventory adjustment, (1—y)/7y+(@1—8)/8 of 5.88
quarters.

The coefficient (1—7)(1—8) of Y,., in equation (2.4) is not significantly
different from zero, and we are led to conclude that either a partial adju-
stment model or an adaptive expectations model is the correct specification.
As pointed out earlier, however, we are unable to decide which model is
correct due to the fact that & and 7 cannot be estimated separately under
Assumption I about the disturbance terms.

The parameter estimates under Assumption II are presented in the third
column of Table I. Even if both ¢ and y enter (2.4) symmetrically, the
presence of only & in the disturbance term is used in identifying parame-
ters, and the ML estimates of & and 7y are, respectively, 0.266 and 0.242.
All coefficient estimates fall within a priori ranges and that estimates of
both & and 7 are significantly different from one. Thus the partial adjust-
ment and adaptive expectations processes jointly explain the inventory
stock behaviours.

The estimated long-run marginal inventory/sales ratio of 0,212 is almost
identical with the estimate of 0,210 under Assumption I, yet the short-run
marginal inventory/sales ratio of 0.0137 is only about one half of the
corresponding figure obtained under Assumption I. Substantial differences
in estimates appear between Assumptions I and II for (1—9)+(1—4) and
(A—y) (1—8) as well., The average lag in sales expectations, (1—4)/3,
implied by the 5 estimate is 2.76 quarters; the average lag in stock adju-
stment, (1—7)/7, is estimated to be 3,13 quarters; the combined average
lag is 5.89 quarters, which is very close to the corresponding figure obta-
ined under Assumption I.

Last, the results of estimating parameters in (2.4) under Assumption
IIT are given in the last column of Table I. All estimates comply with a
priori ranges, and both 6 and y are significantly different from one. The
point estimate of autocorrelation parameter p is 0.10. This suggests that
p may not indeed differ from zero. In this case Assumption III reduces to
Assumptin II,

Point estimates of all parameters under Assumption III are almost iden-
tical with the corresponding estimates under Assumption II as we might
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expect in the case of no or weak autocorrelation of the #’s. Furthermore,
the point estimates of 1—4 and p, 0.74 and 0.10 respectively, suggest that
Assumption I may be false. Insignificant coefficient estimate of ¥,_, obtained
under Assumption I appears to be the result of the error in the specification
of the properties of disturbance terms.

V. Concluding Remarks

It has been the purpose of this paper to consider ML methods of estim-
ating a general distributed lag model under three alternative assumptions
about the disturbance terms. The model considered embodies the conceptual
ingredients of the partial adjustment and adaptive expectations hypotheses.
It is shown that proper specifications of the disturbance terms enable us to
estimate the coefficients of adjustment and expectations separately and to
distinguish between the partial adjustment and adaptive expectations model
empirically.

The estimation methods have been applied for illustration in the analysis
of the quarterly inventory data of Canadian manufacturing industry. It
is also readily recognized that the estimation methods are more generally
applicable. For example, they can also be applied in the analysis of cons-
umer durable goods based on expected income hypothesis of consumption
and the analysis of the monetary sector based on income expectations.

Appendix
Sources of Data

Statistics Canada, Inventories, Shipments, and Orders in Manufacturing Industries.
Catalogue No. 31-001, monthly,

Years Issues
1961—1964 July 1968
1965—1967 Annual Supplement 1970
1968—1969 October 1971
19701971 January 1973

1972—1973 December 1973
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