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Grouping and clustering methods in econometrics*
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This paper reviews recent developments in the application of clustering methods in 
econometrics. In particular, we discuss how the k-means algorithm can be extended 
and applied to econometric problems. Models with group structures are useful to 
describe heterogeneity across units. Such models can be estimated by extensions of 
the k-means algorithm. We also discuss inference methods for group memberships 
and methods to incorporate possible structural breaks.
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1. Introduction

This paper reviews recent developments in econometric applications of clustering 

methods. Clustering methods are data-driven methods to divide a sample into 

several groups. They do not assume prior knowledge of group memberships of 

the observations. Although clustering methods have a long history in statistics and 

machine learning, econometricians have only recently shown particular interest in 

these methods to analyze heterogeneity across observational units.

In economic applications, heterogeneity across observational units needs to be 
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adequately treated to have valid statistical inferences, and heterogeneity itself may 

also be of research interest. For example, consider an empirical analysis of the effect 

of democracy on economic growth using country-level data (Acemoglu et al. 2008). 

Unobserved heterogeneity across countries, such as their cultural differences and 

historical background, would affect both their political and economic situations. It 

would thus cause omitted variable bias when we measure the effect of democracy on 

economic growth. A consistent estimation of the effect of democracy needs to control 

for such heterogeneity. Moreover, there might also be heterogeneity in the effect of 

democracy; for some countries, a democratic government helps economic development 

but for other countries, an authoritarian regime may be better for economic growth.

Panel data are useful in handling heterogeneity across units. It enables us to control 

time-invariant unobserved heterogeneity through the introduction of unit fixed effects. 

It can also control for unobserved time effects that are common across units but 

evolve over time. Nonetheless, traditional modeling strategies for panel data still 

face limitations in terms of handling unobserved heterogeneity. First, introducing unit 

and time fixed effects does not solve the omitted variable bias problem completely 

because there might be time-varying unobserved heterogeneity that is correlated with 

the regressor and affects the outcome. Second, while unobserved heterogeneity in the 

effect of a variable of interest can be modeled using unit-specific coefficients, this 

approach causes the number of parameters to be very large; estimates may not behave 

well and are difficult to interpret. There are several ways to summarize unit-specific 

coefficients (Fernández-Val and Lee 2013; Okui and Yanagi 2019, 2020), but they are 

not particularly useful in investigating the effect for each unit.

The latent group structure is a useful modeling device to address these issues. It 

assumes that units are divided into groups. Units in the same group share the values 

of coefficients and two units in different groups have different values of coefficients. 

It is a restricted form of heterogeneity but it provides several advantages. First, group-

specific coefficients can be time-varying. Second, it can control for time-varying 

unobserved heterogeneity, which is not feasible in approaches with individual and 

time effects. Third, group-specific coefficients can be estimated precisely because the 
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estimation utilizes observations in the same group. Because group memberships can 

be estimated consistently, one can infer the coefficients for specific units.

This review starts with an overview of the k-means algorithm in Section 2. It is 

the most representative algorithm for clustering in statistics and machine learning. It 

is designed to divide a sample of vectors into several groups and members of each 

group have a common mean vector. We then extend it to panel data models in Section 

3. We consider panel data models with group-specific coefficients. An extension of 

the k-means method to panel data models by Bonhomme and Manresa (2015) is 

introduced in Section 3.1. It provides an estimator of both group memberships and 

group-specific coefficients. Moreover, Section 3.2 reviews methods for statistical 

inferences for group membership structure developed by Dzemski and Okui (2020a).

We then discuss methods to detect structural breaks in Section 4. While time-

varying group coefficients are allowed even in the method discussed in Section 3, it 

is useful to assume that group coefficients change only at breakpoints. We can have 

a more efficient estimator by combining information from time periods within each 

regime. We discuss the method developed by Okui and Wang (2020) in Section 4.1. 

We also consider a structural break that affects the group membership structure in 

Section 4.2. Lumsdaine, Okui, and Wang (2020) show that a least-squares method can 

be used to estimate the breakpoint, the group membership structure, and the group-

specific coefficients. We then conclude in Section 5.

Models with latent group structure are clearly related to finite mixture models 

which have been studied intensively in econometrics, statistics, and machine learning. 

We do not discuss them in this review but focus on applications and extensions of 

the k-means algorithm in recent econometric literature. Compared with finite mixture 

models and their estimation through the EM algorithm (Dempster, Laird, and Rubin 

1977), the grouping approach discussed in this review has several advantages. First, 

it does not require parametric assumptions on the error terms. Second, our approach 

provides a relatively straightforward inference method for group-specific coefficients. 

A disadvantage is that we typically need to assume that T → ∞ to justify the 

procedures. Thus, the grouping methods are proven to be useful in long panels, but 
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their usefulness in short panels is still to be seen.

While the word “cluster” is also used in the context of clustered standard errors 

(Angrist and Pischke 2008Chapter 8), this paper does not discuss it. It refers to the 

problem of constructing valid standard errors when observations are correlated within 

a cluster. In that context, we typically know which observations belong to which 

cluster and the problem we consider here is different.

Given the space limitation, this review article does not discuss the details of the 

asymptotic theory behind the procedures. We do not discuss how to choose the 

number of groups. It is typically chosen by information criteria and is discussed in 

papers on which the discussion for each section is based.

2. The k-means algorithm

We first discuss the k-means algorithm. It divides observations into several groups. 

This clustering algorithm is discussed in many statistical and computer science 

textbooks (Imai 2018; Murphy 2012). It is one of the most representative algorithms 

for unsupervised learning (that is, a problem without an outcome variable) in machine 

learning.

Suppose that we have a sample {Yi}
N
i=1, where Yi = (y1i,…,ymi)' is an m-dimensional 

vector. Our purpose is to cluster {Yi}
N
i=1 into G groups. We assume that

Yi = μgi
 + ϵi, 

where μg = (μ1g,…,μmg)' is an m-dimensional vector of parameters for group g and 

is called the centroid for group g, gi is the group membership for unit i, and ϵi is an 

m-dimensional vector of error terms.

We estimate μg, for g = 1,…,G and gi for i = 1,…,N simultaneously. The estimation 

minimizes the least-squares objective function:
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The minimization problem is usually solved by the following k-means algorithm.

1. Set an initial value of the centroids: μg
(0), for g = 1,…,G. Set s = 1.

2. Let gi
(s) = ming = 1,…,G ∑

m
j = 1(xji - μj

(s
g
-1))2. 

3. Let μg
(s) = minμg ∑gi

(s)
=g ∑

m
j=1(xji - μjg)

2. Note that μjg
(s) = ∑gi

(s)
=g xji / #{gi

(s) = g}.

4. Set s = s + 1.

5. Repeat 2 to 4 until convergence.

The algorithm converges for each initial value because the objective function 

decreases in each iteration. However, there is no guarantee that it achieves the global 

minimum and often it converges to a local minimum. We thus need to try many initial 

values and it might involve a large computational cost in particular when the number 

of groups (G) is large. Nonetheless, the algorithm seems to work well when G is not 

large (say, G is less than 10).

The asymptotic properties of the k-means algorithm have been discussed in the 

statistics literature. Pollard (1981) proves the probability limit of the estimator. The 

asymptotic framework considered is N → ∞. Note that the distribution of the data 

does not need to be a finite mixture of some underlying distributions. Therefore, 

the probability limit may be considered as a pseudo true value that minimizes the 

probability limit of the k-means objective function. The asymptotic normality around 

the pseudo true value is discussed in Pollard (1982).

3. Group heterogeneity in panel data

We now discuss the application of the k-means algorithm to panel data models. In 

particular, we consider linear panel data models with group-specific coefficients. It is 

estimated by the grouped fixed effects estimator by Bonhomme and Manresa (2015). 

We also discuss how to make inferences about group membership structure following 
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Dzemski and Okui (2020a).

3.1. Grouped fixed effects estimator

Suppose that we have panel data (yit, xit) for i = 1,…,N and t = 1,…,T. i is the unit 

indicator and t indicates time. The panel data contain information about N units for T 

time periods. yit is the scalar dependent variable for unit i at time t, and xit is a vector 

of regressors. We consider the effect of xit on yit.

Units in the panel data are divided into G groups. Units in the same group share the 

values of coefficients and their values of the coefficients are different from those in 

different groups. We consider the following model.

    yit = xit' βgi ,t + ϵit  (1)

where gi ∈ {1,…,G} is the group membership of unit i, βgi ,t is the group-specific and 

possibly time-varying coefficient vector, and ϵit is the error term. We assume that E(ϵit 

| xit) = 0 so that the coefficient vector βgi ,t captures the effect of a change in xit on yit.

The main part of Bonhomme and Manresa (2015) considers a version of the 

model in which the intercept exhibits a group structure but other coefficients are 

homogeneous:

    yit = wit'θ + αgi ,t + ϵit , (2)

where the regressors (wit',1) = xit include the constant. The coefficients of nonconstant 

regressors (θ) are common across units and time-invariant while the intercept exhibits 

grouped heterogeneity and is time-varying. In this model, αg,t captures time-varying 

unobserved heterogeneity whose omission would cause an omitted variable bias in 

the estimation of θ. Note that the k-means model considered in Section 2 is a further 

special case of (2). It is obtained by setting wit null and t is interpreted as m in the 

previous section.
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We estimate model (1) by minimizing the following objective function:
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This estimator is called the group fixed effects (GFE) estimator.

To compute the estimator, we adopt the following k-means-type algorithm.

1.   Set an initial value of the coefficient: βg
(
,
0
t
)
 , for t = 1,…,T and g = 1,…,G.  

Set s = 1.
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4. Set s = s + 1.

5. Repeat 2 to 4 until convergence.

In Step 2, each unit is assigned to the group that gives the smallest sum of squared 

residuals for a given value of the coefficient parameters. Step 3 is just an ordinary 

least-squares (OLS) estimation of the coefficient for each group using observations 

belonging to that group given the group membership structure at the iteration.

Similar remarks to the k-means algorithm apply here. There is no guarantee that the 

algorithm converges to the global minimum of the objective function and many initial 

values need to be tried. The GFE estimator may thus suffer from a computational 

burden, particularly when the number of groups is large. The supplemental appendix 

of Bonhomme and Manresa (2015) discusses an alternative algorithm to mitigate 

the computational concern. Alternatively, several estimators, whose computational 

costs are substantially lower than that of the GFE estimator, have been proposed. 

Su, Shi, and Phillips (2016) proposed the CLasso estimator which applies the idea 

of Lasso (Tibshirani 1996) to panel data models with group heterogeneity. Chen 

(2019) proposed the hierarchical agglomerative clustering method which is also 

computationally attractive. Wang, Phillips, and Su (2018) discusses an alternative 

method.

The group membership estimator 1ˆ{ } =
N

i ig  is consistent in the sense that P 
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ˆ( , for all )=i ig g i  → 1 under a relatively weak condition when both N → ∞ and T → 

∞. Accordingly, the coefficient estimator , 1 1{{ } }β = =
T G

g t t g  has an asymptotic distribution 

which is identical to that under known group memberships. Asymptotic properties 

are developed in the appendix of Okui and Wang (2020). Note that Bonhomme and 

Manresa (2015) considered model (2) in the main text and other variants in the 

supplemental appendix but this most general version is not considered there.

It is easy to modify the algorithm for cases in which some or all of the coefficients 

are time-invariant and some coefficients are common across groups. Various 

extensions are discussed in Bonhomme and Manresa (2015).

3.2. Inference for group memberships

This section considers how to make statistical inferences for group memberships. 

While the estimator for group membership structure is equal to the true group 

membership structure with probability approaching one, they may not be equal in 

finite samples. Indeed, simulation results given in, for example, Bonhomme and 

Manresa (2015) show that it is quite common that there are some units whose groups 

are misclassified. Note that the consistency of the group membership estimator for all 

units is not necessary for the coefficient estimator to have good asymptotic properties 

(Dzemski and Okui 2020b).

We consider the following panel data model with group-specific coefficients:

yit = xit' βgi ,t + ϵit .

The key idea is that if the group membership of unit i is g, then the values of 

the coefficients for group g give the smallest mean squared error. That is, the null 

hypothesis H0 : gi = g is equivalent to
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 for some h ≠ g. This observation implies that 

a group membership structure can be tested by a one-sided test of moment conditions. 

A confidence set for group membership structure can be obtained by inverting such a 

test.

We now construct a test statistic. Let ,β̂g t  be a consistent estimator for βg,t for t = 

1,…,T and g = 1,…,G. The sample version of dit(g,h) is

� �2 2 2
, , , ,

1ˆ ˆ̂̂̂( , ) ( ) ( ) ( ( )) .
2

� � � �� � �� � � � � �it it it g t it it h t it g t h td g h y x y x xˆ ˆ ˆ

The t statistic based on ˆ ( , )itd g h  is

1

2
1

ˆ ( , )ˆ ( , )
ˆ̂( ( , ) ( ( , ))

�

�

�
�

� �

T
t it

i
T
t it i

d g hD g h
d g h d g hˆ

where 1
1

ˆ̂ ( , ) ( , )�
�� �Ti t itd g h T d g hˆ . Because we reject the null hypothesis only for a 

positive value of ˆ ( , )iD g h , our test statistic is the maximum of the t statistics:
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The critical value may be obtained using a Bonferroni method. Let α be the 
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significance level. A critical value suggested by Dzemski and Okui (2020a) is

1
,1, 1

1( ) 1 ,
( 1)α
α−

−
 −

= − − 
i T

Tc g t
T G

where tT-1(∙) is the cumulative distribution function of Student’s t distribution with T − 

1 degrees of freedom. This critical value is robust to within-unit correlation and can 

be computed easily in most of statistical and programming software. Alternatively, 

one may use a multivariate t distribution which takes within-unit correlation into 

account explicitly and is thus expected to achieve a higher power. This strategy is 

discussed in Dzemski and Okui (2020a).

A (1 − α) confidence set for i’s group membership is thus

   ,1, ,1,
ˆ ˆ ˆ{ {1, , }: ( ) ( )} { }.α α∈ ≤ i i i iC g G T g c g g  (4)

We add the estimated group membership ĝi to the confidence set because otherwise 

the confidence set may be empty.

We can also construct a (1 − α) confidence set for the entire group membership 

structure:

  , ,
1

ˆ ˆ ˆ{ {1, , }: ( ) ( )} { },α α
≤ ≤

= ∈ ≤×  i N i i
i N

C g G T g c g g  (5)

where

   
1

, , 1
1( ) 1 .

( 1)α
α−

−
 −

= − − 
N i T

Tc g t
T G N  (6)

Ĉα is the Cartesian product of unit-wise confidence sets, but the confidence set 

for each unit-wise confidence set is adjusted using the Bonferroni correction. It is 

computationally easy to compute a confidence set even for all units.

Dzemski and Okui (2020a) show that under mild conditions the confidence set 

asymptotically covers the true group membership structure with probability more than 
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The proof of this claim is mathematically quite involved because of the high-

dimensional nature of the problem. Nonetheless, an intuition is simple, there are (G − 1)

N one-sided t tests and we combine them using the Bonferroni method.

4. Structural breaks

In this section, we consider how to handle structural breaks. In Section 4.1, 

structural breaks affect the values of the coefficients for each group. In Section 4.2, a 

structural break also changes the group membership structure.

4.1. Structural breaks in coefficients

In this section, we consider structural breaks in the group-specific coefficients. 

Considering possible structural changes is important in panel data analysis, in 

particular when the length of time series is large. While we have allowed time-

varying parameters in Section 3, it is often more convenient to model time-varying 

pattern via structural breaks rather than to consider cases in which coefficients change 

at every period. Exploiting structural breaks allows us to combine information from 

multiple time periods between two breaks. We obtain a more efficient estimator. 

Detecting breaks also facilitates interpretation of the results. Here, we use Lasso to 

detect breaks following Okui and Wang (2020).

As before, we have data (yit ,xit) for i = 1,…,N and t = 1,…,T and consider the 

following model:
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yit = x'it βgi ,t + ϵit 

where gi ∈ {1,…,G} is unit i’s group membership and ϵit is an error term. We 

assume that for each group g, the time-varying pattern of coefficients {βg,1,…,βg,T} is 

characterized by structural breaks. Suppose that group g exhibits Jg breakpoints and 

{Tg, j}
J
j
g
=0 ⊂ {1,…,T}, where Tg, 0 = 1 and Tg, Jg = T denote the breakpoints for group 

g. The value of βg,t changes only at break dates and remains constant in a regime 

between two breaks:

βg,t = αg,j,    if    Tg , j-1 ≤ t ＜ Tg, j.

We allow consecutive structural breaks, that is, breaks to occur in two adjacent 

periods. A break can occur at the end of the time series. These features are difficult 

to handle in individual time series analysis or panel data models with complete 

heterogeneity. Allowing these features is one of the advantages of using panel data 

models with latent group structure.

We allow break dates to be group specific. Note that existing methods for structural 

breaks in panel data often assume common break dates across units. For example, 

Qian and Su (2016a) consider common structural breaks in models with homogeneous 

coefficients. Baltagi, Feng, and Kao (2016) allow coefficients to be individual specific 

but keep the assumption of a common breakpoint. We consider a setting that is more 

general in terms of structural breaks, but more restrictive in terms of heterogeneity, 

than that of Baltagi, Feng, and Kao (2016).

Okui and Wang (2020) propose a method to jointly estimate the group membership, 

break dates, and coefficients, called the grouped adaptive group fused lasso (GAGFL). 

The idea of the GAGFL method is to combine the GFE method by Bonhomme and 

Manresa (2015) for group membership estimation and adaptive group fused lasso 

(AGFL) proposed by Qian and Su (2016a) (see also Qian and Su 2016b) for break 

detection.

The GAGFL estimator minimizes the following objective function.
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where λ is a tuning parameter and w· g,t is a data-driven weight

, , , 1 ,κβ β −
−= − 


 g t g t g tw

κ is a user-specific constant and β·g,t is a preliminary estimate of βg,t. The tuning 

parameter λ may be chosen by an information criterion. κ may be set to be 2. For β·g,t, 

we may use the GFE estimates discussed in the previous section.

The first part of the objective function is the sum of squared residuals and is 

used for the GFE estimator. The second part of the objective function is the penalty 

term. It is an example of an L1 penalty and can induce a sparsity property of the 

coefficients. Because of this penalty, the coefficient estimates may be β̂g,t = β̂g,t-1. Note 

that these two cannot be the same in the case of the GFE estimation. Breakpoints are 

estimated to be time periods t with β̂g,t ≠ β̂g,t-1.

We adopt the following iterative algorithm for minimization.

1. Let {gi
(0)}N

i=1 be the initial GFE estimate of group membership structure. Set s = 1.

2. For the given {gi
(s-1)}N

i=1, compute for each g

( 1)
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( ) 2
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3. Compute for all i ∈ {1,…,N},

( ) ( ) 2
,
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∈ =
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T
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4. Set s = s + 1. Go to Step 2 until numerical convergence.

Step 2 is the AGFL estimation using observations belonging to a group according 

to the group membership assignment at the iteration. Step 3 assigns a group to each 
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unit by minimizing the sum of squared residuals given the value of coefficients. Note 

that if we use the GFE estimator as a preliminary estimate, then iterations are not 

needed to obtain estimators with desirable asymptotic properties. Just one step of an 

application of the AGFL estimator is sufficient. Nonetheless, Okui and Wang (2020) 

show through their simulations that the estimator obtained after the iteration converges 

performs better. Note also that the algorithm converges quickly, which is expected 

if we use the GFE estimator as an initial value. The computational burden of this 

algorithm mainly comes from the preliminary estimation using the GFE method.

Okui and Wang (2020) prove the consistency of the estimator for the group 

membership structure, breakpoints, and the coefficients. Because the group 

membership structure and breakpoints estimators are equal to the true values with 

probability approaching one, the asymptotic distribution of the coefficient estimator is 

equivalent to that under known group membership structure and breakpoints.

Note that it is easy to modify the algorithm for situations in which some of the 

coefficients are known to be fully time-varying. In that case, those coefficients are 

not included in the penalty term. The algorithm can also be modified to treat cases 

in which some coefficients are known to be time-invariant and/or common across 

groups. Those extensions are discussed in Okui and Wang (2020).

4.2. Structural breaks in group membership structure

This section considers situations in which a structural break changes the group 

membership structure in addition to the coefficients. We have already seen that time-

varying coefficients can be handled, and a method is available for detecting structural 

breaks that affect the value of the coefficients. However, they assume that the group 

membership structure is fixed over time. Lumsdaine, Okui, and Wang (2020) consider 

a break that may affect the group membership structure and proposes a statistical 

procedure to detect it.

Again, suppose that we have data (yit ,xit) for i = 1,…,N and t = 1,…,T. We 

consider the following model:
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yit = xit' βgit ,t + ϵit ,

where βg,t is the coefficient for group g at time t and git is the group membership for 

unit i at time t. The coefficient is time-varying and so is the group membership.

We assume that the time-varying pattern of both the group membership and the 

coefficient value are determined by a single breakpoint. We assume that there is a 

break at k0 common to all groups and the values of the coefficients are
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where gi(B) ∈ {1,…,GB} is unit i’s group membership before the break and gi(A) ∈ 

{1,…,GA} stands for unit i’s group membership after the break. Note that the number 

of groups can change at the breakpoint. A caveat is that the labeling of groups is 

arbitrary and there may not be any relationship between the group labels before the 

break and those after the break. For example, group 1 before the break may not have 

any relationship with group 1 after the break.
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breakpoint k ∈ {2,…,T − 1}. To estimate the parameters, we minimize the sum of 

squared residuals:

, 1 , 1 1

, 1 , 1 1

1
2 2
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G G N
g B g g A g i i i

k N T N
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g B g A k

y x y x

ˆ ˆ

The minimization problem is solved using the following iterative algorithm.

1.   Set s = 1. For a given k ∈ {2,…,T − 1}, initialize group structures in both 

regimes as (0) (0)
1{ ( ) , ( ) } .=

N
i i ig B g A

2.   For given ( 1) ( 1)
1{ ( ) , ( ) } ,− −
=

s s N
i i ig B g A  and k, estimate the slope coefficient 
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, 1 , 1{ } ,{ }β β= =

B AG G
g B g g A g  in the two regimes by

and
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( 1)
,

1
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1 ( )
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3.   Given ( ) ( )
, 1 , 1{ } , { } ,β β= =

B As G s G
g B g g A g  find the optimal group for individual i in each regime 

by

and 

1
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,
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T
s s

i it it g A
g t k

g B y x

g A y x

4.   Iterate Steps 2 and 3 until numerical convergence. Let the values of parameters 

obtained after convergence be , 1 , 1 1
ˆ̂ ˆˆ ˆ̂({ ( )} , { ( )} ,{ ( , ), ( , )} ).� �� � �

B AG G N
g B g g A g i i ik k g B k g A k

5. Let k vary from 2 to T, and estimate the breakpoint by

1
2

ˆ ( , ),
{2, , 1} 1 1

ˆ ˆarg min ( ( ))β
−

∈ − = =

′= − +∑∑


i

k N

it it g B k B
k T t i

k y x k 2
ˆ ( , ),

1

ˆ( ( )) .β
= =

′−∑∑ i

T N

it it g A k A
t k i

y x k

Step 1 initializes the parameters. In Step 2, we compute an estimate of β given a 

breakpoint and a group membership structure. Note that this is just computing an 

OLS estimate. Step 3 updates the group membership structure. It is a least-squares 

estimation of group memberships. Step 4 states that we iterate Steps 2 and 3 until 

convergence, and this is essentially the k-means algorithm. In other words, we apply 

the GFE estimation of Bonhomme and Manresa (2015) to data before and after the 

break separately. We repeat Steps 1–4 for each k. Lastly, in Step 5, we find the value 

of k that minimizes the objective function. This break estimation approach is a least-

squares method, and the idea is similar to those discussed in Bai (1997).

Lumsdaine, Okui, and Wang (2020) show that the breakpoint and the group 
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membership structure can be estimated consistently. In particular, it is a “super” 

consistency result in the sense that with probability approaching one, the probability 

of the breakpoint and the group membership estimates are exactly equal to the 

true values. This super-consistency result implies that the coefficient estimator 

asymptotically behaves as if the breakpoint and the group membership structure were 

known. That is, the coefficient estimator is the OLS estimator applied to each regime 

and each group, and statistical inferences may be conducted as in the case of the 

usual OLS estimator.

5. Conclusion

This review summarizes the recent development of grouping methods in 

econometrics. Grouping methods are useful to analyze heterogeneity in panel data. 

They allow us to obtain precise estimates of group-specific coefficients and to 

interpret the results easily.

We expect that grouping methods will be applied to many different economic 

problems and there will be more econometric works in this field. The GFE 

estimator and other related methods have been extended to other types of models 

such as nonlinear models (see, e.g., Gu and Volgushev 2019; Liu et al. 2020) and 

nonstationary models (see, e.g., Huang, Jin, and Su 2019). We expect other different 

models and settings to be considered in the near future. It is also important to 

examine further the inference issues for the estimators obtained by grouping methods. 

Because of the super-consistency of the group membership estimator, the usual 

methods for statistical inferences for the OLS estimator may be used, but it is not 

clear if such statistical inferences are uniformly valid for a class of data generating 

processes. In addition, there has not been much discussion on how to make statistical 

inferences on the number of groups. An important exception is Lu and Su (2017), and 

more research is desirable.
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