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A Note on the Estimation of a System of General

Functional Forms with Random Coefficients
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I Infroduction '

In the recent econometric literature, the estimation of random coefficient
regression models has received wider attention. Among others, Rubin [8],
Hildreth and Houch (4], Singh et al. (10), Swamy. (12], Hsiao (5], and
Singh and Amanullah (9], have presented a good rationalization of linear
models with random parameter specification. The development of these
mOd_els_mainly stems from the illuminating discussion by Klein(6], showing
that the coefficients of a regression model can be treated as random in
cross-section analysis, to account for spatial and inter-individual hetro-
geniety. Once the random parameter specification is accepted, the issue that
might be faced is with the choice of functional form. We are however, less
fortunate, to have a direct link between economic theory and the choice

| of functional form, as Dhrymes et al. [3] assert “Economic theory gives

preciously few clues as to the functional forms appropriate to the specification
of economic relat1onsh1ps, and the presence of random error terms in sto-
chastlcally specified equations adds an additional element of functional ambi-

- guity.” It is then, a common practice to choose between _the alternatives:
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linear, log-linear, semi-log etc. Taking into consideration, the twin problems——
choice of functional form and the random parameter specification—Murty [7]
has analysed the possibility of estimatiﬁg the general functional form (GFF),
which is non-linear in nature, with random parameter specification. This
functional form—introduced by Zarembka [14]®—is general in nature where
the linear, log-linear and semi- -log etc. are the special cases. The utility of
this form can be enhanced in many econometric studies. The glaring ex-
amples include the studies on: (1) demand functions for food and money
(Zarembka [14, 15)) (2) import demand functions (Khan and Ross) and (3)
financial analysis (Chang and Lee [2]). All these attempts, however, relate
to a single equation problem. Recently, Tintner and Kadekodi [13) and
Spitzer [11]® have gone a step further, and recognized the importance of
the GFF formulation in a simultaneous equation framework. A natural
extension, one can consider is to view GFF in the Zellner’s [16] seemingly
unrelated regression (SUR) framework. We consider in this paper the esti-
mation of such a system, with random pa'raméter specification.- In the next
section, we briefly outline the estimation procedure of such a system, together
with a statistical test criterion for discriminating models with random co-
efficients in the SUR framework.

II. Model

The 'general functional form can be written as

LGLJ— =i+ 53 o X"@ D tuw =120, T @1
where Y(¢) is the #** observation on the dependent variable; X;(£) is the ¢
observation on the independent variable Xi; u(f) is the disturbance term,
corresponding to #* observation; i, fz...., A and 4, 4...., 4 are the para-
meters.

It can be seen that the parameters &, Z..... ;A determine the way in

(1) The genesis of this functional form is based on Box-Cox [1] transformation.

(2) In a simultaneous equation framework, Box-Cox’s' [1] parametric transformation may “lead
to identification problem and this can be resolved by assuming the same transformation to all
the equations in the system.
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which the data enter the equation. Note that the transformation is conti-
nuous at 4, 4s....,=0 where '

Al

U Y"l
A0 =logY . 2.2
Ai
Zi_“_:OWX%L =logX; i%Z, e A, @.3

Thus (2.1) reduces to linear, log-linear, semi-log, for specific values of
A, Ayl » M. Let us consider a system of M seemingly unrelated General
Functional Forms, of which the i (i=1,2,..., M) equation is

i1 ! 2{5

where Yi(2), Xi(t) are the observations on the dependent and independent
variables respectively for the equation; g;3(8=1, 2, ..., 4) and 2; (6=1,2,....4)
are the parameters; and ui() is the usual disturbance term for the
equation. '

Writing for convenience

Aiy
X — At
L(? Lo %y
and
Aid s
EL"Q&L:X',.;(;),
Ais
we have (2,4) as
(2i1) A wb ! ‘ ‘
Yi(@)=pi +J=Z'2ﬂi6Xi5(t) +u,-’(t). ) . 2.5

If the parameters i, Bi.. .. fir -are ré.ndom, they take different values for
each observation and (2,5) can be written as®

YiO=a(0) +EaOXa) +ut) 4 @.6)

writing

(3) For convenience of presentation it is assumed that 2u=2s (8=2,...,2) and it is necessary to
~-assume further that 2s=2; (i+5). '
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where s is the mean regression coefficient and es() is the unobserved
random disturbance term. Using (2,7) in (2.6) we have

Yiy=Fnt BB+t @8
where ‘

: A ()]

Wi =Ten(DXin(D)+vi(2) -

and :
vt =t &) +ei ().
Making the following assumptions |

() E@@)=E@:(®))=E(es(®))=Ew;(®))=0 for all s, &’s and s
(i) Ew(®), e@®)=0 |
Gi)  E(w(®), w;"))=0;; if t=¢'
' =Q if g#¢
(V) E (), e/ @D))=0; if t=1!, 5=5"
=0 if ¢!, a0
() E (), vi(t))=0%=0i;+0;;, if 1=t/

=( Cif et
i) E (wi®), w;¢))=wy;@) if t=¢
1 =0 - if et
where
- AW 2 ' ' '
wij(t>=ﬁ*fjl+6§2 IO PTIONTH , (2.9

The system of equations in (2.8) can be written as

Ly (X 0-0) (B (m o
| = 0 Xz\:\"? .32 + -";’2 @2.10)
Yy* 0 Xy*) (Bu Wy :

where (i) Yi* (4=1,2,.-, M) is a vector of order' (T'x1) with- the follow-

ing elements
(A
Yi(.l)

(0}]
Yi(T) 7 7 7
(i) X* (=1,2,...,M) is a matrix of order (T'x4) with the following
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elemerits

) @

12X (1) Xin(1)

) @ w
Xi¥=| 1.X (2w Xin(D

@2 o
1 X(T) e Xin(T) .

(ii) A/ is a vector of parameters (Brts Bigy . Bur) OF order (1 x4 :
(iv) w/ is a vector of d1sturbance elements (wi(1), wi(2),..., wi(T) of ~
order (1x4). '

More compactly . 10) can be written as
P=X*+w A ' (2.11)

where X* is a (MTxM4A) block diagonal matrix and Y*, # and w are
: vectors of order (MTx1), (MAX1) and (MT X 1) respectwely
It can be seen from the assumptlon (vi) that

, . :
Elww;y= [o’%,@) ------ ¢,, 2.12)
| 0 w,m ' ‘
Thus we have »
 Bwy= [;’?; é‘a;::::::ﬁ;:: @1
by ¢Mz, 7 ¢MM

In the case where 2=1; it can be seen that (2,10) reduces to the model
considered by Singh and Amanullah [9] and further if it is assumed that -
B, Oigny s :JA—-O for i,j=1,2,...,M, then (2.9) reduces to the Zellner s
[16] seemmgly unrelated regression. equations.

111. Estimation

If ¢ is known (2,10) can be eétimated for a 'given (A) by using the
- Generalized Least-Squares (GLS) procedure in the following way.
Making ‘the assumption of normelity® to the distutbarice term, in each

_ (4). We note that under the normality assumption the error term in (2.9) extends from (—oco, +
‘e0) and consequently the dependent variable ‘should also extend from —voo to oo, For some
values of A (say 1=1/2), this range may not- be possxble, in: whlch case the error term can
only -be assumed as’ approx1mately norma] '
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equation we can form the 11ke11hood function of the sample values as

ST N L e taar
e

L(6/data)= | @) |J] S (2.14)

MT
@n) 2

where  6=(#,2) and J is the Jacobian of transformation, ,such that

For a given 4, we have from (2.3), the log-likeliho'od (L*¥)1®value as '

(L*)z'—“—“MgIogZ:r————(log[G)t) + (- I)Z Z.".logY(t) 2.1

g (=X 0P

By taking a grid of values for 2, (L*): can be estimated from (2.15)
with the information on (@), From these series of 2 and (I*): values, the
optimum 2 (say A*)®, can be chosen either by using numerical approxi-
mation procedure or by least squares procedure. Using this 2* and ()i,
other parameters of the system can be obtained by applying the GLS
procedure to (2.11), As is evident, that this optimum 2 corresponds to the
maximum of the log-likelthood function of the sample values, the estimates
are consistent. ' n

In general, information on @ is not available and thus the estimation of

- the parameters of (2.10) is not stra1ghtforward Nevertheless, we can obtain

a consistent estimator of @ by using the multiequation generalization of
the Hildreth-Houch (4] procedure, along the lines suggested by Singh
and' Amanullah (9], ‘ : ‘

It can be seen that the estimation of @ in (2,13) essentially leads, from
(2.9) and (2.12) to the estimation of 6%, 6 oo isa (G, 7=1,2,..., M), For a

‘given 2, applying Ordinary Least Squares (OLS) procedure to each equatlon
. in (2.10) and writing for i equation

(wf)zf—(M;)z (wda o - (2.16)
where (Mp: is a (TxT) idempotent matrix such that |

(56) The suffix 2 'i_ndicates the estimate in the brackets for a specific value of by : ‘
(6) The optimum criterion is based on choosing 4 at the maximum of the log-likelihood - value L*,
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(M), =T —-X#(X* XM X#*),
) [ mt](l) """ ;7"(1) )
| miy(T)+ mi(TY 2
writing '
(Miz: matrix of the product of the corresponding elements of Mi and M:
for a given 2 x '
(Xi*)x matrix of the product of the correspondmg elements of X, and X;
for a given 2

(#:)z vector of the product of the correspondmg elements of w; and w;
for a given A, ’

- (8% vector of order- (Axl) Wlth elements Bis®, Bijg®, oy Bipp®

‘We can have from (2,12)

E (i )a=(M; E(ww )M =M @i; M2 ‘ 2.17)
and S o ’
E (iD= (Mi; Xif* 0:);
wrltmg
(vlj)l-(wil "E(Wu))z
we have o
(@ida=(Mi; Xi* 802+ GiDa=(Zi* 0:)3+ (i : (2.18)
Where ‘ . | ' _ |
(Z*fj)a=tMinij*)z. : ‘ (2.19)

Applying OLS” procedure to (2, 18) we have the estimate of 6%;®, for
a given 2 as

0:1*—((1*11’ VAT RV AT wu)l g @20
:Usmg (2. 20) in (2.9, . 12) and (2 13) the GLS estlmator for £ ©® for

(7) Tn view of the dependence of (8%;;) with the sample observations, it can be seen that (6% )2
is consistent but inefficient -estimator of (6%j)2. This is because of the error term (vis)a in -
(2.18) being violating -the homoscadastacity property of GLS. In this case it can-be easily
seen that E(ii)i=2(Xi) 4, (which.is a -matrix of - squared elements of (MigiiM;) and
accordingly (%02 can be obtained by applying GLS procedure to (2. 18).

(8) It may sometimes be possible to arrive at the negative -estimates of the dzagonal elements of
(¢ii, i=1,2, ..., M) in which case the estimation procedure can be modified suitably, along to
lines suggested by Hlldl‘eth and Houch [4).
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a given 4, can be obtained as

(Bi=((X*G1X%)"1 X1y, - (2.20)
- Since (@)1 is known for a given value of 2, using (2.15), (L*)a can be
formulated. Thus by considering a series of values of 2, we can have.the
corresponding series of the estimates of (@), and a series of (L¥),. The
optimum value of 2 can be located, from these series, either by using nu-
merical approximation procedures or by least squares procedure.

The estimation procedure outlined above can be used for testing  the
validity of specific random coefficient functional form in Zellner’s seeming-
ly unrelated regression (SUR) equation framework. For example, the log-
linear formulation is postulated in SUR framework with randomness in
parameters, The validity of this postulation can be tested statistically by
formulating the hypothesis as

H,: 2=0 :

H, : i=1, (arrived from the GFF formulation),
Since 2 discriminates the type of functional form, we can formulate the
test criterion by considering the conditional and the unconditional log-like-
lihood values from (2, 15), , , .

In the case of different transformations for dependent and independent
variables in (2.6), the estimation and testing procedures outlined above
need a little modification. Since we have A, 2 values (l.e., ;; Ay, vorees , A,
we obtain first, the (L*) values by varying 2, (in the chosen range),
and fixing 2, 2, -+, A and then I*)i— the maximum of the
conditional likelihood function—and 7, the corresponding 2,. This proce-
dure can be repeated by varying i, and fixing 2, 2, -+, 4 and so on. Now
we have & new series of 1), 1, -, x and (I¥x, (I*)3,,(L®a values, and
the final round optimum #* can be located. The validity of a particular
random coefficient functmnal form in the SUR framework can be tested
accordlngly

(9) By makmg the assumption that T oo (X¥; X*;)/T ‘converges to a positive ~definite
matrix, the following properties of the estimators can be established. For * details see Singh
and Amanullah (9.

@it —0%)=0,(T-F) B-g)=0,1T)
where (T‘“}) represents the term of which of order 7-% in probability.
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