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On the Asymptotic Properties of the inequality

Constrained Generclized Least-Squares Estimation
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1. Introduction

There are growing demands to use prior and sample - information for
parameter estimation of a regression model. Several studies were done to
meet such demands by Chipmén-Rao [1], Theil [12,13], Judge-Takayama
[5], Liew [7,8], Zellner [14], and Rothenberg [10].

The generalized least-squares estimation introduced by Zellner-Theil [15]
and Jorgenson [4] reduces to indirect, two-stage and three- -stage estimation

_dependmg on-the identifiability condition and pr1or assumption on the

covariance matrix of the residuals. This paper extends the generalized
least-squares estimation so that it can cope with prior information and sample
data, and it is called inequality constrained generalized least-squares (ICGLS)
estimation. This paper also investigates the statistical properties of the

" ICGLS estimator and its covariance matrix in the case of a sufficiently large
‘sample. Finally, it provides a numerical example of the ICGLS estimator.

* The author is Associate Professor of Economics, the University of Oklahoma. The Center for

* Economic and Management Research. provided ‘administrative support for this research. This re-
search was revised at Cambridge while the author was visiting at Department of Economics,
Harvard University, He is grateful to Professor Dale W. Jorgenson for several useful comments,
He is alone responsible for “any ‘errors. that may remam
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II. Model

Consider a complete system of p linear structural equations, all of -which
are identifiable, and suppose that the reduced form exists. Such a ‘system
of equations can be estimated by the generalized least-squares estimation.
model (Zellner-Theil [15], Jorgenson {4], and Madansky [9]).

Riy=R'Z5+ %' . W
where v, 3, e are vectors of jointly dependent variables, parameters, and
residuals of the model respectively. X is a matrix of exogeneous variables
of the model and X is (IxX) where I is an identity matrix and X is a
Kronecker product. |

The matrix Z is defined as below:

)
= ..
0 "z,

where Z,=[Y; 1 X;] for i=1, «reee, .
~ The ¥, and X; are matrices of explanatory endogeneous and exogeneous
variables of ith structural equation. '
We assume;
(i) X is a fixed matrix
(ii) X has a full rank
(i) E(e)=o
(iv) V()=0=(ExD
where 3 is a symmetric positive definite matrix and 0 denotes
a null vector, ‘
With sample data, we wish to minimize the weighted sum of squares of
the residuals in terms of d by restricting the conditions;
Ad>c where d is an estimate of 8.V
The estimation problem can be formulated by the following primal- -dual
relations;
Primal
' Min R=(1/2)(R'y~X'Zdy Q™ (X'y—-X'Zd)
subject to

(1) Any mixed system can be converted to the inequality constraints; see Liew[7].
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Adzc '
Cor ‘
Ad—v=c , : @
where v is'a non-negative m-components surplus vector and d is otherwise
unrestricted in sign. ‘

Dual
Max Q=c/a+(1/2) (¥ RO X'y~ &' BZd)

subject to

A’2+ By=BZd ' &)
where R _ ,

B=2'XQ~% o @

and 2 is an m-components dual vector and d is a solution to the prlmal
problem

The pr1mal dual relat1ons reduce to the Dantzig- Cottle [2,3] fundamental

problem. : \
v=Wa+g ' : ()
subject to : D ,
v/2=0, v >0 and 2 >0 ’ 6
~ where
W=A(BZ) 1A’ @
g=Ad*—c i : @®
d*=(BZ) By @®

and d* is the generalized least-squares estlmator @
Given ¢ and W, the Dantzig-Cottle optimal solution becomes,

[%J_

v
where |
A

M1

g | aom
Mz

is an m-components vector of the basic variables at optimal

solution and

M,
=~ W
M,

~where [I;i —W,] is mxm optimal basis.
By equations (3) and (9),
(2) See: Zellner-Theil [15],- Jorgenson [4] or Madansky [9].
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d=d*+ (BZ) (A § A*)'

0 .

- | an
A . :
where (4,*%:4,%)’ is a columnwise rearranged A matrix such that

/]

‘)

d is an inequality constrained generalized least-squares (ICGLS) estimator
vector, .
By equations (8), (10), and (11),

d=(I+(BZ)™ A My A) d*—(BZ) A -My-c (12)

Ald=(A*: A%

Since the optimal basis does not hold for all conceivable values of d*
except for the sufficiently large sample cases discussed in the next section,
the covariance matrix of 4 is meaningful when the probability distribution
of d* is properly truncated. Such truncation is beyond the topic of this
paper. Instead, the optimal basis obtained from a particular sample of d* is
imposed, and then an untruncated covariance matrix of d is derived.

V(d) | given =KV(@HK'

optimal : (13)
basis k

where
K=(I+(BZ) A* M,A).

III, Useful Lemmas

The ICGLS estimator (d) depends on the generalized least-squares esti-
miator (d*), covariance matrix of residuals () and the dual vector (1) at
the optimal basis; i. e.,

d=d(d*, 2,2) s

The following Lemmasi are useful for deriving further results.

Lemma 1. If 2 is a diagonal matrix, and all elements of 21 are equal to
zerb, then the ICGLS estimate vector d reduces to a two-stage least-squares
estimator (d,).

Proof. From equations (3), and if i=o,

d=d*=(Z'X(IXX'X)X'Z)ZX(IXX'X)' X'y, am
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Since Y is a diagonal matrix and X=(I ><X), d reduces to the following set
of p» equations

4=on(Z{ XAEY X2y (—)(z XXXy Gl 8)

where o;;, Z; and y, are ]th d1agona1 element of X, jth submatrix of Z and
Jth subvector of y respectively.
Since all o;;5 are cancelled out, d; can be stacked as below;

d=Z'RUAXX'X)R'D) ZXAXX'X)™ y=dj. (16)
We state the following Lemmas since ‘analogous proofs were given else-
where. @ :

Lemma 2. If ¥ is a diagonal matrix and all elements of 2 are strictly
positive at the optimal solution, then the ICGLS estimate vector d reduces
" to an equality constrained two-stage least-squares estimate vector ds; i. e.,

d=dyt (BFZ)™ A (AB*Z)™ AN (c—Adp)=dy an
_where
B*=Z'X(Ix X' X)X, ~ - (18)

The covariance matrix of , .bécomes;
V(dy)=(B*Z)™ (I-A'(A(B¥Z)~t ANTIA(B*Z)™). (19)

Lemma 3. If 3 is a symmetric, positive definite matrix, and 2 is replaced
by a two-stage estimate S of X, and if all elements of 1 at the optimal basis
are equal to zero, then the ICGLS estimate vector d reduces to a three-stage
least-squares estimate vector d; i.e.,

d=(BZ)" By=d, _ (20)
where '
B=Z'X(SxX' X)X, A D

Lemma 4. In Lemma 3, if all elements of 2 at the optimal basis are
strictly positive, the ICGLS estimate vector d reduces to an equality con-
strained three-stage least-squares estimate vector 4 i.e.,

d=dy+ (BZ)™" A’"(A(BZ)™t AN (c—Ady)=d,. 22
(3) For proofs for Lemmas (2-5), see Jorgenson [4], Theil [13] and Liew [7,8], and for

proofs for Lemmas (6-8), see - Jorgenson [4], Madansky [9], Rothenberg-Leenders [11],
Zellner-Theil [15] and Theil [13]. '
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The covariance matrix‘r of ‘d; becomes;
V(673)=(B’Z)‘1(I—A’(A(BF Z)yt A’)’I‘A(B’Z)"l). 23

Lemma 5, If the model (1) is exactly identifiable, and - Y is a diagonal
matrix, the ICGLS estimate vector d reduces to indirect least-squares esti-
mate vector (d;) when the optimal i=o, and the d reduces to an equality
constrained indirect least-squares estimate vector (d)) when the optimal

o,

Lemma 6, Under usual assumptions, two-stage least-squares estimates d,
and three-stage least-squares estimates d; are asymptotically unbiased and
consistent estimates of 4.

Lemma 7. Under certain assumptions, equality constrained weighted
least- squares estimates are best linear unbiased regressmn estimates under
the linear prior restriction.

Lemma 8, The two-stage and three-stage least-squares estimates (d, and
d;) are the weighted least-squares estimates. :

Lemma 9. The equality constrained two- and three-stage least-squares esti-
mates (4, and d;) are the equality constrained weighted least -squares esti-
mates.

Iv. Asymptotic Properties of the ICGLS Estimator

To show the asymptotic properties of the ICGLS . estimates, we consider
two cases; (1) all true parameters are unbounded (i. e., Ad))c) and (2)
some parameters are unbounded while the others are bounded (i. e., 4,6))¢,

. and A25=62)-

Theorem 1. If the prior belief - (AB))c) is correct, then there exists a
sufficiently large sample n>>n, which makes all elements of dual vector i
zero at the optimal solution.

Proof, The solutions to the Dantzig-Cottle system (v=W2i+gq, v'2=0,2>0
and v>>0) imply that when g¢))0, all elements of i become ' zero. To
complete the proof, we need to show that there exists sufﬁmently large
sample n>n, which makes all elements of ¢ vector posmve
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By relatlons (8),®, (4) and (1)
G=Ad—c+A P, : ‘ 1)
where 7
bu= (2RI X (X X)) (RIZ)) :
N ZIRY(E ) (XX uiXe, _ . (25)
Subscript # denotes the sémplersizei With the usual assumptions of the
asymptotic sampling theory, we can show that ¢, vanishes as the sample size
increases sufficiently large. If the prior belief is correct, Aé—c))o and
it remains constant whereas Ag, is getting smaller as the sample size =

increases. Therefore, there exists a sufficiently large sample #2>n, which

makes au 0.

Corollary 1, 1f the prior belief (Ad—c))o) is correct and X is a diagonal
matrix, then the ICGLS estimate vector d becomes an asymptotically un-
biased and consistent estimator of 6. In this case, the untruncated covari-
ance matrix of d shares the same asymptotic properties of the covariance
matrix of two-stage least-squares estimates.

" Proof. Theorem 1 states that there is a sufficiently large sample 7n>>n,
which makes q,,>>o'and A=o, Lemma 1 states that if ¥ is a diagonal matrix
and 2=o0, the ICGLS estimate vector d reduces to the two-stage least-squares .
estimate vector d, which is asymptotically unbiased and consistent estimator
of 8 by Lemma 6. ' '

Corollary 2. 1f the prior belief  (Ad—c))o) is correct and I is replaced
by a consistent estimate S obtained from the two-stage estimates, then ICGLS
estimate vector d shares the same asymptotic properties of three-stage least-
squares estimate vector d;. In this case, the untruncated covariance matrix

of d shares the same asymptotic properties of the covariance matrix of d,

Proof. By Theorem 1 and Lemma 3, we can show that there exists a
suficiently large sample n>>n, which reduces d to ds.

Next we consider the case where some parameters are bounded and some
are unbounded (i.e.,A;8))¢; and A5=c,).

(4)- See Jorgenson [4]. 7
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" Theorem 2. If the prior belief (A;8))c; and A,6=cs) is correct, then
there exists a sufficiently large sample #>n, such that the ICGLS estimate
vector d reduces to an equality constrained generalized least-squares (ECGLS)

estimators (d).

Proof. In this case, the sample estimates (d) have two constraints; (1)
Ad>c; and (2) A d—cz The equations (2) and (3) are partitioned as
below: ’ .

Ad—vy=c, (26)

Agd=cy : @D

Ay A |3 |+By=Bzd S @8
where |

| B=Z/X(ExXX'X)X,
By equations (27) and (28),
Rg=— Wit War-ki— Wat(4a(BZ)~By—c5) : (29)
where

Wi=A(BZ)™ AY i, j=1,2.
By equations (26) and (28),

1= Wik + Wighy+ A (BZ)™* By—oc. A 30)
By equations (29) and (30), »

vy =M*1y+q* : : L@

where

M*=Wy— Wi Waie War (32

g*=—Wis- Wb+ (Ao(B2)™ By—co)+ (4B By—c). (33)
Since y=Zd+¢,

(BZ)'By=>b++ (BZ)™Be, . (30)

Let ¢* be the g* on sample size n. By equatlons (33) and (34), the follow-
ing relation is evident.

b,*=(A10—¢)) — Wis Wi (A0 —c3) + (A1 — Wi Wit A) (B, Z,) "B, (35)

where
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(BuZ)Be=(n"Z' X (X n-1X'X)~! a1 R/ Z)"L
2R (EXn KXY ks, (36)

The second term of equation (35) vanishes because of the prior inform-
ation (i. e., A,0—c;=0) and the third term is getting smaller under usual
assumptions of the asymptotic sampling theory as sample size is getting
larger.® Tle first term is positive and remains constant as sample size
increases. Therefore, there exists a sufficiently large sample #>n, which
makes ¢,*)>0. The subscript n hereafter is deleted for notat1onal simplifi-
cation,

When ¢*)do, the Dantzig-Cottle solutions are;

v;=¢*)>0 and A=o, \ , | @3N
By equations (28), (29) and (37),
k d=d*+(BZ)™' A (A (BZ) LA™ (co—Ad¥)=d | | (385
where '
a*=(BZ) 1By,

Corollary 3. If the prior belief (A4:6))¢; and A,6 =c¢,) is correct and ¥
is a diagonal matrix, then there exists a sufficiently large sample n>n, such
that the ICGLS estimate vector d reduces to an equality constrained two-
stage least-squares estimate vector d, In this case, the ICGLS estimate d is
the best linear unbiased regression under the linear prior restriction and
the untruncated covariance of d shares same statlstlcal properties of the
covariance matrix of ().

* Proof. 1t follows immediately from the proofs of Theorem 2, Lemmas 1,
7,8 and 9, '

Corollary 4. In the Corollary 3, if ¥ is replaced by a consistent estimate
S from two-stage least-squares estimates, then there exists a sufficiently
large sample n>n, such that the ICGLS estimate vector d reduces to an
equality constrained three-stage least-squares estimate vector 4, Therefore,
the ICGLS estimate vector d and its covariance matrix (V(d)) shares the

(5) See Jorgenson [4].
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same asymptotic properties of equality constrained three-stage least-squares
estimate vector d; and their covariance matrix (V(dy)).

Proof. 1t follows immediately from the proofs of Theorem 2, Lemmas
3, 7 and 8,

V. A Numerical Example

Suppose we have the following new demand and supply model for elec-
tricity in the United States.

Demand Equation
‘ .IOEQi,:IOgdH-allogp,'-i-azlogm+a3 logyi+&y
Supply Equation :
IOEPi=10gﬁo + 81 loggi+ Bsloga; + ez
where

g is the new demand for electricity (KWH) for ith state in 1970,

i is the price of electricity ($) per KWH for ith state in 1970,

z; is the price of natural gas per Therm for ith state in 1970,

v is the expenditure on new demands for electricity and natural gas
(e yi=pigitmGy) where g; is the new demand for natural gas for ith
state in 1970,

z; is a proxy to the Capécity for the new supply of electricity. Installed
electricity generating capacity (million KWH) was used in the compu-
tation as a proxy to the capacity. e; and &, are residuals,

To maintain structural consistency, the following restrictions were made:

Demand Equation

1) ;<0 ~ (negative demand price elasticity)
Gi) a,>0 (positive cross-elasticity)
(i) a;=>0 (positive income elasticity)

(v) aj+a;+a;=0. (the homogeneity. condition)
Supply quuatz'on
(@ p=>0 (positive supply price elasticity)
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(i) B.<0 (negative capacity elasticity with respect to price)

Utilizing 51 obsérvations, we calculate parameters of the electricity model.
We obtain the following empirical results,®

Demand ‘Equation

Two-Stage Estimate ' ICGLS Estimate*
Parameters <
Estimate Std. Error Estimate Std. Error
log ap —0. 9865 0.5046 =0. 2910 0..5097
a1 —1.3652 - 0.1866 . . —1.1812 0.1269
27} , 0.2219 0. 0499 0.2325 0.0532
as 0.9417 0.0159 0.9487 0.0163

Supply Equation - T
The Estimated Variance-Covariance

ICGLS and Two-Stagé Estimate** Matrix of the ICGLS Estimates
Parameters -
Estimate Std. Error . 25983 - , 06279 . 00989 .00071
log fo —6.3088 1.1045 .01612 . 00130 . 00041
A 0 0.3482 0.1504 _ .00283 . 00024
B —0.3818 - -0.1442 ‘ . 00027

* ICGLS estimate when I is a diagonal matrix,
#* None of the constrained 1s bounded the ICGLS estimate is same as the two-stage estimate,

Sources of Data: The-data were collected from the following sources: (a) U.S. Department of
Commerce, Statistical Abstract of the U. S., Washington, D. C.: U.S. Government Printing Office,
1971, 1972 and 1974. (b) U. S. Federal Power Commission, Statistics of Privately-Owned Electric
Utilities in the United States, Washington, D. C.: U.S.  Government Printing Office, 1969 and 1970.
(c) U..S. Federal Power Commission, Statistics of Publicly-Qwned Electric Utilities in the United
States, Washmgton, D. C.: U. S, Government Printing Ofﬁce, 1969 and 1970. ‘

The tiew demand for electricity (g:) and for natural gas. (gi) was estimated as below:

0/(1970) =0,(1870) 0.9 Q:(1969)
£i(1970)=G:(1970) ~0.9 G:(1969)

where Qi (1970) is per capita electricity consumption in ith state ‘during 1970 and Gy (1970) is
per caplta natural gas consumption in ith state during 1970.
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