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I. Introduction

A rational expectations equilibrium is an economic equilibrium where
agents’ models or theories of what the equilibrium will be are fulfilled by
the actual allocation generated when agents use these models in their
optimizing behaviour. The main purpose of this paper is to investigate a
learning process through which a sequence of expectational equilibria
converges to a rational expectations equilibrium, and to support the no-
tion of a self-fulfilling equilibrium when the economy is subject to
uncertainty. Previous study on this area undertaken by Kihlstrom and
Mirman (13] is from a Bayesian point of view. They show that when
the price process is a stationary stochastic process, the outside Bayesian
observer can form the same price expectations as insiders who know the
structural parameter of the economy. Since the relevant state of nature and
the price are independent of the actions of the outside observers, their
learning does not influence the distribution of the price process. Jordan [12]
takes a different approach. He hypothesizes that there are intermediate
stages at which each agent learns about the functional relation between the
sequence of equilibrium prices and the corresponding states, and that no
intermediate temporary equilibria is required to be consummate. In this
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paper, we assume that all economic agents participate in the market even
if they do not have a perfect model of how the market clearing price is
related to the particular event obtained in each period.

We define an expectational equilibrium as an equilibrium that results
when the agents have an imperfect model of price formation process and
when their model is not controverted by the observation of an equilibrium.
If every agent improves his model over time, the price process will not, in
general, be a stationary process. Although the capacity to interpret a price
signal differs among agents, we show that the price system can still convey
all the information available in the economy. Until the learning process is
finished, informed agents can collect a rent to their information endowment.
This confirms the idea that there is an investment aspect in the acquisition
of costly information. We show that in the limit of dynamic adjustment
process, a rational expectations equilibrium persist over time and the price
system becomes a source of externalities (Green [7])). In section II, the
economy and the model are described to present an existence theorem. In
section III, we iniroduce an imperfect model of agents and show how the
learning process can proceed. In the final section the uniqueness of an
expectational equilibrium as well as the convergence of our learning process
is proved.

II. A Model of Rational Expectations Equilibrium

1. The Economy and the Model

We consider a perfectly competitive, pure exchange economy in a stochastic
environment. The economy consists of a finite set {1,2,...,7} of agents.
Each agent is uncertain about the state of nature until after the exchange
operation is completed. We assume that the economy lasts for two periods.
In the first period, agents exchange their endowments but do not consume.
In the second period, no exchange takes place and each agent consumes
what he obtained in the first period. Every agent is assumed to have a
private information source about his uncertain environment. We call it a
signal and we assume that every agent’s signal is correlated with the payoff
relevant state of the environment. Formally, let Q be the set of all possible
states. Associated with the set 2 is a specified sigma-field of events, or
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measurable subsets, denoted by S. We assume that every agent has a com-
mon prior probability measure P on the measurable space (£,S5). The
signal of agent 7, j,, is a random variable defined on the probability space
(2,8, P). Let B(3,) be a sigma-field of events generated by 5. Then we
have B(3,)cS. Equivalently, an event BeS is a member of B(3,) if and only
if agent i knows whether or not the true state that actually obtains belongs
to B upon receiving his signal j,. The characteristics of a representative
agent 7 are described as a triple (>,(w), #, 7), where Z,(w) denotes his
statedependent preference ordering, an ordering that can be represented by
a real valued function «,(-; w) for each state o; z is his endowment, which
we assume is constant over all states; 7, is his signal. The consumption
possibility set X, of every agent is assumed to be R,Y, the non-negative
orthant of the N-dimensional Euclidean space, where N denotes the number
of commodities that are traded. Any particular element of R, is denoted
by z., which is the consumption of a representative agent i. The following
assumption is maintained throughout the paper.

Assumption 2.1 : Assume u : R,¥X 2—R is continuous in . ¢ R,V for each
o and S-measurable for each z.. We also assume that w.(2:; @) is strictly
concave, increasing in z: and bounded. Further, u.(z.; ) is differentiable
in z. almost surely (a.s.).

Let 7 : (2,8, P)—>R" for each i and let Y. denote the range of 7 in R",
the M-dimensional Euclidean space. Define the space Y of a joint signal,
(5),=17, by the cross product of all the Y.’s, i.e., Y=Y, X...x Y. The
realization of each signal j, is denoted by y. Define 3=(3,, 7,,..., jr) and
5=(j, Js, .-, 3r). We notice that each signal 7, induces a probability measure
v on Y by the operation P-5!. In other words, for any Borel subset A of
Y, we have v(A)=P(G-1(4)).

Each agent is maximizing his expected utility, conditional on his informa-
tion, including information that is transmitted by the market price, subject
to his budget constraint. Formally, agent i chooses his consumption vector

%,(y) in the event B(y)= {weR!j(w) =3} by

maximizing  E{w.(£(); o)|7.(@)=y, p()=p}
subject to PNE DS Hy)E..

The price 5(-) is a vector-valued random variable defined on the space of
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ﬁ(') : ()7’ y)‘%(SNr U<SN)>,

where Sy is the unit price simplex in R,¥; ¥ and o(Sv) are the Borel-fields
defined on Y and Sy respectively. The consumption vector #(+) is also a
vector-valued random variable and #,(+) : (Y, »)—R,". These notations embody
the idea that the market clearing price as well as the consumption choice
does not depend on the information that is not available in the economy.
Further, strict concavity of #,(z,; ») in i excludes the possibility that the
consumption vector chosen in an equilibrium can provide additional in-
formation that is not contained in the price (Kreps [14)). Let F,=B(j.)
AB(p), the smallest o-field of events that contains B(j) and B(p), where
B(p) is the o-field of events induced by # on 2. Then

maximizing  E{e,(%(3);0) |5 @)=y, p()=p)
subject to PR <HIE,

is equivalent to

maximizing E{u,(z,;0) | F} (0)
subject to PN E

for any state weB(y). We always take regular versions of conditional
expectations so that the consumption vector of each agent as well as the
resulting market clearing price is well defined up to P-equivalence or
except on a P-null set (Kreps [14)).

The demand function of agent i is denoted as z,(F,p), given the price
5(+). An equilibrium price (+) is such that

T T
Ex,‘(:F;,P)S;li‘.' for all yeY

except on a v-null set, where 5(y)=p.

We call (2.(F.,p), p).=i" a rational expectations equilibrium for this economy.
This notion of equilibrium comes from the concept of stationary equilibrium.
Every agent eventually learns the true joint distribution of (5, ) if this
economy is repeated over time. Through a sequence of temporary equilibria,
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agents might have a chance to know what the function 7(.) looks like.
This is a highly idealized version of the notion that price conveys
information and that no learning must be possible at an equilibrium.

A rational expectations equilibrium price p is called fully revealing if
B($)=B(j3), i.e., if price conveys all the information held by agents. The
corresponding equilibrium is called a full-information equilibrium. A
rational expectations equilibrium price need not necessarily be fully revealing
in our sense. For example, an equilibrium price may just provide a sufficient
statistic for a joint signal in determining the optimal demand of each agent
(Grossman [10]). When the cardinality of a signal space is infinite, the
concept of a negligible set in the space of economies will be sensitive to
the choice of topology as has been illustrated by Green [8], and Radner
and Jordan [18), where the openness of non-existence of a rational expecta-
tions equilibrium depends on the choice of topology in the space of econo-
mies. In the following, we provide a set of sufficient conditions for the
existence of a fully revealing equilibrium.

2. Existence Theorem

When price conveys {ull information, i.e., when B(p=B(j), let us denote
F.=B(3)AB ) by F for all i. The [ollowing proposition is uvscful to prove
that an equilibrium for cach information-cvent in F is virtually equivalent
to the Arrow-Debreu equilibrium.

Proposition 2.1 : Let F be any sub-sigma-field of events such that FcS.
Then E{w(z;w) F} is continuous in .: ¢ R" for almost all w ¢ £ and F-
measurable for each x.. Also, E{u.(z,;;0)|F) is strictly concave, increasing
in z, and bounded from above. It is differentiable almost surely.

Proof: Using the Lebesque Dominated Convergence Theorem on conditional
expectation (Chung [3]), we can easily prove continuity and differentiability
of E{u,(x;0) F}. The other properties are simple applications of elementary
properties of conditional expectation. . Q.E.D.

The following assumption is quite standard.

Assumption 2,2 : Each agent’s endowment vector, denoted as 7, is semi-
positive, i.e., & = R,Y and for some £, z,>0.

The following theorem should be obvious.

Theorem 2,1 : Suppose every agent has full information. Then under the
Assumptions 2.1 and 2.2, there exists an equilibrium price for each state
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of nature o, except on a P-null set.

Proof: Once we apply Debreu’s lemma (Debreu (4)), it is straightforward
due to Proposition 2.1, Q.E.D.

Let ¢:(R,8)-R.~"! represent the payoff relevant state of the environment
in the sense that each agent’s utility function depends on « only through
é(0). For example, when agents are maximizing the wealth derived from
their portfolio, ¢(w) can be regarded as a vector of returns to their holding
of risky assets in an uncertain event w. Let E denote the set of all such
states, and ECR""' be endowed with the o-field of events.

Assumption 2, 3 1 Assume u, {z;;e(0)} =u,{é(w)z,r+ B} where z.r e R¥'and B, ¢ R,

Each agent is maximizing the expected utility of his wealth, or his port-
folio. We notice that only markets for the linear combination of contingent
claims conditional on each information-event exists. In other words, for
each information-event B(y), i chooses his portfolio (z;;, 8,) and for eah
event weB(y), he gets é(w)ez,r-+r8, though he cannot make constracts for
contingent claims conditional on each event w ¢ B (¥) (Grossman [10]).
Although this type of utility functions substantially reduce the number of
contingent markets and hence reduce the opportunities for the sharing of
social risk, Assumption 2,3 is based on the non-existence example
presented elsewhere (Yoon [19]).

Define $(7) (@)= (@) =5, and %(F)(w)=%(5(w))=#(y). Before we prove
Theorem 2.2, we need the following lemma.

Lemma 2,1 : Let #,=(xz.s B,) denote the ith agent’s endowment vector,
so that # ¢ R~ Suppose p(y) is an equilibrium price for each y &Y under
Assumptions 2,1—2,3, Then

T T T . v
gfm(FnP)=§xf;F and gllBI(FnP)=§T£BH P—a.s.

when #r(F,p) is the optimal demand of the ith agent for the safe asset.
Proof: Let

A= {w ¢ 2|either éf,p(ﬁ)(w)<§§1.i,p or éﬁ,(&)(w)<§1;3,]
where

le(j)(‘"):iiF(FbP)’ E,‘(j)(lﬂ)‘—"-é,(ﬁ’,,?),
and
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J(o)=y, p(F)(w)=p.

Using the strict monotonicity of #.(x:; ) in x, we can show easily that
P(A)=0 (Yoon [19]). Q.E.D.

Assumption 2,4 : There are only two goods—a risky asset and a risk-free
asset.

Define a linear ordering < on 2 as follows. w,<lw, if and only if é(w)<
¢(wy), and w;~w, if and only if é(w)=é(w,). Then (2, <) is a chain.

Assumption 2.5 : Let the distribution generated by ¢ : (2, S, P)—R, be non-
atomic, i.e., P(¢'(e))=0 for each particular realization of e.

Assumption 2.6 : For each pair (Bs, B:) of observable events when all the
agents’ information is pooled together (i.e., B., B, e B(3,, 3s, -, yf)),wisng é(w)=

ev<sup é(w)=e¢, or ¢,<e, Since (2, <) is linearly ordered, this is well defined.

we B,

The above assumption is rather restrictive and is introduced to make an
equilibrium price Jfully revealing (Yoon [19]). Now we have the main
theorem in this section.

Theorem 2.2 : Suppose B(3,, j,, ..., jr) is generated by (B,)m=", B.NB,=¢ for
k1 and P(B»)>>0, all m. Under the assumption on the utility function stated
in Lemma 2,1 and under Assumptions 2.1—2,6, there exists a rational
expectations equilibrium price p(+) such that B(5(5))=B3G, 3, ..., 7).

Proof: See Appendix.

III. Expectational Equilibria with Imperfect Models

1. Existence of an Expectational Equilibrium with Imperfeet Models

When we defined a rational expectations equilibrium in the previous
section, we assumed that e’very agent knows the entire function p(+) so that
in a full-information equilibrium, an observation of the price is equivalent
to having all information in the economy. In the equilibrium, there would
be no need for recontracting after the market clearning price was announ-
ced. If all agents eventually learn the joint distribution of the equilibrium
price and the underlying state of nature, they will form expectations and
make consumption decisions such that this equilibrium persists over time.

To introduce a learning process of each agent, we now assume that some

agents have an imperfect model of price formation process. The following
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definition is useful in this context.

Definition 3.1 : The model m, of agent i is defined as a measurable correspond-
ence from the price simplex Sy to the signal set Y.

Let u,(z,; é(@))~=u,z,;¢), where é(w)=¢ ¢ E.

Assume that each agent is maximizing E(«.(z;;e)|5,=y) subject to pz,<pz,.
Let %(y,2) be the resulting demand function. Let $(y)=p be such that

T T
E}lf.(y,,f)) =L Letm(p)={y, Y-} Y, where Y_z:j>§‘Y, is a cartesian product of

every other agent’s signal space. Then p(y) is still an equilibrium when each
agent is maximizing E{u,(zi;e)|5,=v, m(p)=(y;, Y.} for each realization y,
since conditioning on m(p) does not provide any further information.
Furthermore, if we interpret m.(p) as the ith agent’s model through which
the information contained in the equilibrium price p(y) is filtered, we find
that the agents’ models are trivially fulfilled for any realization of a joint
signal y. We call this model a naive model.

Let an event B,(y)= {wef|§.(w)=y}, and B(y.)= {wef|j.(w)=y.}, where 7 (or §.,)
denotes a joint (private) signal at time ¢ When the signal set Y is
countable or equivalently when the sigma-field of events generated by the
joint signal 7, is countably generated for each ¢ and the probability distri-
bution induced by # on (2,S,P) is independent and identical, we call
B(¥)=B:(y) an elementary event, if P(B(y))>0, all y ¢ Y. Let m,=(my, my,
...,mr;) be a vector of agents’ models at time ¢. Let m,* represent the model
of agent i at time ¢ when it is not controverted by an equilibrium and
m&=(m*),.7. Let p(y; m*) denote a corresponding equilibrium price at time
¢t when the realization of the joint signal is y. Although (m,*) .., and §.(y;
m*) are simultaneously determined, the existence of such (m,*)..," is always
guaranteed as we have seen when we defined a naive model. We now have
the following definition of an expectational equilibrium with imperfect
models.

Definition 3.2 : For any trading period ¢, and (m,*),.7, $.(y; m*) is an
equilibrium with a vector of fulfilled models if it satisfies the following two
conditions.

T T
¢D) Zifx(ﬁt(yt; m*), Vi Pt*)sg‘inh where #,(5:(y:; m/*), yu,p*) maximizes E{u

(xl; 0:)15)t1=y|:" 7”»!(?!”“)} SubjeCt' tO Pt*xngf’t*-iu.
(2) Forany we 2, y.(w)=y, and p,(y; m*)=p*, we have 3,7 (m, . (p ) N F: ' ) # .
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Condition (2) is stated to ensure that the private signal and the agent’s
model must provide mutually consistent information.

When the agents’ models are defined as in Definition 3.2, it can be shown
that the effect of having a different model is reflected in the different
revision of the prior distribution on the set of payoff relevant environments.

Proposition 3.1 : Suppose every agent has a common prior, P, on (2,95).
Then the agents’ models are well-defined in the sense that the conditional
probability of any Borel subset of E given y, and m,(p*) is well-defined
almost surely.

Proof: Define PCW |7, m*(5))(w0)=P(W|5.:(0) =y, mu*(BH(w))=m.*(p*)).
Let B,=m*(p(G.(0))NCY and y ' (B)=Bw,). Let Clw)=(0]fu(@)=y(w)].
Then P(W|5,, m,*(p*))(w)=P(W|B(w,)NClw,)) and this is well-defined for any
W ¢ E, P—a.s. Since conditional expectations as definéd above do not depend
on the particular versions of conditional probability we choose, our assertion
holds true. Q.E.D.

In fact, we can prove a more general proposition about the existence of
a prior probability measure P. such that agent / who has an imperfect
model can be viewed as if he had a perfect model with a prior distribution
P, on (2,5). This P, is also uniquely determined up to P-equivalence on
(2,5) once the model of agent i is given.

Proposition 3.2 : Suppose the signal space Y is countable and P(B(y)) >0,
all y ¢ Y. Given {m,* .,", there exists a unique probability measure P: such
that E {-| B} =E{-|By)NAp*)} for any p*=p*(y;m*) e Sy, where A,(p*)=j!
(mX(p*))cQ and £ {-|B(y)} is the conditional expectation taken with respect
to the probability measure P.. Furthermore if P is nonatomic, . is also
nonatomic on (£2,9).

Proof: This is a direct consequence of the Proposition 3.1 and Theorem
2.2.1 in Reyni [18]. Q.E.D.

Now we present a corollary to Theorem 2.2,

Corollary 2.3 : A rational expectations equilibrium with imperfect models
exists under the assumptions stated in Theorem 2,2,

Proof: Since P-»! is also nonatomic when P. is defined from the imperfect
model of agent i/ as in Proposition 2.2, the rest of the proof remains the
same as that of Theorem 2,2, Q.E.D.

In fact, Corollary 2.3 shows that s*(y; m/*) #p*(y/; m*) whenever y,#y/ .
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In other words, under the conditions stated in Corollary 2,3, agents’ models
always provide coarser information than the information contained in an
equilibrium price given those agents’ models. In technical terms, m,* is
always p,*-measurable. We provide the following theorem to strengthen the
above argument,

Let vi(e=e|j=p) =va(n)=P(e=¢|Fi=y;, m*(P)=m*(F*(y; m*)).

Theorem 3.1 : Suppose E and Y are finite sets. Assume u,(z;:e) =w;o(xi0) +
v(evx), whete e € RN Assume v,(ei]y)>>0, all &, i and y e Y. Then p*(y; m*
#p*(y’; m*) and such a p*(y; m*) generically exists under the condition
stated in Radner [16].

Proof: Under these assumptions, possession of a different model m,* is
equivalent to having a different prior over the set of environments, E, as
long as we are concerned about the conditional probability measure
P =e|m*(p*), 3=y)=w(ely). Therefore, the proof is equivalent to
Radner’s proof. Q.E.D.

2. Examples of a Learning Process

In this section, we present two examples to clarify the definition of
agents’ models and to introduce our dynamic learning process. The second
example is a more concrete analysis of the first example.

Ezample 3.1 : Suppose there are two agents-—an informed agent (type I)
and an uninformed (type II). Let 2= {0!, 0?, «*}. Assume that the signal of
each agent is fixed in advance so that the type I agent (type II agent)
always observes §7,(5i,) over each trading period in the future. A ume
Fi(o)=2, 51(0)=3 and FeH=5 while ju(eD)=2, ju(e®)=ju(e*)=4. Then
Y:=1{2,8,5), Yu=1{2,4) and Y=Y:xYu The type 1 agent can dis-
tinguish every state by observing his private signal. On the other hand the
type H agent cannot distinguish «? and «®. Let w: denote an actual event at
time ¢. We suppress the model of the type I agent since he is perfectly
informed with his signal. The type II agent is assumed to start with a naive
model, i.e., mu*(p)={yu, Y} when he observes j(w)=y and F¥(5(w);
mi*)=p. Notice that this naive model is always available and not controvert-
ed by his observation of a clearing price. Suppose w,=«w® and let p*(5,4);
mu*)=peSy. At the beginning of the second period, type II agent observes
Fi{e)=5 and revises his model in such a way that m;.*(p)=(54)eY and
mug*(P)=mu*(p) for all p#p,. Suppose w,=o’ and F((3,40; mr*)=ps
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Assume p,75p,. At the beginning of the third period, m;,*(p)=(,4),
mi*(p2)=(3,4) and mus*(p)=mp*(p), pelp, pst. Let wy=0". Then, initially
p*((5,4); mus*)=p,. But this conveys information to the type II agent and
p, cannot be an equilibrium price. Therefore, the type II agent will revise
his demand and a new clearing price p; will result. Assume also that p,7p,.
At t=4, muXp)=0,4), mu*(p)=0,4), and mi*(P)=m, X (p), pe{ps ps). We
notice that whenever «® occurs after this period, p, will be an equilibrium
price. This process will continue and eventually the type II agents’ learning
will be completed.

The implicit assumption in the above example is that each agent’s con-
sumption decision in each period is not related to the consumption decision
in other periods except that his model is improving over time.

Before we get to the second example, we provide the following pro-
position.

Proposition 3.3 : Suppose there exists a rational expectations equilibrium
under Assumptions 2,1~2.3 and the agents’ utility functions are given as
in Theorem 2.2, Then for any realization y, we have E (+]|y) >rp*(y; m*)
where E,(+|y) is denoted to reflect the effect of having a different model
on the revised prior on E (see Proposition 4. 1),

Proof: This is due to the risk averseness of agents’ utility functions (see
Arrow (1)).

Remark 4.1 :1f ¢ takes only two different values ¢, and e, (¢,;<¢;), then
e)/r<p*<e,/r for any realizations of a joint signal.

Ezample 3,2 : Let (2,8)=((0,1), B) denotes the Borel field defined on
(0,1). The state contingent return é(w) takes only two values, ¢, and ¢,, We
will assume e,>>¢,>0. There are two types of agents. In each period, the
type I agent has a signal j, and the type II agent has a signal j,,, where
Jrni8B-Yy and yin P Q-Yy, Y=Y, w®, w®), Yu={uY, yu®} and Y=Y, x Y.
Let G= {0 & 2|5, (w)#y®) and assume 7 (0)=y;"V, @ ¢ Gand j,(0)=y,;?, o G.
{(J1, Fms), 1s a stationary, independent process. Each agent has the same
logarithmic utility function logW, and they are maximizing

Ellog(esz,p+ B 5=y, m.*(y)=p*}
s.t.

prxp+ B,<Wo,=p*E,r+B, for i=I or IIL
We assume (&, B,)=(&r B), all . Then
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wiler|yORW,' | wiles|yORWy'

e Py mu®d, yu, p*)=-— s p¥r e~ pitr

where

viley y)=P(é=ei| 3=y,
Similarly,

£ r( By *y oy el yORWY | vieal y)RWY

Eue(Pi(ys mu®), yi, pX)= es- pir e pitr ,
where

vierly) =P(é=e| Jr=3i, mu*(y)=P*).

Assume Ple=e,!ji=y, ") >P{e=e,|Ji=y,) >P(é=c,15,=y}. Then for any ¢,
we have zr(p, (y.i mu®), yu'V, p*)<Emr (BH(y: mu®), yu'®, p*<Fir (b*(yit
mu®), yu'™, p*), given any equilibrium price p*, since ey/r< p*<le,/r for
any y, (see Proposition 3. 3),

Let =0 and assume that j,(w)=%. Then 7,,(0)=y,;® and in this case
both types of agents are informed to the same degree. Define a correspond-
ing equiiibrium price, ¥y, yu® i mu=p*. Also, mu*(p*)= {m®?,
yir'®). Suppose at t=1, ip(@)=y" and 7;,(0)=y,"V, Define m, *(»)=p%*
pr=p*s my®) and m e =Y, v Ufn™, y™). This p* can be
solved explicitly from the market clearing condition, i.e.,

Lir(Pr(y my™), yn, )+ E(Di(n: mp®), v, ¥ =&+ Zpr.

Assume that at =2, jn(@)=y" and j(e)=y,". The type 11 agent
observes the realization of j,,. Therefore m/n(p*)={y,", »,"). But this
model is not compatible with p,* since as soon as p,(3", ¥,V mu)=p*,
the type II agent knows that 7,,(w)=y,,"" and he will decrease his demand
for the risky asset while the type I agent’s demand remains the same.
Therefore, if p,* is a clearing price, than p,*<p* and m,;,*(p:*) = (%, y,"}.
Notice that m; *(p*) = (3,®, y,?}. Also for any r>2, if 7,(e)=y,", then
p*=p,* since now the type II agent’s model is correct.

The same kind of analysis can be done for any other sequence of
realizations of a joint signal 7. We see that the price process {5* is not
a stationary process as long as m,,* is not perfect. (For example, w ¢ Q
such that 7 (w)=7,(w), it was shown that 5 *(w)+ p,*(e) and $,*(w) will never
be a clearing price in the future.)

Let us now briefly state what have been introduced in the above two
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examples. There, the type II agents’ models are improved only by the
observation of the successive market clearing price and the previous
realization of the type I agents’ signal. If that event occurs again, the price
signals to type II agents that the event which occurred before is the actual
event now and type II agents revise their demand correspondingly. Then
there is a new equilibrium price at the event and that price is an equili-
brium whenever that event occurs in the future. Agents start with a naive
model and behave in a very honest and empiric way. We call this mode of
learning a naive learning. The general form of a convergence of a naive
learning process can be stated as follows:

Definition 3.3 : Let 5(3,) denote a rational expectations equilibrium price
when every agent has perfect model. Let 7,71« m, *(p*)=A,(p%), .and C(p¥) =
lo e DG ()=p%). If }i_T P(A,(p*) 4C(p*)=0 for each p*eSy and for each
i, then we say that each of the agent’s models m,* converges simultaneously
to the perfect model for each y.

The above definition has a useful economic meaning. It states that in
the limit of a convergence process, the effects of differential information on
an agent’s preference formation vanishes if every agent starts with a com-
mon prior probability measure (though they initially have different private
signals). The following theorem confirms the above argument.

Theorm 3.2 : Let the naive learning process converge to a perfect model.
Assume that the o-field of event S is countably generated. (For this de-
finition, see Theorem 2.2, )

Let V.(p*(5: m), 3 :&) be the maximum of E{u,(%(sy) : )5, m*(p™),
subject to 5*(y 1 m*) #(H)<p*(y:m*)z for each realization of j=y. Similar-
ly, let V,.(5(y), 7. :&) be the maximum of E{u(z.(y):e)l5, B} s.t. p)
()< p»E. Then lim E{V.(A*Cy 2mD), 3,0 #8)) =E(V.(h(y), Fi 220}

Proof: See Appendix.

Suppose there are only two types of agents—informed agents (type I) and
uninformed agents (iype II). Type I agents receive signals 7, in each
trading period and type II agents do not receive such a signal and observe
only prices which reflect type 1 agents’ information. As type II agents
improve their models, type I agents become worse off and they may lose
their incentives to purchase a signal j,, From the type I agents’ point of
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view, the existence of those agents who do not have a perfect model is
necessary to collect a rent on their signal y,, But type II agents are actually
facing an informational entry barrier to this market. In other words,

E{Viu(p (5, 22 E(Vu(p*(G, m*), £} for all ¢

The informational entry barrier, like transaction costs, constitutes an
important element to limit the possible gains from the reduction of social
risk through the financial markets. Existence of these markets is not free
of social cost. In addition to the fixed set-up costs to open these markets,
there are variable costs of expanding these markets. Transaction costs and
the informational entry barrier are the major components of the variable
cost of this kind. Insiders’ information is often obtained at zero marginal
cost and in this case, an institutional structure other than the competitive
market is needed for the efficient transmission of information to those
potential agents who are willing to enter these markets. The existence of
those institutions can be regd;ded as social overhead capital since the
financial market is the major means of distributing the gains from the
growth of our economy.

IV. Convergence Theorem

In this section, a set of sufficient conditions for the convergence of the
naive learning process is provided. We do this step by step and first show
the uniqueness of an expectational equilibrium with imperfect models.

1. On the Uniqueness of an Expectational Equilibrium Price

Supi)ose there exists a full-information equilibrium price p*(y; »*) for
each yeY and a corresponding vector of fulfilled models m* which satisfy
Definition 4.2, The agents’ information structure is defined as Fi=B(5)A
B(m*($)). Let us decompose an economy Ep=(x, &, F,).-" into a family of
elementary economies {E ", E.=(x, £, B(y*)) where Er denotes a full-
information economy and B(3»*) is an elementary event introduced before
and Y= {y*,.,~ with P(B(»*))>0 for all % In each elementary economy E,,
each agent is

maximizing Ei{u,(¢(w)x,+B,r) | B(y")}
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subject to pe*z.+ B,=p*%, 1 B,,

where E,(+|B(y))=E(|By)HNApX). (For the definition of A,(p*), see
Definition 4.3.) If p* is an equilibrium price for this economy, then
pe¥=p*((w); m*) for any w, e B(y").

Let us fix E,(+{B(y*) and vary the price in each elementary economy as
follows. Each agent is now maximizing F, {«,(é(w)z,+ B, | B(y*)} subject to
e B,=pi, |- B,. I the equilibrium price for this economy is unique, then
p»* must be the only equilibrium price which gives each agent the additional
information A,(p*). We defined an elementary economy in such a way
that information is assumed to be given and they do not utilize informaton
contained in the price. The elementary economy is an artificial economys;
but the equilibrium in the elementary economy, E: is an equilibrium of a
full-information economy at each elementary event, B(»"). Suppose there
are two different equilibria in the full-information economy. Then in each
elementary economy, there will also be two equilibria. In other words, if
the equilibrium in each elementary economy is unique, then the full-
information equilibrium is also unique, for given m*.

Let x,(k, p)=(x.r(k, p), B.(k,p)) denote the demand function in each element-
ary economy, E: By showing that the demand function in the elementary
economy exhibits the gross substitute property, we prove that the equilibrium
in each artificial economy is unique. We say that (% p) has a gross

substitute property if

d@":lv”(k9f’) N - (ZB:(k’P)
o <0 and - /S >0, p

L

since the price of the safe asset is normalized to be one, and the informa-
tion structure in each elementary economy is given and does not depend
on p.

Following Arrow [1], define

U (W)

RA< ‘Vx) = _‘iT‘T(—ﬁ:rf)"

as the absolute risk aversion and W,-R.(W,)=Rp(W,) as the relative risk
aversion when agent i holds his wealth W..
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Assumption 4.1: R,(W,) is a decreasing function of W,, and Ry(W,) is an
increasing function of W..

Using this assumption, we have the following lemma presented in Arrow
(1]. Though we present this lemma in a different context, the connection
should be obvious.

Lemma 4,4: Under-the above assumption both risky asset and safe asset
are normal goods in each elementary economy. In other words, as W,
increases, the demand for both types of asset increases.

Notice that the wealth W, of agent i depends on the clearing price p
and if his endowment (#,, B, is given, we are not sure how changes in
the demand for both types of assets are related to the changes in the
wealth induced by changes in p. The following lemmas are quite useful in
this context.

Lemma 4.5 (Fisher [6]): If all goods are normal, a necessary and
sufficient condition for the endowment-constant demand curves to exhibit
gross substitutes is that the wealth-constant demand curves do so.

Using this lemma under Assumptions 2.3 and 2.4, we prove gross
substitutability when the initial wealth in monetary terms is fixed. Then
the desired result that the demand for both types of assets exhibits gross
substitutes can be obtained.

Lemma 4,6: When the wealth W, of agent i is exogenously given, the
risky asset and the safe asset are gross substitutes in each elementary
economy, FE.

Proof: Each agent is maximizing E, {u,(zv,‘+x,(i‘(a))~rp))IB(y”)]. Suppose p
changes to p’ and define R(w)=é(w)—rp. As p changes, R(w) changes. But
this change in the rate of return is a linear shift and the demand for the
risky asset declines if p’>>p when the risky asset is a normal good (Arrow
an. Q.E.D.

Now we have the following theorem.

Theorem 4,1: Under the Assumptions 2,1—2,6 and Assumption 4.1, a
rational expectations equilibrium with imperfect models exists and is unique.

Proof: Existence is proved in Corollary 2.2, Uniqueness follows from
Lemmas 4.4, 4.5 and 4.6. Q.E.D.

2, Convergence Theorem
To prove that the models of the agents converge to a perfect model, we
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.
need a series of assumptions. The following two assumptions are maintained
in this paper.

Assumption 4,2: The joint distribution generated by {z,, 7} is independent
and identically distributed over time. Also, B(37,) is generated by a countable
number of elementary events.

Assumption 4. 3: Every agent knows the information structure of every
other agent. In other words, the distribution induced by j, is known to all
agents. Further, they observe the realization of {5, 5* 7., in each
period ¢.

The acquisition and use of information certainly requires the use of
resources and the choice of information structure needs to be incorporated
into our formal framework. The signal that agent ; purchases as well as
the market clearing price in each period constitutes his information structure
if he possesses a perfect model. This signal 7, is interpreted as the private
information source of agent i and will be fixed throughout the future
trading periods. Then buying a certain signal at the beginning of the
trading process can be regarded as an investment activity and the optimal
choice of a signal needs complete knowledge of the price formation process,
including a knowledge of the signals and models possessed by other agents.
Although this requires extraordinary rationality on the part of each agent,
the assumption that the agents know each other’s information structures
is consistent with our reasoning. Since the realization of a joint signal is
not known contemporaneously, agents will have incentives to improve their
models to process the information conveyed by the price.

The assumption that each agent can observe the previous realization of
the joint signal seems to be rather restrictive. But this can be viewed as
a good approximation to the real situation in the security market. The
function &,(+) (or é(+) since it is identically distributed over time) is known
to every agent though its realization is not observable in the current
period. If it is interpreted as a vector of returns to the holding of risky
assets, ¢,_,(w) will be observable. If it generates a strictly finer partitioning
on £ than 3, ,. ., can certainly be inferred from &,_,(w). If the underlying
state of nature w itself is directly observable after one period, it gives
more information than the observation of j,_,(w). A signal may be in-
formation about the stock split decision of a particular class of firms in
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the next period. It may also be information about the merger movements
in near future or about the governmental regulation on the nominal rate
of interest on savings deposits, which constitutes a safe asset in the absence
of inflation. Agents also obtain information about the changes in the stock
of money and form the expectations of the future price level to adjust
their portfolio. Assumption 4,2 is tantamount lo the assumption that this
information in the economy is revealed to every agent after the lapse of
time. Our emphasis on this assumption is motivated by the fact that the
equilibrium price depends on the realization of the joint signal and not
directly on the underlying state since the latter is revealed after the
exchange is completed. What agents can do best is to understand how the
equilibrium price is related to the joint signal so that they can use the
foreknowledge about the underlying state which is indicated by the price.
To learn this relationship they need a series of past observations about the
price and its information content and once their learning is completed, the
self-fulfilling equilibrium will persist over time.

The other assumption that we have made implicit in the examples of a
naive learning process is that economic agents do not have any motive for
saving. This assumption is rather restrictive since we exclude an inter-
temporal optimizing behavior. Although this aspect of the learning process
was studied elsewhere (Yoon [19]), we make this restrictive assumption
explicit in this paper.

Assumption 4, 4: Each agent has a myopic horizon and consumes everything
that he has at the end of the period.

The following four conditions have been proved so far.

(1) Xy m*)#p*(y's m*) if y=y,

(2) p*(y; m*)#p(y), if y#y', where . denotes a strict rational expect-
ations equilibrium price, and m* is imperfect,

(3 N # BN if y=y,

(1) both 5#*(y; m*) and $,(y) is unique for each realization y.

Conditions (1) and (3) are satisfied by Corollary 2,3 and Theorem 3.1,
Condition (4) is also satisfied by Theorem 4.2 and Theorem 3,1. Condition
(2) needs an explanation. For two different events B(y) and B(y"), define
a new model m** as follows; m**(p)=m*(p) in the event B(y) and
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m**(H(y"))=y" in the event B(y’). If we imagine that a representative agent
i has a model m,** rather than m,* both Corollary 2.3 and Proposition
4, 2 satisfy condition (4) in the way they satisfy condition (1),

The following lemma is provided to prove that agents have enough
(infinite) opportunities to revise their models over time.

Lemma 4.7: Let B, be an elementary event 5, when it occurs at ¢. Each

elementary event £, occurs infinitely often. In other words, P(8,, i0.)=1,
where P(Bu. i.0.)=P(limsup 13,,):1)({/{3" ,Lijuli,,)=1 and B=lo ¢ Q §(0)=7(w),
Jlo)=y}.

Proof: Since {j, is a stationary independent process, events B,={w & (1|
Ji(@) and B/={w e Qj,(w)=7(w)) are independent for all ¢ and /. Since

P(B1)=P(Bi/)=P(B;)>0, iﬁ]p(B,,):oo for each . Using the Borel-Cantelli

lemma (Chung [3], pp. 71-79), we see that I'(B,, i.o.)=1. That is, each
elementary event B, occurs infinitely often with probability 1. Q.E.D.

Before we get to our main theorem, we emphasize again that the agents
are assumed to be empiricists and very honest about their model and once
they observe the new informaton conveyed by the price through their
models, recontracting is allowed until their models are fulfilled in each
period.

Now we have the following convergence theorem.

Theorem 4.2: If economic agents adopt a naive learning. a sequence of
e‘xpectational equilibria with imperfect models converges to a full-informa-
tion equilibrium as defined in Section II, under the assumptions maintained
either in Theorem 4.1 or in Theorem 3.1, and under Assumptions 4,2
~4, 4,

Proof: Consider an elementary event B,=B(y*) as defined in Definition
4,2. Suppose t, is the first time that event B, occurs. Let 5,*(p*; m,)=pu
and m,,*(p,)= (., Y.} for all i since agents do not know the relationship
between the equilibrium price at the elementary event B, and the realization

3

of the joint signal y* at time ¢. Notice that if m,*(p,*)=y*=s" for all i,
then for any w e 5%, p*(w)=p(y), where j(y*) is a strict rational expecta-
tions equilibrium price, since every agent is maximizing his utility con-
ditioning on the elementary event B* which is provided by his model. At

t=1,11, agent i can revise his model in such a way that m,, ,.,(p,)=y" and
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this will be true for any agent (agents revise their models only after the
observation of the realization of the previous joint signal and the corres-
ponding price). Since an elementary event B, occurs infinitely often by
Lemma 4.7, there exists 7’ such that j,/(0)=7,(w) for @ ¢ B But then at
t=t, p, cannot be an equilibrium price, since now every agent knows that
p, contains information, 7, (w)=7,(w). This is because Conditions (1)~ (4)
are satisfied under the assumptions stated in the above theorem. Let p,/*
be a new equilibrium price when all agents know that event B* occurs.
Then p,*=p,(y*) and for any >4/, m*(p,)=y* for all i and p*(w)=5(w)
for all w ¢ B* Since this is ture for all elementary events, our assertion is
true. Q.E.D.

V. Concluding Comments

We have introduced an expectational equilibrium with imperfect models
and examined the existence and uniqueness of this equilibrium. A naive
learning process and the convergence theorem for the dynamic adjustment of
expectational equilibria have been presented. The idea that each agent has
his own model of price formation was also discussed by Radner [17],
though we take a different framework.

What we have also emphasized is that fixed costs are an important
element in the acquisition of information and the cost of purchasing
information must be regarded as an investment in the instruments which
provide useful information over time (i.e., the signal 7). The rationality
requirement seems to be closely related with this view on the cost of
information. The development of financial intermediaries such as a Mutual
Fund or an Investment Bank can be regarded as economizing on rationality
requirements (Yoon [20]).

Grossman [10] discussed the cost of information in the context of a
dimensionality of the message space. His point is that even in a self-
fulfilling long-run equilibrium the price system may not fully reflect
insiders’ information if there are some non-traded assets (e.g., human
capital or small businesses) due to institutional constraints. In this paper,
we expressed the view that the incentive for the informed agents to acquire
their costly signal is derived from the opportunity to collect a rent to their
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information endowment through the dynamic adjustment process.
Appendix

(1) Proof of Theorem 2.2: We will first assume that each agent has full information,
B(jy, ..., r). Then we will show that a full information equilibrium price 5;(#) generatcs
a sigma-field of events finer than B(§y, ..., #r). Since any equilibrium price cannot contain
more information than B(Jy, ..., 1), we can conclude that B(5,(3))=B(#). Then B(3,,
51(7))=B(¥) and so there exists a rational expectations equilibrium price p(y)=p5(3).
Let By, B; ¢ B(§5), B.NB;=¢. Suppose for wy e B, and o, € B), p;(#)(wp)=p()(w)=p.
By Assumptions 2.5 and 2.6 we have

EfeU/(e+Z,r(y)+ B,(»)R) | B} ) LE{e U/ (e+2,r(3) -+ B.(3)R) | B}
=g E{U/(e-%,r(y)+B.(y)R)|B}}.
since Pe«e™! is non-atomic and P(B,)>0. Similarly,
EleU/ (e (y) -+ B.(3OR| B >eL (U, (e 2, () + B.(3IR| By} .
Suppose
L=y, B(y))=2.(F.p) at o=ws.
Let p=(Pr, Pg). Then

Pr _ EleU/(e<%.p(9)-+ B.(3)IR) | By} S €
Py RE{U(e+%s(»)+B.(OR)| By R ’

But

e E{eU/(e+%,r(y) + B,(y)R)| Bi)
>l e YT

R E{U(e-Zr(») +B(»)R)|Bi}

Therefore, at w=w, ¢ B;, the ith agent’s demand for the risky asset must decrease if

the same price prevails. This is true for for all 7. Then
T T
;@NJ’)(wk)>§5€ur(y)(wl) al Pr(y) (o) =P1(y)(wr)=p.
Similarly,
T T
35,() (@) <EB, (3 ).
By Lemma 2.1, wc know that
T
2:_. Z.r(y) (wn) = Z»er,
and
r r
g‘:l[gt(y)(wk):gpl

Therefore p cannot be an cquilibrium price at w=w;, ¢ B;. Now we have proved that

B(p1(3))=B(y). By Theorem 2.1, we can construct an equilibrium price p; such that
B(pD=B(y). Q.E.D.
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(2) Proof of Theorem 3.2: Before we provide a proof, we need following two well
known lemmas. We state these without proof.

Lemma A.1: Let the sequence of economies e,= (i,;, £.1) .=, converge 10 eq= (g, F1p)i=1"»
where #,; converges to u,, in the topology of uniform convergence and each u; satisfies
Assumption 3. 2. Let the corresponding sequence of the equilibrium price correspondence
be A,(e). Then the correspondence A from the space of economies to the price simplex
is upper-semicontinuous.

Lemma A,2. Let v,(p, &) be the maximum of wu,(x) subject to prx<put. If u,
converges to %, and when p, converges to p,, then v,(pw, Z) converges to vo(pw, ) if
{us(x)} is a sequence of a strictly concave and continuous functions.

Let

Di(w)={o e Q|yu(@)=y.(0), m*(p*(y: m™*)(w))=mX(p*(y : m*) ().
(Dy(w.)#¢ by the definition of an equilibrium introduced in Definition 3.2.) Then

*

Elu,(z;: )|y, mu(pX)} (0)= }}(D}l’(w_,)) ID‘,m‘lu,(:E(y) 1 e) Pdw).

Since {m.,;}, converges to p* for all i, P(D/(w.))—P(D(w.)), where D(w,)= {0 & {|y(w)=
y(w)}. If we introduce a pseudometric p defined on (0, S, P) by p(A, B)=P(AAB) for
A, BeS, then the integral is a continuous function on this pseudometric space M(S, P)
(See (3], p.44).

T herefore

f u,(z, . e) Pldo) — fD uwi(z, ; €) P(dw) as t—oo

t‘(m.l
and v,(p*(y : m*), v, . £,) converges almost surely to v,(p(y), ¥ : &) due to Lemmas

A.1 and A.2. Since u,(x;:¢) was assumed to be a bounded function, liin Efvi(p*(y :

m*), y. ! 2D} =E{w,(p*(3), 3, 1 £)} (See (3], p.67). Q.E.D.

(w,)
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