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1. Introduction

In the social sciences, the specification of a statistical model is judged
ultimately by its predictive accuracy. A model, either causal or predictive,
is rejected when subsequently observed data deviate significantly from the
predicted path, otherwise is maintained. No other formal test criterion for
checking model specification has been used, although various techniques are
available for testing the significance of parameter estimates. In this paper,
we propose the use of cross-correlograms to test the causal specification of
a statistical model.

The T'x T correlogram of a time series is a matrix of correlation coeffi-
cients among 7T consecutive variates of the series. The T X T cross-correlo-
gram between two time series is another matrix of cross-correlation coefficients
between the two series of T consecutive variates respectively for an identical
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time span. By definition, the correlograms and the cross-correlograms demon-
strate the basic structure of linear dependence among the variates of asso-
ciated series. The primary concern of time series analysis, in both forecasting
and causal studies, has been the detection of the level of dependence among
the observations and the formulation of models, which show the highest
level of dependence (i.e., fit well) between the “explanatory” parts and
the parts to be “explained” under the given set of observations. When the
model is linear, the correlograms clearly contain information necessary for
this task.

There are a number of difficulties, however, when one attempts to use the
correlogram to extract these information. First, the series may not be sta-
tionary to the second order, which makes it almost impossible to obtain
useful estimates of the elements in the correlograms. Second, even if the
series is covariance stationary, the usual estimates of covariances are
often not very useful. They are additively biased (see VI below), and this
additive bias is not constant across all the estimate at different lags for a
given set of observations. Thus the estimated correlograms are not only
biased up or down, but also exhibit non-parallel distortions. Also these
estimates are not efficient in general, even when they are consistent. And
finally, the correlograms are simple correlations, which reflect both direct
and indirect dependences, and thereby fail to reveal the pure and direct
relationship between the two variates.

Due to these difficulties, the partial correlations and the regression coeffi-
cients have been favored increasingly over the simple correlograms. The
correlograms are being used only to obtain the partial correlation coefficients
and spectral estimates (see Box and Jenkins [3], Jenkins and Watts [14],
and Brillinger [7]).

Two different approaches, however, do make use of cross-correlograms in
model specification. One quite recent approach is due to Haugh and Box
[12], while the other is due to Hooker [13], and dates back to the turn
of the century. Both studies were concerned with the lead-lag structure
between two time series. Haugh and Box represented each time series
{X:(?)} as a linear process, which is a linear combination of an identically

and independently distributed random series {¢,(:)}, and obtained the cross-
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correlogram between two series {e(1)} and {&(2)}. If one or more cross-
correlation coefficient is non-zero where the series {e:(1)} leads {e:(2)} and
the cross-correlation coefficients are all zeros where {e/(2)} leads {e(1)},
then Haugh and Box suggest that a distributed lag regression of the series
(X,(2)} on {Xi(1)} is the proper specification.

Hooker, on the other hand, suggested using the cross-correlogram from
the two original series to study the direction of the causal structure. He
obtained the cross-correlogram between time series data on the number of
marriages and the volume of retail trade in England, and attempted to
infer the direction of causality therefrom. Unfortunately, his inference is
based on purely intuitive arguments and lacks any formalized justifications.
This old idea has been neglected until recent attention was given to it by
Campbell [8]. Coen, Gomme and Kendall [9] also made use of the similar
idea, but their purpose was simply choosing the most relevant causal
variables for the given causal flow between the two time series. They
assumed a model where the one series {Xi} causes or at least explains the
other {Y,}, and observed only one side of the cross-correlogram where the
series X leads to Y in order to select the most significant lagged variates
of the series {X,}]. The present paper is an attempt to provide a formal
analysis on this Hooker-Campbellian idea. Under several restrictive assum-
ptions, it will be shown that the structure of correlogram and cross-correlo-
gram provides information concerning the direction of causality and the lead-
lag structure between two time series. The first part of this paper is devoted
to the discussion of causal structure of a linear system. Then we show that
under certain conditions the cross-correlogram reveals the direction of causal
flow and the magnitude of causal lag for causal structures which are either
unidirectional or comprise feedbacks(see A.2 and A,2’ in II), Some
simulated results are reported to confirm our analysis. Then some extensive
but inconclusive discussions are provided on the problem of estimations
of the correlograms.

II. The Causal Structure and Assumptions

There have been several important definitions and discussions of causality
in the current literature, Wold [19], Simon [16], Granger [11], and Sims
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[17]. The causal chain of Wold is primarily concerned with the recursive
or nonrecursive structure of the causal system. Wold shows that a seem-
ingly circular causal chain often can be made nonrecursive by recognizing
precise time differences. The deterministic causal system of Simon is
an attempt to identify the relation between the set of exogenous variables
and the set of the remaining endogenous variables, in a given system of
simultaneous linear equations. The definition of causality in the works of
Granger and Sims is exclusively based on forecasting accuracy. For
two time series (Xi} and {Y., if a model for Xi, which incorporates
past values of Y: as explanatory variables, incurs a smaller forecast error
than the model which omits the past values of Y., then one concludes that
(Y} causes [Xij. One frequently finds this type of scheme in current
econometric studies, where the minimum-forecast-error criterion is used to
select the best specification among various alternatives(c.f. the distributed
lag models of Jorgensen [15]). A good fitting relation, however, does not
necessarily imply that the causal relationship exists in the same form. For
example, it is well known that a deterministic linear relationship can provide
a perfect fit to the data and yet not reflect the underlying causal relationship.

We prefer to admit that there is, testable or not in the sense of Sims,
a given causal structure. One starts with assuming a type of causal
structure, and then examines the data to see if it conforms to this structure.
The hypothesis on the causal structure is rejected if the observations do not
behave properly, and maintained otherwise. For this purpose, we need a
precise definition of causality aside from the onre of Granger.

A common sensical idea of causality may be formalized as a set of random
variables, random functions, and binary relations. Let Y and X be random
vectors such that YeRY and XeR", Let f(-) and g(-) be random functions
such that

f: RM____,RL
g RN——RE,

Let R be a binary relation in L-dimensional real space R:. Then,
Def. 1. A causal system is a set (Y, X, f(+),g(+), R} such that the random

vector Y is realized for each given realization of X according to the rule

JS(Y)Rg(X). @)
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“The random vector X is said to cause Y,

Of course, the general structure of (1) is not within the scope of this
paper. We will identify a most important subclass of the general causal
system (1), where the function f(-) is linear and deterministic, the func-
tion g(-) is a linear and deterministic function plus a stochastic error
term, and the binary relation R is the vector equality relation. The formal
definition of this subclass is given below.

Def. 2. A causal system is an additively stochastic linear causal system,
if Y is realized for each given realization of X by the rule

LY At fu Y=g Xy +8:Xo+ - +gnXn+e, 2

where the f’s and g’s are vectors of constants and ¢ is a random vector.

Simon’s study basically deals with the problem of identifying any arbitrary
representation of a deterministic simultaneous equations system with a
form (2).

We will reduce our scope further so that the random vector Y is a single
variable, namely

Y=X"a+e, (3)

Since we are interested in the causal structure between two time series, we
will write (3) as

N
Yz:gna’in—(m) +& )

where >0,

The specification of the structure (4) is not complete per se, and different
specifications of the error term ¢ will imply different causal structures. It
is well-known that different error structures require different estimation
techniques for the parameters a’s in the linear regression. On the other
hand, it is important to notice how each error specification is interpreted
within the context of causal structure.

The specification of error terms is fundamentally concerned with the rela-
tions between the explanatory variables(X) and the error terms (¢), and
between the two error terms (¢, and ¢,,;). We start with the relation be-
tween X and e,

(a) X: is not correlated with ¢,; for all integers i (Least Squares Re-
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gresion). This specification implies that 1) there is no missing explanatory
variable in (4), or if any, then they are not correlated with Xi for all ¢,
and 2) the causal system is unidirectional from {X;} to {Y,}. The first
implication is obvious. As for the second one, it is sufficient to show that
if there is a feedback from Y: to X,,;, then & is correlated with Xw:. Con-

sider a simple case

Yi=aX, y-Fe, a#0,
Xi=bYry+m, b0, (4-a)

where & is not correlated with -, for all ¢ and #. Notice that &(y,) is not
correlated with X-1(Y~1) under current specification. Then,

Xf+1:baXf~1+C€z':”7):+1,
and consequently
Cov(Xipy,e)=b, Varle)=+0.

(b) & is not correlated with Xi; for any >0 (Contemporaneous Noncor-
relation). It immediately follows from the above example that this specifica-
tion allows for the feedback from {Y:} to {X:}. But the feedback is not
necessarily representable in the form of (4-a), namely

Xipi=baXi 1+cei+ 4
where the ¢ is any nonzero constant.

Now as for the relationship between e and e+, we have only two po-
ssibilities such that the series {e} is either autocorrelated or not. If {e} is
not autocorrelated, then the implication is straightforward. If it is autocor-
related, then either there are missing explanatory variables which are auto-
correlated, or some causal flow exists from Y: to Y.. Particularly, if the

) . N .
autocorrelation coefficient of c{;;)a,-X,A(H,-,} is the same as that of {¢}, then

one can have a first-order autoregressive causal scheme.

Now we introduce the assumptions concerning the causal structure (4).

A.1 (Stationarity). The random processes {Y.} and {Xi} are jointly sta-
tionary to the second order.

A set of time series are called jointly stationary to the second order, if they
possess finite first and second-order moments, which are constant over time.
For instance, if {X:} and {Y,} are jointly stationary to the second order,
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then Cov(X:, Xii:)=Cov(X:,;, Y....) for all values of i and «.

A, 2 (Unidirectionality). The random variable & is not correlated with Xi
for all ¢ and &,

Assumption A, 2 is similar to the assumption made in the least squares
regression model. In our case it is important to notice that A, 2 eliminates
the feedback from {Y:} to {X:}. If the causal flow extended from Y: reaches,
directly or indirectly, to some future values of X:, then &, which is a
component of Y. is necessarily correlated with these future values of X,
so assumption A, 2 breaks down. This is why we call A, 2 the assumption
of unidirectionality.

Consequently, a form of feedback may be formalized as

A, 2’ (Feedback). The random variable & is not correlated with X,_; for
all ¢ and all 7>-0.

There are several other aspects of A, 2, First, the causal model (4) must
be a directly connected segment of the entire causal chain. If the causal
flow from the series {Xi} reaches {Y,} entirely through a third series {Z:},
namely

Y= é}a,-z.“m,, +e (4-1)
and

Z= 10X e+
where each equation of (4-1) satisfies A,2. Then we have

Y= goas<§oij:— tati) = (8+5) F D= <a+i)) +e&

m n m
= Zo Zoﬂibj}&t—m—ﬁ%n) + Z‘],a,m- (at+i) T &
1=0 3= =

m4n
:éockX'_(H'gﬂ) +§. (4-2)

Assumption A, 2 does not ensure that e is not correlated with X, for all
t and s in general. To solve this difficulty, we make an additional assump-
tion, which is not unreasonable.

A.2-1. For the causal structure (4-1), e is uncorrelated with #. for all ¢
and s.
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Since & is uncorrelated with Z, for all ¢ and s, it follows from A, 2-1 that
e is also uncorrelated with X, for all ¢t and 5, and A.2 holds for the last
expression of (4-2).

Second, the causal model (4) must have comprised the entire set of
explanatory variables. If a third series (Z:] causes {Y:} simultaneously with
the series {Xi} in the form of (4), then A.2 again fails to hold. To see
this, let

Yt:aXt—a+(7Z2—B+77!, (‘1_3>

where 7 is not correlated with both X, and Z, for all ¢t and s. Following
the expression of (4), we have e=bZ. ;4 in this case. If Z: is not un-

correlated with X. for all ¢t and s, then A.2 is no more valid. Now consider
an example

Yi=aX, otbZi g+,

Zt:CXr—r+$l, Ci"‘D
where A, 2 holds for each equation. Then we have
Yi=aXi ot b(CXt—ﬁ—r+$t—ﬂ> + 9
::aXI-—aJFbEX!~ﬁ—r+(bst-ﬁ+7]r>; (4-5>

in which case A.2 clearly holds for the final expression of (4-5). Therefore,
if (X} is a partial cause of {v,}, then, in order to keep A,2 valid for the
structure (4), either {X:} should be entirely uncorrelated with the remaining
explanatory series, or {X,} should also be causing the rest in the form of
(4). This is a serious drawback from realism. But if the correlation be-
tween & and X, is relatively small for each pair of ¢ and s, then our proce-
dure still can be used descriptively.

In any case, if A,2 does not hold, the causal model (4) is not a complete
description of the causal structure between the two series, {X.} and (Y3},
and another equation is needed to account for the feedback from {Y:} to
{X,}, or the missing links from {Xi} to {Z: and from {Z} to (Y.}, or the
missing explanatory variables.

Notice that A, 2 also eliminates any kind of autoregressive causal scheme.
This is not a serious problem, since the existence of autocorrelations can
be accounted for directly from the causal structure (4).
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III. The Corrclogram and the Cross-Correlogram

The correlogram is a form of matrix arrangement of the autocorrelation
coefficients of a time series. Let p,,(r) be the autocorrelation coefficient of
the series {X,} for lag r. The values of p,,(r) do not depend upon ¢, if
the series (X, is stationary to the second order. Clearly p..(0)=1 and
0::(t)=p.(—7). The TXT correlogram is the matrix

i p“(l) sz(.?) ......... ,On(T"D\
pu\*-l‘/ 1 Pz L) eerersees p,,(T~2)
p,z§—2) PXX(TD 1 ............ pxng‘3)

Pxx(':<T"'1:'> ,Oxx::'_kT‘ZT)) pxx<— iT—3>) """"" i

Similarly the cross-correlogram between two time series {X,} and (Y is a
matrix arrangement of the cross-correlation coefficients. Let p.,(r) be the
cross-correlation coefficient between X; and Y. (i.e., X leads Y by 7).
Again the values of p:(z) do not depend upon ¢, if the series {X:} and
(Y.} are jointly stationary to the second order. Notice, however, that
0:5(0)1 and px»(t) X pwy(—17) in general. The T'x T cross-correlogram is the
matrix

/ ny(O) px,.(l) pxy::‘z) ............ sz(T‘1>
Pey(—1) Pry(0) Oy 1) eeverinnees pxs (T-2)

K pry(—2 prs(— 1) NG ERURRE pxs(T-3)
Pry(—=(T=1)) pes(—=(T=2)) pry(—(T=3))eweresves IRON

Unlike the correlogram, the cross-correlogram matrix is not symmetric
around =0,

Both the correlogram and the cross-correlogram are often plotted in
graphic forms. Usually the horizontal axis represents the various magnitudes
of leads and the vertical axis represents the magnitude of the (cross-)
correlation coefficient at each lead and lag.

1V. The Structure of Cross-Correlogram under a Given Causal Structure

In this section, we formalize the structure of the cross-correlogram under
the causal structure of (4). Then we examine the usefulness of cross-
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correlograms in detecting the direction of causality between the two series
(X} and {Y,}.

1. We will start with the simplest case of (4), where the explanatory
part consists of only a single variate, namely

Yi=aX, .+e, (3)

where >0, Diagrammatically, the causal system (5) may be exposed as,

. Xysn. Kosm setesoseccres

...... X X
e ————
-
""" » Yo, Yoy, Yess, <Y Yigert, Yegran o0
Let o,,(¢) indicate the covariance between X, and X,,;, and o0,,(:) the cross-

covariance between X, and Y.,,. Under A.2, the cross-covariance between
X and Y, is,

0:3(7)=a0::(0), (6)
and the cross-covariance between X, and Y,,; for any i is

0xy(i)=ac.:(i—7)

=2 (I—7)a0:(0). ¢))

Therefore the cross-correlation coefficient is
(D= penlieay /00
Prs (D)= Prs (i) \/p”(o)
:pxx(i_‘r),oxy(?:)- (8)

Since |p.,(i—1)] <1 for all i, it follows that 1) the p,,(s) obtains its maximum
in absolute value at (=7, which is exactly the causal lag in (5), and 2) the
0zy (©) is symmetric around i=r. In this case, the cross-correlogram not
only reveals the direction of the causal flow, but also the exact causal lag.
And in practice, multiple maxima are very unlikely to occur, since no series
is perfectly autocorrelated.

2. Now we allow the explanatory part of model (4) to contain multiple
variates,

»
Yt:gé)ain-(wi) €4y @

where aix0 for i=0,1, -+ ,p and 7>>0. Diagrammatically, we can draw
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\.\:

v ;
e Yige, Yipert, Yepesn oo0's Depedyy  sirvdsth Viserrsts

The cross-covariance between X: and Y,,; is,

as5(k) =,§P0!a.ozz(k—t—i)

=00:(0) (S (k= 7—=). ©®

In this case the shape of the correlogram of the series {X.} is critical to
understand the cross-correlogram. We will consider two structures for the
correlogram of {X:},

(a) Suppose (X} has a correlogram so that p()=p'i' where|p]<1. The
(stationary) first-order Markov process falls into this group. Then expression
(9) becomes,

02y (B)==00:(0) (B 1. (10
For k<z, p'*-it=p+* and then
7258 =00 (F0ip')
— 040, (D). an

Therefore, it follows that for k<z
[oxy(B) | <lpsy ()] (12)

which implies that the maximum(in absolute value) of the cross-correlogram
occurs somewhere to the right of lag r,
If k=c+p+j5 with 7>>0, then
pr T =pip?™
and

axy (k) =pla::(0) (éﬂa;p”f)

=plos(T+p). (13

Consequently, as % increases beyond z+p, the absolute value of o,,(%) de-
creases monotonically. Therefore the maximum occurs between lags r and
t+p. If p goes to infinity, then ¢.,(%) may never diminish as % gets larger
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and larger. In addition symmetry cannot be established in general.

(b) Suppose the series {X:} possesses a correlogram such that p:-(:)>0 for
all 7 and p=(2)=>p::(5) whenever |i|<<|j]. Also assume that the a’s have
the same sign. Then for %,<%,<r, it follows that

Prx (i —7— 1) Spsx(by—7—17) (14)
for all :=0, 1,---, p. Since the signs for the a’s are identical, it follows
from (9) that

loxy(kD) | < loey(Ra) |. (15)
The absolute value of the cross-correlogram decreases as % gets smaller for
k<r., For ky >k, >7+p, we have

prx(by—T—1) S pax(by—7—1) e
and similarly

105 () | < laay (k) | an

which implies that the cross-correlogram diminishes as % gets greater for
k>t+p. Again no symmetry can be obtained.

In summary, if either 1) the series {Xi} is a first-order Markov process,
or 2) it has a non-increasing, non-negative correlogram and the signs of
causal weights (a&’s) are identical, then the location of the maximum of
the correlogram reveals the direction of causal flow between the two series.

3. Feedback. A simple linear feedback may be formalized as

Yi=aX, ,+&,
X =bY, s+, (4-6)

where |ab] <1 is required for the stationarity. Then under A. 2’ the cross-
covariance for i>>0 is

ny<i> __—agzx(a_i),
O'xy<_i) :bayy(ﬂ"‘i):
and ac..(a)=bo,,(B). 4-7)

A distributed lag linear feedback may be formalized as

N
Yi=2 @ Xi_ (am) +&1
=0

M
X’:,é:ob" Y g1i -+ (4-8>
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where the constants a’s and b,’s establish the joint stationarity of the two
series {X:} and {Y.. Then the cross-covarmance for i>0 is

N
Gy (@) :I?___:Oa,.a,,(a+ E—1D),
M . .
Gxy(~ i>:§’bi‘7w<ﬂ+] —1i),
=

M
and k‘:’aka,x(a+k) =Tbi0us B+, (4-9)
8 =

So the analyses in sections 1 and 2 are still valid for each side of the
cross-correlogram, and consequently, the cross-correlogram reveals the
structure of feedback under the same conditions as sections 1 and 2.

4, Some Pitfalls in Interpretation. Cross-correlograms which possess the same
shapes as those discussed above can be obtained even though the two series
have no direct causal relationship. Consider a causal structure

Yi=aZ, .+5

Xi=bZ+, (18)
where each equation satisfied A.2 and & is not correlated with », for all ¢
and s. Then the cross-covariance between X: and Y+ is

0ey(D)=abo..(i—1). (19)

Consequently, the cross-correlogram will assume its maximum in absolute
value at i=r, and be symmetrical around i=7, which might mislead one
to hypothesize a causal flow from Xi- to ¥, By examining the cross-
correlogram between (X} and {Y:}, there is no way to distinguish the
causal structure (5) from (18). In such a situation, causal structure (5)
would not be rejected.

Despite the several limitations, however, we can use the cross-correlogram
to reject a certain causal hypothesis, if the shape of the cross-correlogram
is not consistent with the hypothesized causal structure.

V. Some Simulated and Practical Results

In view of the above analyses, numerous simulated works are performed
and only some of them, which are typical, are reported in this section.
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Despite the controversial difficulties discussed in VI concerning the
statistical properties of empirical correlograms, every result of our simulation
confirms the conclusions of the above analyses. The following list summarizes
the causal structures between each pair of time series, of which the graphic
cross-correlograms are reported.

Fig. 1. Unidirectional structure with a single causal variable and spherical

error.
X=-0.7 Yr—5+5x, pyy=0.8.

Fig. 2. Unidirectional structure with a single causal variakle and auto-

correlated error.
Yi==2.5Xi_s+€, pxx=0.8, pee=0.7.

Fig. 3. Unidirectional structure with multiple causal variables and sph-
erical error (1).

Yi=17Xi2+1.2X 3+1.0Xi4+0.7X, s +0. 2X, ¢ +51,
(X: is a Markov process with p=0, 8).

Fig. 4. Unidirectional structure with multiple causal variables and sph-

erical error (2).
Y,=0. 7Xt—2—‘1. 2X:—3+ 1. 7Xx—4“‘ 1. OX1-5+0. 2Xt—6‘+‘5t.
(X: is a Markov process with px=0. 8).

Fig. 5. Unidirectional structure with multiple causal variables and
autocorrelated error.

Yi=1.7Xi1+1. 1%, o4&, p:=0.8, p.=0.7.
Fig. 6. Negative linear feedback.

X,=0.8Yip+e, Yi=—0.7Xip+ 7, p:=0.7, ppm=0.8.
Fig. 7. Positive linear feedback.

X,=0.3Y,;+e, Y=2.7X._;+7.
Fig. 8. Non-proportional positive feedback.

X=17Y+e, Y,=2. 1 1+

Fig. 9. Non-proportional negative feedback.
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Xt:—:l. 7Y1+E;, sz'—z. lef—1+ﬂh

The figures 8 and 9 demonstrate the asymetric ecross-correlograms such
that the shoulder of the right hand side is higher(lower) for Fig. 8 (Fig.9).
One can see for Fig. 8,

02y (—1)=1.70,,(1),
0.,(1)=1,70,,(1)+2. 10,2

The following figures (Fig.10-16) are obtained from the miscellaneous
practical data. For each figure, a tentative inference about the causal

structure is attempted.

Fig,10. X=annual rate of total admissions to mental hospital, U.S.
male (1914-1960)
Y=annual rate of the U.S. employment (1914-1960)
(source: the graphs in Brenner[5], pp.76).

Fig.11. X=annual rate of total admissions to mental hospital, U.S.
female (1914-1960)
Y=annual rate of the U.S. employment (1914-1960)
(source: the graphs in Brenner[5], pp.76).

From Fig. 10 one may weakly conclude that “lower employment causes a
higher male total admissions to mental hospital after 1~3 years.” But the
increasing tendency on the right shoulder is likely to indicate a different
shape of the cross-correlogram, if we had more observations. Fig, 11
suggests a very unlikely hypothesis, “high female admissions to mental
hospital causes a high employment after 3 years or more.” In this case, it
would rather be safe to interpret as a round-about causal relation or a simple
coincidence (see (4-1),(4-4) and (18)).
Fig, 12, X=annual rate of the cirrhosis mortality, U.S. white male
(1934-1968)
=1 year lagged U.S. average alcohol consumption (1934-68)
(saurce: the graphs in Brenner[6]).
Fig.13. X=annual rate of the cirrhosis mortality, U.S. white female

(1934-1968)
Y=1 year lagged U.S. average alcohol consumption (1934-68)
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(source: the graphs in Brenner[6]).

Both of Fig.12 and 13 suggest that “high level of the alcohol consump-
tion results in a high cirrhosis mortality after 1 year,” which is consistent
with the conclusion of Brenner[6]. Furthermore, both figures indicate non-
proportional negative feedback from the cirrhosis mortality to the average
alcohol consumption, i.e., both figures exhibit lower right hand side shoulders.
(see Fig.9).

Fig.13-1. X=annual rate of murders (1933-1973)
Y=probability of execution (1933-1973)
(see Ehrlich[10] for the source of data),

The degree of linear relationship is negligible in Fig.13-1. Nonetheless it
seems to indicate the existence of slight feedback between the series. An
increase in murders result in the higher probability of executions for the
subsequent 1 through 11 years, and an increase of probability of execution
seems to reduce the murder rate after 6 through 11 years. But the cross-

correlation coefficients are too small to draw any significant conclusions.

Fig.14. X=annual rate of the U.S. GNP (1947-1974)
Y=annual rate of the U.S. money supply excluding the time
deposits (1947-1974)
(source: Survey of Current Business, 1976, biennnial edition).

Fig.15. X=quarterly rate of the U.S. GNP (1947-1974)

Y=quarterly rate of the U.S. money supply excluding the time
deposits (1947-1974)

(source: Survey of Current Business, 1976, biennial edition),

Fig,16. X=quarterly rate of the U.S. GNP (1947-1974)

Y=quarterly rate of the U.S. money supply including the time
deposits (1947-1974)

(source: Survey of Current Business, 1976, biennial edition).

All of the above three figures exhibit very high peak at the lag zero,
and higher (uniformly) shoulder on the side where the money supply leads
to the gross national products. If we hypothesize that current money supply

causes the current GNP, then the non-proportional negative feedback from
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GNP to the money supply is indicated, which is not realistic. On the other
hand, if we hypothesize that the current GNP causes the current money
supply, then the non-proportional feedback is positive from the money
supply to the GNP of the subsequent periods. Notice that this (latter)
hypothesis does not coincide with the conclusion in Sims [17]. But the
asymmetry is not very distinguishable and therefore, one can only safely
conclude that if there is any causal flow between the money supply and the
gross national products, then the significant lag must be within a quarter.

VI. The Estimation of Covariances

The practical use of the estimated auto- and cross-covariances has been
discouraged mainly because the widely used estimators exhibit often poor
statistical properties. In general a time series is called ergodic, if the
estimates of its moments of all orders are consistent. The ergodicity depends
heavily upon the structure of moments of the series. An example of the
ergodic series is the linear process, which is assumed in the works of
Haugh and Box [12]. The linear process is a random process which can
be represented by a linear combination of the white noise series where the
sum of the squared weights is finite. Such a series is always ergodic.

In this section, we discuss the general structure of bias and the asym-
ptotic property of the covariance estimates for two jointly covariance st-
ationary time series, and examine their applicability for the methods analyzed
in previous sections.

1. The Empirical Mean. The usual estimator on the mean for the finite
stretch of the series {X:} is such that

[~

7L
X=71X 20

if

where T is the total number of observations. Clearly X is unbiased. The
variance of X,q2, is

=1

- 1 T
o=EX - =E [ FnXi—p) |2

1 T T
=725 TEXi—p) (X;—pe)
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1 27 . .
ZTG“(O) + TZE(T- Do (2). @n

The estimator X is consistent, if and only if ¢% tends to zero as T goes to
infinity. So whether X is consistent or not depends upon the structure of
autocovariances of the series {Xi}.
We have,
Lemma 1, The estimator X is consistent, if for any ¢>0, there exists an
integer N. such that}o..(?) [ <e for all i>Ne.

Proof. Let e== k and T=kN. for £>1. Then,

li!( . ._z_NeT. . lT—lT. ]
1 ) _1>gzx(l>—T2§'l( —Z)Uxxcl)'}“TZ{:%.H( _z)o‘zx<1)

<20:(0) @T=N.=DN. _ 2e(T— N)(T Ne—1)

= T2 2 tpe

=0n (%1~ ,,m) -4+ %—mu&)

Notice that N. is non-decreasing as £ goes to infinity. Therefore,
7-1
lim 2T —)avu(D)=0
and X is consistent. Q.E.D.

Lemma 1 is different from Theorem 8. 3.1 in Anderson[1], which requires

hmZ}a,,(z)\oo First, consider a series {X:] which has the autocovariances

T =0 §==1

for all i>>0. In this case, the estimator X is a consistent es-

a,,(z)i

timator of 1= by Lemma 1, since for any ¢ (say %), there exists an integer
N.(say k) such that [0xx(i)[<% for all i>k. However, Anderson’s Theorem

cannot establish the consistency, since llfn § -+~-1“°°- Next, let the series {X;}

have the autocovariances such that c:()=(—1)% for all i>>1 and for a
constant ¢>>0, Lemma 1 cannot establish the consistency of X, since the 0::(2)

. T .
does not converge to zero as i goes to infinity. But the fact that gla,,,(i) is

finite for all T makes X a consistent estimator of x. by Anderson’s Theo-
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rem. So we have,
Theorem 1, The estimator X is consistent, if

T
D }glaxx(i)<oo for all T, or

2) for any €>0. there exists an integer N, such that |o..(¢)|<e for all i>N.,

Even when the estimator X is consistent, we need very large number of
observations in practice in order to obtain a useful estimate on p. To see
this descriptively, let the series {Xi} be a first order Markov process with
p:=0 and X,=0,8X:-1+& where & is a normal random variable with px.=0,
Suppose Xo happen to be 1. Then Xi is a normal random variable with
mean 0.8, and P.(X,>>0)>P.(X,<0). This tendency will last until a sub-
sequent X, happens to realize as a negative quantity. When this tendency
lasts long enough so that all the observations are made for these periods,
then the computed X will certainly be a positive number no matter how
many observations are made. Another example is that X; is a moving
average of one thousand observations of the white noise series, where the
weights are all positive. Then the ox() is positive for all i from 1 to
1,000. In this case the estimate X from one thousand observations of X,
cannot provide a useful estimate on y:, Thus we need an extraordinarily
large number of observations to obtain a useful estimate on x:, even when
the X is consistent.

Since the estimator X is a weighted average of Xi, where the weights
are all identical, one may raise a natural question: is there an optimal

weighting scheme, other than %, to obtain a better estimate on g,? The

answer is theoretically yes, but practically no. Let X5y be the Tx1 column
vector of (X,, X,...,Xr), Ube the T'xI column vector of I’s, and « be a
Tx1 column vector of constants such that a’U=1, Then

Mx:X(T) ‘a (22)

is an unbiased estimator on p: In following Lemma 2, we show that the
estimator X is the best among alternatives M.’s when X/s are pairwise
uncorrelated, but not in general. Let 2:: be the T'X T autocovariance matrix
of {Xi}, which is non-singular.

. . —1 . . e .
Lemma 2. The estimator M: with asﬁ%ﬁﬁ" is the minimum variance
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unbiased estimator on . among the alternative estimators in the class of (22)

.. . . 1
The minimum variance of M: is ———=

Uonu -
Proof. Let oy be the variance of M., Then

ot =E(@ X —p) (Xeny'a—p)
:a,E(XST) »_,azU) <X(T) —‘uxU>’a

=a’'Q).a
Choose a to minimize oy subject to a’U=1, Then the Lagrangean is
L:“,sza+2<14a’U>s

and the first order condition gives

L) e et
da ’
oL ,
a[ =1—a* U=0. (23)
It follows that
2 Varl o .
).*::—-[7—,@?{[7 and Q*IAUS;QT_V]U and ax,,;r:a*’ﬂna*:m. Q.E.D.

Now it is clear that the estimator X is the minimum variance unbiased esti-
mator if and only if Q..=¢", namely the series {Xi:} is pairwise uncor-
related. Thus the estimator X is not efficient when the series {X} is auto-
correlated. Table 1 summarizes the results of simulated works to demon-
strate the loss of efficiency for the estimator X. The smaller the autccor-
relation coefficient is (i.e., the closer to ¢°I the £: becomes), the better
the estimator ¥ beccrnes. which verifies the implication of Lemma 2, This
leads to the problem of the GLS estimation of Aitken. So in the next
paragraph we will restrict the problem to a simple case such that we can
follow the Durbin’s procedure.

Since the optimal weighting scheme in Lemma 2 requires a prior: know-
ledge of the auto-covariance matrix £:, it is not possible in practice to
design an efficient estimator on the mean . On the other hand, the
estimator X is not useful at least for small sample size, since almost any
empirical time series is autocorrelated. Therefore, it may be better to
assume that the series is generated by a first order Markov process with
unknown serial correlation cofficient. For the series {Xi}, we may assume
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Xy=1—p)pz+ pXi1+e, 24

where & is a white noise and not correlated with Xi-i, Then,

Qxx::o';chxx (25>
where
/ 1 10 pz ......... pT_l\
po—l f - ¢
N”‘;\ ‘0'2 e l ......... HT—S 6
\\ p’l‘:~1 pr:—z prz—s ......... 1
It can be shown that
} 1 __p 0 ......... O 0 0\
]/ __p 1+p2 __p ......... 0 0 0\
p;“}__lgl‘azw‘ 0 -p 1.;_{)‘2 ......... 0 0 0 ) N
(\ 0 0 Queemp 14p2 —p )
L0 0 Qeeeeeee 0 —p 1
Then
QU U-pHPU
= TOaU T A= UPIU" (28)
Now
1
- e
(l“pz)szUZCI—p) : 3
1-p
1
and (1—p%) UP;iU=1-p) (T—(T-2) p). 29
Therefore we have
I SR
ai= T—(T=2)p if i=1 or T,
B Sl ST PP II L I
T=(T—2p if 2<:<T—1. (30)

Table 1. The sample means and variances of the first order Markov processes
for each value of the serial correlation coefficient p.

Group A l Group B
0 Uz az . i
x s x | s
0.0 0 1 0. 0090 0.9873 -0.2013 1.0753
0.2 0 1 0. 0150 0.9818 ~0.2416 | 1. 0853
0.5 0 1 0. 0256 0.9444 ~—0. 3466 i 1. 0073
0.9 0 1 0. 8200 0.7381 ~0.7483 ‘ 0. 3059
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The least squares estimate on p in (24) may be used to compute s in (30).
This procedure also may be iterated.
2. The Autocovariances. The usual estimator on the autocovariance for lag

7 is S::(7) such that
Se(=FE(X~K) Kipem R, 30
The mathematical expectation of S::(z) is

T

=]

{=x]

(.

T - =
= P - B ) (R )|+ R 3
—ot—of, (32)
1 5 o
ES(9)=FH LXK~ ) (Xugo= 0|

=S (X ) Kge g e L EBCR — g2
T =) ¢ z t4r Hx T Hx

~%E[§<X,—yx> R 1]~ HE Ko ) (X~ )

= T;IT rgxz <T) + Iifaj% - %[Td}% - 71;1:;—1‘4- Zax: CZ - t>}
— TI”TJ% - le‘é ZT:G‘xz (Z - t)}
t=1 =1
:(1~*%>03;(f)—(1+%>0)%+%i ZT:G'::I(Z—t>- (33)
=1i4=1

Ignoring the last term in (33), the estimator S.(z) is biased downward for
all -, and the size of bias increases as ¢ gets greater. Notice that the
estimator S..(r) is asymptotically unbiased only if 6% tends to zero as T
goes to infinity, namely the estimator X is consistent. Since the magnitude
of a}% does not decrease rapidly in general as 7T increases, we should ex-
pect a significant bias for small samples. Then the difference between biases
for different lags becomes a serious problem, which may create serious
distortions to the overall shape of the autocovariance structure. Frequently

one observes empirical correlograms of Markov processes with the positive
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serial correlations, which exhibit the tendency of meonotone decreaging below
zero as the lag ¢ increases. This may have been caused by the increasing
downward bias of S=(z) along the lag .

If we use $,.(c) instead of S..(r), where

T-7
(=g EX X~ X2, @30

then
a T—t -
ES..(t) :Tl:;glE(Xe—#z) (Xepe—pts) —E(X — pta)?=0.:(v) —0%  (35)

Notice that $..(z) exhibits uniform downard biases, i.e., —o2, across all
lags and therefore the bias of §..(r) is smaller than that of $..(s).
If we use Q..(r), where

Tz
Qus (D) =gt X X, X o= M, 36)

x

then
EQ”<T>’:~O‘”(T>—G,;,,. QN

In general the estimator Q«(z) will incur the smaller bias than the 3..(x),
since o%. is smaller than o2,

It doesn’t follow, however, that the estimator Q.(z) will always prove
better estimates in practice, since the above analysis does not include the
covariances of the estimators. It is shown in Bartlett [2] that the estimates
Sex(z) and Su(e+i) (or 8,,(r) and §,.(r+1), Q.(z) and Qw(r+i)) are
correlated, and some authors (e.g., Box and Newbold [4]) attribute the
smoothness of empirical correlograms to this fact. The fact that the estima-
tes are correlated with each other is often indicated to warn the approaches
to study the overall shape of correlogram, which is our main interest here.
But the estimators S::(r) and S::(r+i) are based on the identical sample
(X, Xs,...,X), and therefore they are naturally correlated, just as X is
correlated with S:(0) for any case. The smoothness of correlogram may be
partly due to this problematic correlation, but also is due to the smoothness
of the true correlogram. Recalling that the correlation coefficient measures
a degree of linear co-deviation away from the mean, it is clear that an
abrupt discontinuity of the true correlogram can easily destroy the smooth-
ness of empirical correlogram. In fact, one can obtain a smoother empirical
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correlogram by simply increasing the sample size when the true correlogram
is smooth. Notice that the covariance between S«(z) and S.:(r+:) decreases
as the sample size increases. This may be understood that the smoothness
of empirical correlogram is mainly due to the smoothness of the true
correlogram rather than the problematic correlation between the estimates.

Another point can be raised on the shape of the empirical correlogram.
The estimated autocorrelation coefficient r:(z) is

When the value of S..(0) happens to be unduly smaller than the true
variance o, which is usually the case for a highly positively autocorrelated
series, then the empirical autocorrelation coefficient r«(z) will be unduly
amplified (see Table 1). But it will still preserve the relative overall shape
of correlogram, if the Sx(z)’s for >>1 are relatively good estimates. All
these problems are perhaps due to the large bias of the usual estimator
S«(7), which is caused by the poor efficiency of the estimator X. This is
why we thought the estimator Q::(r) behaves | better than Su(z). But the
results of our simulated works are very discouraging in that we could not
find any improvement in either Q::(z) or M, relative to S«(z) or X, even
when the series X, is a Markov process. We found that least squares
estimates on p were so poor that the iterative method of (30) was not very
useful.

3. The Cross-Covariances. The sampling properties of the cross-covariances
can be shown in the similar way as in those of autocovariances (V. 2).
Bartlett [2] has shown that for the linear processes the empirical cross-
correlogram is best reliable, if each series is not autocorrelated. Box and
Newbold [4] provided an example, which demonstrates relatively high
cross-correlations between two independent series, if each series is highly
positively autocorrelated. This finding may be explained on two aspects.
First, depending upon the initial realization, each autocorrelated series
(say p=0.9) will exhibit monotone increasing or decreasing trend sufficiently
long, and consequently, the cross correlogram indicates significant covari-
ations. Second, if each series is highly positively autocorrelated, then the
estimated variance is so small that the empirical cross-correlogram is unduly
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inflated, misleading one to suspect a strong linear relationship for the two
series which are in fact independent. The Fig,17 through Fig.40 are the
empirical cross correlograms between various independent pairs of autocor-
related series with p=0.6 or p=0.99, for the sample sizes N=>50 and 100,
We again found very high cross-correlations in these simulations, but it is
interesting to notice that the locations of high cross-correlations are random
and not systematic. Even for the same pair of series, the cross-correlograms
look drastically different when we change the sample size. Notice that this
is not the case when we simulated Fig,1 through Fig.9 where each pair
of series are generated by each causal structure. So it may be true that if
we observe the same location of maximum for each empirical cross-
correlogram obtained from different sample size, then it indicates a certain
underlying causal structure, otherwise not. But this idea is a pure conjecture
at this moment, and perhaps it is worth paying attention to this aspect.

VI, Concluding Remarks

So far we tried to provide a theorization to the Hooker-Campbellian idea,
which proposed the use of the cross-correlogram in the study of the causal
structure between two timeseries. We were successful to demonstrate that
the structure of the true cross correlogram is consistent with the Hooker-
Campbellian claim. But this study can by no means be complete, because
there is no known way to obtain a good estimate of the cross-correlogram.
In spite of the poor statistical properties of the usual empirical cross-
correlograms, however, the structure of the empirical cross-correlogram was
consistent with the structure of the true correlogram for every simulation
we performed, as far as the causal study is concerned. On the other hand,
the shape of the empirical cross-correlogram is found to be quite irregular
(specially the location of the maximum) for different number of observa-
tions, when the two series are independent.

We consider this aspect as a clue to solve the difficulties related to
the estimation, and further research will be performed along with this
line.
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